Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.519
Filtrar
1.
Plant Physiol Biochem ; 215: 109081, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39222548

RESUMEN

The garden strawberry (Fragaria x ananassa Duch.) is cultivated and consumed worldwide because of the pleasant flavor and health-promoting phytochemicals of its false fruits. Monocrop cultivars produce fully ripe strawberries in about one month post-anthesis throughout the spring, while everbearing cultivars undergo additional strawberry production in autumn. In this work, we evaluated the impact of different season-dependent environmental conditions on the ripening program of an everbearing field-gown strawberry variety from autumn 2015 to spring 2016. We combined ad hoc sampling and environmental data collection with LC-MS-based untargeted metabolomics to dissect the effects of cumulative temperature and solar irradiation on fruit quality parameters and secondary metabolism during ripening. Different dynamics in specific sub-groups of metabolites were observed in strawberries experiencing distinct amounts of cumulative temperature and solar irradiation during spring and autumn. The integration of statistical analyses on collected data revealed that solar irradiation mainly affected fruit fresh weight and organic acid levels, whereas temperature had a more selective effect on the accumulation of specific flavonols, anthocyanins, and soluble sugar. These findings are of suitable interest to design further approaches for the study of the complex interactions among environmental conditions and ripening in strawberries grown in a real-world scenario.


Asunto(s)
Fragaria , Frutas , Luz Solar , Temperatura , Fragaria/metabolismo , Fragaria/efectos de la radiación , Fragaria/crecimiento & desarrollo , Frutas/metabolismo , Frutas/efectos de la radiación , Frutas/crecimiento & desarrollo , Metabolismo Secundario/efectos de la radiación , Estaciones del Año , Antocianinas/metabolismo
2.
Food Res Int ; 195: 114947, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277225

RESUMEN

Mung beans were pretreated with a combination of ultrasonic and calcium ion to enhance the polyphenol content and antioxidant capacity during germination. Changes in polyphenol content and antioxidant capacity during germination, along with underlying mechanisms, were investigated. Both single ultrasound and combined ultrasound-Ca2+ pretreatments significantly increased the polyphenol content and enhanced the antioxidant capacity (p < 0.05) of mung beans depending on germination period. Among 74 polyphenolic metabolites identified in germinated mung beans, 50 were differential. Notably, 23 of these metabolites showed a significant positive correlation with antioxidant activity. Ultrasound pretreatment promoted flavonoid biosynthesis, whereas ultrasound-Ca2+ pretreatment favored the tyrosine synthesis pathway. Polyphenol composition and accumulation changes were mainly influenced by metabolic pathways like flavonoid, isoflavonoid, anthocyanin, and flavone/flavonol biosynthesis. The results suggest that ultrasound alone or combined with calcium ion pretreatments effectively enhance mung bean polyphenol content and antioxidant capacity during germination.


Asunto(s)
Antioxidantes , Calcio , Germinación , Polifenoles , Semillas , Vigna , Germinación/efectos de los fármacos , Polifenoles/metabolismo , Vigna/crecimiento & desarrollo , Vigna/metabolismo , Calcio/metabolismo , Antioxidantes/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Flavonoides/metabolismo , Flavonoides/análisis , Antocianinas/metabolismo
3.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273249

RESUMEN

Indoor farming systems enable plant production in precisely controlled environments. However, implementing stable growth conditions and the absence of stress stimulants can weaken plants' defense responses and limit the accumulation of bioactive, health-beneficial phytochemicals. A potential solution is the controlled application of stressors, such as supplemental ultraviolet (UV) light. To this end, we analyzed the efficiency of short-term pre-harvest supplementation of the red-green-blue (RGB, LED) spectrum with ultraviolet B (UV-B) or C (UV-C) light to boost phytochemical synthesis. Additionally, given the biological harm of UV radiation due to high-energy photons, we monitored plants' photosynthetic activity during treatment and their morphology as well as sensory attributes after the treatment. Our analyses showed that UV-B radiation did not negatively impact photosynthetic activity while significantly increasing the overall antioxidant potential of lettuce through enhanced levels of secondary metabolites (total phenolics, flavonoids, anthocyanins), carotenoids, and ascorbic acid. On the contrary, UV-C radiation-induced anthocyanin accumulation in the green leaf cultivar significantly harmed the photosynthetic apparatus and limited plant growth. Taken together, we showed that short-term UV-B light supplementation is an efficient method for lettuce biofortification with healthy phytochemicals, while UV-C treatment is not recommended due to the negative impact on the quality (morphology, sensory properties) of the obtained leafy products. These results are crucial for understanding the potential of UV light supplementation for producing functional plants.


Asunto(s)
Antioxidantes , Lactuca , Fotosíntesis , Rayos Ultravioleta , Lactuca/metabolismo , Lactuca/efectos de la radiación , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Antioxidantes/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/efectos de los fármacos , Flavonoides/metabolismo , Fitoquímicos/metabolismo , Carotenoides/metabolismo , Antocianinas/metabolismo , Ácido Ascórbico/metabolismo , Fenoles/metabolismo
4.
Physiol Plant ; 176(5): e14500, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221482

RESUMEN

Angelica sinensis, a traditional Chinese medicinal plant, has been primarily reported due to its nutritional value. Pigmentation in this plant is an important appearance trait that directly affects its commercial value. To understand the mechanism controlling purpleness in A. sinensis, hormonal and transcriptomic analyses were performed in three different tissues (leave, root and stem), using two cultivars with contrasting colors. The two-dimensional data set provides dynamic hormonal and gene expression networks underpinning purpleness in A. sinensis. We found abscisic acid as a crucial hormone modulating anthocyanin biosynthesis in A. sinensis. We further identified and validated 7 key genes involved in the anthocyanin biosynthesis pathway and found a specific module containing ANS as a hub gene in WGCNA. Overexpression of a candidate pigment regulatory gene, AsANS (AS08G02092), in transgenic calli of A. sinensis resulted in increased anthocyanin production and caused purpleness. Together, these analyses provide an important understanding of the molecular networks underlying A. sinensis anthocyanin production and its correlation with plant hormones, which can provide an important source for breeding.


Asunto(s)
Angelica sinensis , Antocianinas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas , Angelica sinensis/genética , Angelica sinensis/metabolismo , Antocianinas/biosíntesis , Antocianinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Pigmentación/genética , Ácido Abscísico/metabolismo , Pigmentos Biológicos/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
5.
BMC Genomics ; 25(1): 823, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223495

RESUMEN

BACKGROUND: The Flavonoid 3'-hydroxylase gene(F3'H) is an important structural gene in the anthocyanin synthesis pathway of plants, which has been proven to be involved in the color formation of organs such as leaves, flowers, and fruits in many plants. However, the mechanism and function in barley are still unclear. RESULTS: In order to explore the molecular mechanism of the grain color formation of purple qingke, we used the cultivated qingke variety Nierumzha (purple grain) and the selected qingke variety Kunlun 10 (white grain) to conduct transcriptomic sequencing at the early milk, late milk and soft dough stage. Weighted Gene Co-expression Network Analysis (WGCNA) was used to construct weighted gene co-expression network related to grain color formation, and three key modules (brown, yellow, and turquoise modules) related to purple grain of qingke were selected. F3'H (HORVU1Hr1G094880) was selected from the hub gene of the module for the yeast library, yeast two-hybrid (Y2H), subcellular localization and other studies. It was found that in purple qingke, HvnF3'H mainly distributed in the cytoplasm and cell membrane and interacted with several stress proteins such as methyltransferase protein and zinc finger protein. CONCLUSIONS: The results of this study provide reference for the regulation mechanism of anthocyanin-related genes in purple grain qingke.


Asunto(s)
Antocianinas , Sistema Enzimático del Citocromo P-450 , Regulación de la Expresión Génica de las Plantas , Antocianinas/biosíntesis , Antocianinas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Redes Reguladoras de Genes , Pigmentación/genética
6.
Genes (Basel) ; 15(8)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39202350

RESUMEN

To explore the regulatory mechanism of endogenous hormones in the synthesis of anthocyanins in Anoectochilus roxburghii (Wall.) Lindl (A. roxburghii) under different light intensities, this study used metabolomics and transcriptomics techniques to identify the key genes and transcription factors involved in anthocyanin biosynthesis. We also analyzed the changes in and correlations between plant endogenous hormones and anthocyanin metabolites under different light intensities. The results indicate that light intensity significantly affects the levels of anthocyanin glycosides and endogenous hormones in leaves. A total of 38 anthocyanin-related differential metabolites were identified. Under 75% light transmittance (T3 treatment), the leaves exhibited the highest anthocyanin content and differentially expressed genes such as chalcone synthase (CHS), flavonol synthase (FLS), and flavonoid 3'-monooxygenase (F3'H) exhibited the highest expression levels. Additionally, 13 transcription factors were found to have regulatory relationships with 7 enzyme genes, with 11 possessing cis-elements responsive to plant hormones. The expression of six genes and two transcription factors was validated using qRT-PCR, with the results agreeing with those obtained using RNA sequencing. This study revealed that by modulating endogenous hormones and transcription factors, light intensity plays a pivotal role in regulating anthocyanin glycoside synthesis in A. roxburghii leaves. These findings provide insights into the molecular mechanisms underlying light-induced changes in leaf coloration and contribute to our knowledge of plant secondary metabolite regulation caused by environmental factors.


Asunto(s)
Antocianinas , Regulación de la Expresión Génica de las Plantas , Luz , Metaboloma , Orchidaceae , Hojas de la Planta , Proteínas de Plantas , Transcriptoma , Antocianinas/biosíntesis , Antocianinas/genética , Antocianinas/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Orchidaceae/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metaboloma/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Perfilación de la Expresión Génica/métodos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Genes (Basel) ; 15(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39202401

RESUMEN

Rhododendron simsii Planchon is an important ornamental species in the northern hemisphere. Flower color is an important objective of Rhododendron breeding programs. However, information on anthocyanin synthesis in R. simsii is limited. In this research, the regulatory mechanism of anthocyanin biosynthesis in R. simsii was performed through the integrated analysis of metabolome and RNA-seq. A total of 805 and 513 metabolites were screened by positive and negative ionization modes, respectively, In total, 79 flavonoids contained seven anthocyanidins, 42 flavanones, 10 flavans, 13 flavones, and seven flavonols. Methylated and glycosylated derivatives took up the most. Differentially accumulated metabolites were mainly involved in "flavone and flavonol biosynthesis", "cyanoamino acid metabolism", "pyrimidine metabolism", and "phenylalanine metabolism" pathways. For flavonoid biosynthesis, different expression of shikimate O-hydroxycinnamoyltransferase, caffeoyl-CoA O-methyltransferase, flavonoid 3'-monooxygenase, flavonol synthase, dihydroflavonol 4-reductase/flavanone 4-reductase, F3'5'H, chalcone synthase, leucoanthocyanidin reductase, and 5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase genes ultimately led to different accumulations of quercetin, myricetin, cyanidin, and eriodictyol. In flavone and flavonol biosynthesis pathway, differential expression of F3'5'H, flavonoid 3'-monooxygenase and flavonol-3-O-glucoside/galactoside glucosyltransferase genes led to the differential accumulation of quercetin, isovitexin, and laricitrin. This research will provide a biochemical basis for further modification of flower color and genetic breeding in R. simsii and related Rhododendron species.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Metaboloma , RNA-Seq , Rhododendron , Rhododendron/genética , Rhododendron/metabolismo , Flores/genética , Flores/metabolismo , Metaboloma/genética , Flavonoides/metabolismo , Flavonoides/biosíntesis , Antocianinas/biosíntesis , Antocianinas/genética , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pigmentación/genética , Transcriptoma/genética
8.
J Agric Food Chem ; 72(34): 19003-19015, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39155472

RESUMEN

Nitrogen (N) is a key factor for plant growth and affects anthocyanin synthesis. This study aimed to clarify the potential mechanisms of N levels (LN, 0 kg·ha-1; MN, 150 kg·ha-1; HN, 225 kg·ha-1) in anthocyanin synthesis and grain quality of colored grain wheat. HN increased the yield component traits and grain morphology traits in colored grain wheat while decreasing the processing and nutrient quality traits. Most quality traits were significantly negatively correlated with the yield composition and morphological traits. Anthocyanin was more accumulated under LN conditions, but other related yield and morphological traits of colored grain wheat declined. The anthocyanin content was the highest in blue wheat, followed by that in purple wheat. Cyanidin-3-O-(6-O-malonyl-ß-d-glucoside) and cyanidin-3-O-rutinoside were the predominant anthocyanins in blue and purple wheat. The identified anthocyanin-related metabolites were associated with flavonoid biosynthesis, anthocyanin biosynthesis, and secondary metabolite biosynthesis. Therefore, the study provided information for optimizing nitrogen fertilizer management in producing high quality colored wheat and verified the close relationship between anthocyanin and low N condition.


Asunto(s)
Antocianinas , Metabolómica , Nitrógeno , Semillas , Triticum , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Triticum/química , Antocianinas/metabolismo , Antocianinas/biosíntesis , Antocianinas/análisis , Nitrógeno/metabolismo , Semillas/metabolismo , Semillas/química , Semillas/crecimiento & desarrollo , Fertilizantes/análisis , Color
9.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125947

RESUMEN

Anthocyanin is one important nutrition composition in Tartary buckwheat (Fagopyrum tataricum) sprouts, a component missing in its seeds. Although anthocyanin biosynthesis requires light, the mechanism of light-induced anthocyanin accumulation in Tartary buckwheat is unclear. Here, comparative transcriptome analysis of Tartary buckwheat sprouts under light and dark treatments and biochemical approaches were performed to identify the roles of one B-box protein BBX22 and ELONGATED HYPOCOTYL 5 (HY5). The overexpression assay showed that FtHY5 and FtBBX22 could both promote anthocyanin synthesis in red-flower tobacco. Additionally, FtBBX22 associated with FtHY5 to form a complex that activates the transcription of MYB transcription factor genes FtMYB42 and FtDFR, leading to anthocyanin accumulation. These findings revealed the regulation mechanism of light-induced anthocyanin synthesis and provide excellent gene resources for breeding high-quality Tartary buckwheat.


Asunto(s)
Antocianinas , Fagopyrum , Regulación de la Expresión Génica de las Plantas , Luz , Proteínas de Plantas , Factores de Transcripción , Fagopyrum/genética , Fagopyrum/metabolismo , Fagopyrum/crecimiento & desarrollo , Fagopyrum/efectos de la radiación , Antocianinas/biosíntesis , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Perfilación de la Expresión Génica , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crecimiento & desarrollo
10.
Planta ; 260(3): 67, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088064

RESUMEN

MAIN CONCLUSION: Overexpression of VvmybA1 transcription factor in 'Hamlin' citrus enhances cold tolerance by increasing anthocyanin accumulation. This results in improved ROS scavenging, altered gene expression, and stomatal regulation, highlighting anthocyanins' essential role in citrus cold acclimation. Cold stress is a significant threat to citrus cultivation, impacting tree health and productivity. Anthocyanins are known for their role as pigments and have emerged as key mediators of plant defense mechanisms against environmental stressors. This study investigated the potential of anthocyanin overexpression regulated by grape (Vitis vinifera) VvmybA1 transcription factor to enhance cold stress tolerance in citrus trees. Transgenic 'Hamlin' citrus trees overexpressing VvmybA1 were exposed to a 30-day cold stress period at 4 °C along with the control wild-type trees. Our findings reveal that anthocyanin accumulation significantly influences chlorophyll content and their fluorescence parameters, affecting leaf responses to cold stress. Additionally, we recorded enhanced ROS scavenging capacity and distinct expression patterns of key transcription factors and antioxidant-related genes in the transgenic leaves. Furthermore, VvmybA1 overexpression affected stomatal aperture regulation by moderating ABA biosynthesis, resulting in differential responses in a stomatal opening between transgenic and wild-type trees under cold stress. Transgenic trees exhibited reduced hydrogen peroxide levels, enhanced flavonoids, radical scavenging activity, and altered phytohormonal profiles. These findings highlighted the role of VvmybA1-mediated anthocyanin accumulation in enhancing cold tolerance. The current study also underlines the potential of anthocyanin overexpression as a critical regulator of the cold acclimation process by scavenging ROS in plant tissues.


Asunto(s)
Antocianinas , Citrus sinensis , Respuesta al Choque por Frío , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Antocianinas/metabolismo , Citrus sinensis/genética , Citrus sinensis/metabolismo , Citrus sinensis/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Respuesta al Choque por Frío/genética , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vitis/genética , Vitis/fisiología , Vitis/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Clorofila/metabolismo , Frío , Estomas de Plantas/fisiología , Estomas de Plantas/genética , Ácido Abscísico/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
11.
Food Chem ; 461: 140793, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146679

RESUMEN

Phenol-pyranoanthocyanins, a structurally modified type of anthocyanin, has higher stability than anthocyanins. However, their conversion occurs slowly. Therefore, it is crucial to improve the conversion efficiency and production of pyranoanthocyanins. In this study, cranberry anthocyanin (CRAN) was fermented using two Lactobacillus strains along with caffeic acid to form cranberry-derived pyranoanthocyanins (PY-CRAN). PY-CRAN was characterized and identified. The physicochemical properties, antioxidant activity, and tyrosinase inhibitory capacity of PY-CRAN were assessed. The results showed that phenol-pyranoanthocyanins can be rapidly produced through fermentative transformation using Lactiplantibacillus plantarum and Lacticaseibacillus paracasei. Lacticaseibacillus paracasei exhibits a higher propensity for producing phenol-pyranoanthocyanins. PY-CRAN exhibits high stability under light and various pH conditions. Moreover, they possess excellent antioxidant properties and the ability to inhibit tyrosinase. These results suggest that fermentative biotransformation conducted by Lactobacillus is an ideal method for producing cranberry pyranoanthocyanins. The resulting anthocyanins have potential as antioxidant and whitening agents, making them promising bioactive ingredients.


Asunto(s)
Antocianinas , Antioxidantes , Biotransformación , Fermentación , Vaccinium macrocarpon , Antocianinas/química , Antocianinas/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Vaccinium macrocarpon/química , Vaccinium macrocarpon/metabolismo , Lactobacillus/metabolismo , Lactobacillus/química , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/química , Monofenol Monooxigenasa/antagonistas & inhibidores , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Fenoles/metabolismo , Fenoles/química
12.
Food Chem ; 461: 140814, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39151343

RESUMEN

Nut kernel color is a crucial quality indicator affecting the consumers first impression of the product. While growing evidence suggests that plant phenolics and their derivatives are linked to nut kernel color, the compounds (biomarkers) responsible for kernel color stability during storage remain elusive. Here, pathway-based metabolomics with machine learning algorithms were employed to identify key metabolites of postharvest pecan color stability. Metabolites in phenylpropanoid, flavonoid, and anthocyanin biosynthetic pathways were analyzed in the testa of nine pecan cultivars using liquid chromatography-mass spectrometry. With color measurements, different machine learning models were compared to find relevant biomarkers of pecan color phenotypes. Results revealed potential marker compounds that included flavonoid precursors and anthocyanidins as well as anthocyanins (e.g., peonidin, delphinidin-3-O-glucoside). Our findings provide a foundation for future research in the area, and will help select genes/proteins for the breeding of pecans with stable and desirable kernel color.


Asunto(s)
Color , Aprendizaje Automático , Metabolómica , Carya/química , Carya/metabolismo , Antocianinas/química , Antocianinas/metabolismo , Algoritmos , Flavonoides/química , Flavonoides/metabolismo
13.
Theor Appl Genet ; 137(9): 208, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39181956

RESUMEN

As important secondary metabolites in plants, anthocyanins not only contribute to colored plants organs, but also provide protections against various biotic and abiotic stresses. In this study, a MYB transcription factor gene TdRCA1 from wild emmer wheat regulating anthocyanin biosynthesis in wheat coleoptile was identified on the short arm of chromosome 7A in common wheat genetic background. The TdRCA1 overexpression lines showed colored callus, coleoptile, auricle and stem nodes, as well as up regulation of six anthocyanin-related structural genes. The expression of TdRCA1 was activated by light in a temporal manner. While coleoptile color of 48 and 60 h dark-grown seedlings changed from green to red after 24 h light treatment, those grown in dark for 72 and 96 h failed to develop red coleoptiles after light restoration. Interestingly, the over expression of TdRCA1 resulted in increased resistance to Fusarium crown rot, a chronic and severe fungal disease in many cereal growing regions in the world. Our results offer a better understanding of the molecular basis of coleoptile color in bread wheat.


Asunto(s)
Antocianinas , Cotiledón , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Factores de Transcripción , Triticum , Triticum/genética , Triticum/metabolismo , Antocianinas/biosíntesis , Antocianinas/metabolismo , Cotiledón/genética , Cotiledón/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/genética , Resistencia a la Enfermedad/genética , Fusarium , Filogenia
14.
J Photochem Photobiol B ; 259: 113005, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39126797

RESUMEN

Light exposure significantly impacted the coloration and metabolism of Auricularia cornea, although the underlying mechanisms remain unclear. This study aimed to test the apparent color and pigment metabolic profiles of A. cornea in response to red (λp = 630 nm) and blue (λp = 463 nm) visible light exposure. Colorimeter analysis showed that fruiting bodies appeared bright-white under red-light and deeper-red under blue-light, both with a yellow tinge. On the 40th day of light-exposure, bodies were collected for metabolite detection. A total of 481 metabolites were targeted analysis, resulting in 18 carotenoids and 11 anthocyanins. Under red and blue light exposure, the total carotenoids levels were 1.1652 µg/g and 1.1576 µg/g, the total anthocyanins levels were 0.0799 µg/g and 0.1286 µg/g, respectively. Four differential metabolites and three putative gene linked to the visual coloration of A. cornea were identified. This pioneering study provides new insights into the role of light in regulating A. cornea pigmentation and metabolic profile.


Asunto(s)
Antocianinas , Carotenoides , Luz , Espectrometría de Masas en Tándem , Antocianinas/metabolismo , Carotenoides/metabolismo , Basidiomycota/metabolismo , Basidiomycota/química , Cromatografía Liquida , Metaboloma/efectos de la radiación , Cromatografía Líquida con Espectrometría de Masas
15.
Plant Physiol Biochem ; 215: 109038, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39163651

RESUMEN

Anthocyanins and proanthocyanidins (PAs) are important secondary metabolites in plants, high contents of which are an important goal for quality breeding of white clover (Trifolium repens). However, the involvement of glutathione S-transferase (GST) in the transport of anthocyanins and PAs remains unexplored in white clover. This study identified 153 different TrGSTs in white clover. At the transcriptional level, compared to other TrGSTFs, TrGSTF10 and TrGSTF15 are highly expressed in the 'Purple' white clover, and they may work with the anthocyanin biosynthesis structural genes CHS and CHI to contribute to pigment buildup in white clover. Subcellular localization confirmed that TrGSTF10 and TrGSTF15 are located in the cytoplasm. Additionally, molecular docking experiments showed that TrGSTF10 and TrGSTF15 have similar binding affinity with two flavonoid monomers. Overexpression of TrGSTF15 complemented the deficiency of anthocyanin coloring and PA accumulation in the Arabidopsis tt19 mutant. The initial findings of this research indicate that TrGSTF15 encodes an important transporter of anthocyanin and PA in white clover, thus providing a new perspective for the further exploration of related transport and regulatory mechanisms.


Asunto(s)
Antocianinas , Glutatión Transferasa , Proteínas de Plantas , Proantocianidinas , Trifolium , Antocianinas/metabolismo , Antocianinas/genética , Trifolium/genética , Trifolium/metabolismo , Trifolium/enzimología , Proantocianidinas/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Transporte Biológico , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimología , Simulación del Acoplamiento Molecular , Plantas Modificadas Genéticamente
16.
Plant Physiol Biochem ; 215: 109043, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39181084

RESUMEN

'Benihoppe' and 'Fenyu No.1' are representative varieties of red and pink strawberries in China, possess distinct hue and flavor profiles. This study analyzed the underlying biochemical and molecular differences of two varieties utilizing transcriptomics and high-performance liquid chromatography (HPLC). Ripening 'Benihoppe' fruits accumulated more sucrose and pelargonin-3-glucoside (P3G) with a little cyanidin and higher firmness. Whereas ripening 'Fenyu No.1' fruits contained more fructose, glucose, malic acid and ascorbic acid (AsA), but less P3G and citric acid. Moreover, genotype significantly influenced phenolic compounds contents in strawberries. Transcriptome analysis revealed that pectin degradation (PL, PG, PE), sucrose synthesis (CWINV, SUS, TPS) and citric acid metabolism (α-OGDH, ICDH, GAD, GS, GDH, PEPCK, AST) were weakened in 'Benihoppe' fruit. In contrast, the synthesis of sucrose (CWINH, SPS), citric acid (CS, PEPC), anthocyanin (F3H, F3'H, F3'5'H, DFR, UFGT and ANS), and citric acid transport (V-ATPase) was enhanced. In 'Fenyu No.1' fruit, the degradation of sucrose, citric acid, and pectin was enhanced, along with the synthesis of malic acid (ME) and ascorbic acid (PMM, MDHAR and GaLUR). However, anthocyanins synthesis, glucose metabolism (HK, G6PI, PFK, G6PDH, PGK, PGM, ENO, PK), fructose metabolism (FK), citric acid synthesis and transport, and AsA degradation (AO, APX) were relatively weak. RT-qPCR results corroborated the transcriptome data. In conclusion, this study revealed the distinctions and characteristics of strawberries with different fruit colors regarding texture, flavor and color formation processes. These findings offer valuable insights for regulating metabolic pathways and identifying key candidate genes to improve strawberry quality.


Asunto(s)
Fragaria , Frutas , Fragaria/genética , Fragaria/metabolismo , Cromatografía Líquida de Alta Presión , Frutas/metabolismo , Frutas/genética , Antocianinas/metabolismo , Antocianinas/biosíntesis , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sacarosa/metabolismo , Ácido Ascórbico/metabolismo , Ácido Ascórbico/biosíntesis , Ácido Cítrico/metabolismo
17.
Plant Physiol Biochem ; 215: 108964, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094477

RESUMEN

Rehmannia piasezkii is a kind of medicinal plants, of the Orobanchaceae family, and well known for its large pink or purple corolla. However, no research on the molecular mechanism of flower color formation in R. piasezkii has been conducted so far. In this study, we investigated the transcriptome of root, stem, leaf and corollas of R. piasezkii using transcriptome sequencing technology and assembled 144,582 unigenes. A total of 58 anthocyanin biosynthetic genes were identified in the R. piasezkii transcriptome, fourteen of which were highly correlated with anthocyanin content, especially RpF3H2, RpDFR2, RpANS1, RpANS2 and RpUFGT. Totally, 35 MYB genes with FPKM values greater than 5 were identified in the R. piasezkii transcriptome, including an R2R3 MYB transcriptional factor RpMYB1, which belongs to subgroup 6 of the R2R3 MYB family. Agrobacterium-mediated transient expression of Nicotiana benthamiana revealed that overexpression of RpMYB1 could activate the expression of structural genes in anthocyanin synthesis pathway and promote the accumulation of anthocyanins in N. benthamiana leaves, indicating that RpMYB1 is a positive regulator of anthocyanin synthesis. Furthermore, combined transient overexpression of RpMYB1 with RpANS1, RpMYB1+RpANS1 with other structural genes all could further enhance the accumulation of anthocyanins in N. benthamiana leaves. Permanent overexpression of RpMYB1 in R. glutinosa promoted anthocyanin accumulation and expression levels of RgCHS, RgF3H, RgDFR and RgANS. Further evidence from dual-luciferase assay suggested that RpMYB1 could bind to the promoter of RpDFR2 and hence activating its expression. These findings provide insight into the molecular regulation in anthocyanin biosynthesis in R. piasezkii and provide valuable genetic resources for the genetic improvement of flower color.


Asunto(s)
Antocianinas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Rehmannia , Antocianinas/biosíntesis , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rehmannia/genética , Rehmannia/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Flores/genética , Flores/metabolismo , Plantas Modificadas Genéticamente
18.
Plant Physiol Biochem ; 215: 108980, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39102766

RESUMEN

Asparagus is a key global vegetable crop with significant economic importance. Purple asparagus, rich in anthocyanins, stands out for its nutritional value. Despite its prominence, the molecular mechanisms driving purple peel coloration in asparagus remain unclear. This study focuses on three asparagus varieties with distinct peel colors to analyze anthocyanins in both the metabolome and transcriptome, unraveling the regulatory mechanisms. Our findings identify 30 anthocyanins, categorized into five major anthocyanin aglycones across diverse asparagus peel colors. Notably, among the 30 differentially expressed metabolites (DEMs), 18 anthocyanins displayed significantly up-regulated expression in the 'Purple Passion' variety. Key contributors include Cyanidin-3-O-rutinoside-5-O-glucoside and Cyanidin-3-O-sophoroside. Cyanidin-3-O-glucoside is most abundant in 'Purple Passion', while Petunidin-glucoside-galactoside is the least. Analysis of differentially expressed genes (DEGs) displayed 21 structural genes in anthocyanin synthesis, with F3H, DFR, ANS, and one of three UFGTs showing significantly higher expression in the 'Purple Passion' compared to 'Grande' and 'Erasmus'. Additionally, transcription factors (TFs), including 38 MYB, 33 bHLH, and 13 bZIP, also display differential expression in this variety. Validation through real-time qPCR supports the idea that increased expression of anthocyanin structural genes contribute to anthocyanin accumulation. Transient overexpression of AoMYB17 in tobacco further showed that it had the vital function of increasing anthocyanin content. This study sheds light on the mechanisms behind anthocyanin coloration in three distinct asparagus peels. Therefore, it lays the foundation for potential genetic enhancements, aiming to develop new purple-fleshed asparagus germplasms with heightened anthocyanin content.


Asunto(s)
Antocianinas , Asparagus , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Antocianinas/metabolismo , Antocianinas/biosíntesis , Asparagus/genética , Asparagus/metabolismo , Pigmentación/genética , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolómica
19.
J Agric Food Chem ; 72(36): 19826-19837, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39213503

RESUMEN

Chlorophyll (Chl) catabolism and anthocyanin synthesis play pivotal roles in determining the final skin color of fruits during maturation. However, in peach (Prunus persica) fruit, the regulatory mechanism governing skin color, especially the Chl catabolism, remains largely elusive. In this study, we identified ten Chl catabolic genes (CCGs), with PpSGR emerging as a key regulator in Chl degradation in peaches. Furthermore, a NAC-like, activated by AP3/P1 (NAP) transcription factor (TF), PpNAP4, was identified as a positive modulator of Chl breakdown. PpNAP4 induced the expression of PpSGR and other CCGs, including PpPPH, PpPAO, and PpTIC55-2, by directly binding to their promoters. Overexpression of PpNAP4 resulted in a heightened expression of these genes and accelerated Chl degradation. Notably, PpNAP4 also positively regulated the expression of PpANS and PpMYB10.1, one key structural gene and a core transcriptional regulator of anthocyanin synthesis, thereby contributing to fruit coloration. In summary, our findings elucidate that PpNAP4 serves as a pivotal regulator in determining the final skin color of peach by orchestrating Chl degradation and anthocyanin accumulation through direct activation of multiple CCGs and anthocyanin related genes.


Asunto(s)
Antocianinas , Clorofila , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Prunus persica , Factores de Transcripción , Antocianinas/biosíntesis , Antocianinas/metabolismo , Frutas/metabolismo , Frutas/genética , Frutas/química , Prunus persica/genética , Prunus persica/metabolismo , Prunus persica/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Planta ; 260(3): 69, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127837

RESUMEN

MAIN CONCLUSION: Supplying monochromatic blue LED light during the day, but not at night, promotes early coloration and improves anthocyanin accumulation in the skin of grape berries. Specific light spectra, such as blue light, are known to promote the biosynthesis and accumulation of anthocyanins in fruit skins. However, research is scarce on whether supplement of blue light during different periods of one day can differ in their effect. Here, we compared the consequences of supplying blue light during the day and night on the accumulation of anthocyanins in pigmented grapevine (Vitis vinifera) berries. Two treatments of supplemented monochromatic blue light were tested, with light emitting diodes (LED) disposed close to the fruit zone, irradiating between 8:00 and 18:00 (Dayblue) or between 20:00 and 6:00 (Nightblue). Under the Dayblue treatment, berry coloration was accelerated and total anthocyanins in berry skins increased faster than the control (CK) and also when compared to the Nightblue condition. In fact, total anthocyanin content was similar between CK and Nightblue. qRT-PCR analysis indicated that Dayblue slightly improved the relative expression of the anthocyanin-structural gene UFGT and its regulator MYBA1. Instead, the expression of the light-reception and -signaling related genes CRY, HY5, HYH, and COP1 rapidly increased under Dayblue. This study provides insights into the effect of supplementing monochromatic LED blue light during the different periods of one day, on anthocyanins accumulation in the berry skin.


Asunto(s)
Antocianinas , Frutas , Luz , Vitis , Vitis/efectos de la radiación , Vitis/metabolismo , Vitis/genética , Antocianinas/metabolismo , Frutas/efectos de la radiación , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pigmentación/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA