Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.342
Filtrar
1.
Chem Biodivers ; 21(10): e202400689, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39248607

RESUMEN

The species Mimosa gracilis var. capillipes (Benth.) Barneby is used for its antivenom properties in the Coqueiros community, municipality of Catalão, state of Goiás. This study focused on three varieties: M. gracilis Benth. var. gracilis, M. gracilis var. capillipes (Benth.) Barneby, and M. gracilis var. invisiformis Barneby. The chemical profiles of extracts from these varieties were analysed using molecular networking through liquid chromatography with tandem mass spectrometry. Additionally, the study investigated the inhibitory potential of these three varieties against the proteolytic, coagulant, and phospholipase activities of Bothrops and Crotalus venoms. In vitro results confirmed the antivenom potential of nine extracts. Remarkably, the ethanolic extracts of roots from M. gracilis var. capillipes (Benth.) Barneby and the leaves from M. gracilis Benth. var. gracilis exhibited 100 % inhibition of the tested activities. The study also revealed 19 annotated compounds through molecular networking, reported for the first time in the species M. gracilis.


Asunto(s)
Mimosa , Extractos Vegetales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Animales , Mimosa/química , Antivenenos/aislamiento & purificación , Antivenenos/farmacología , Antivenenos/química , Bothrops , Hojas de la Planta/química , Espectrometría de Masas en Tándem , Crotalus , Raíces de Plantas/química , Venenos de Crotálidos/antagonistas & inhibidores , Venenos de Crotálidos/química , Cromatografía Liquida
2.
Acta Trop ; 258: 107354, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39106916

RESUMEN

Loxoscelism is the pathological condition triggered by a brown spider bite. The venom of these spiders is rich in phospholipases D (PLDs), which can induce virtually all local and systemic manifestations. Recombinant mutated PLDs from clinically relevant Loxosceles species in South America have been investigated as potential antigens to develop novel therapeutic strategies for loxoscelism. However, certain gaps need to be addressed before a clinical approach can be implemented. In this study, we examined the potential of these recombinant mutated PLDs as antigens by testing some variations in the immunization scheme. Furthermore, we evaluated the efficacy of the produced antibodies in neutralizing the nephrotoxicity and sphingomyelinase activity of brown spider venoms. Our findings indicate that the number of immunizations has a greater impact on the effectiveness of neutralization compared to the amount of antigen. Specifically, two or three doses were equally effective in reducing dermonecrosis and edema. Additionally, three immunizations proved to be more effective in neutralizing mice lethality than one or two. Moreover, immunizations mitigated the signs of kidney injury, a crucial aspect given that acute renal failure is a serious systemic complication. In vitro inhibition of the sphingomyelinase activity of Loxosceles venoms, a key factor in vivo toxicity, was nearly complete after incubation with antibodies raised against these antigens. These findings underscore the importance of implementing an effective immunization scheme with multiple immunizations, without the need for high antigen doses, and enhances the spectrum of neutralization exhibited by antibodies generated with these antigens. In summary, these results highlight the strong potential of these antigens for the development of new therapeutic strategies against cutaneous and systemic manifestations of loxoscelism.


Asunto(s)
Fosfolipasa D , Proteínas Recombinantes , Venenos de Araña , Animales , Fosfolipasa D/inmunología , Fosfolipasa D/genética , Venenos de Araña/inmunología , Ratones , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Picaduras de Arañas/inmunología , Araña Reclusa Parda/inmunología , Femenino , Antígenos/inmunología , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/inmunología , Anticuerpos Neutralizantes , Antivenenos/inmunología , Antivenenos/administración & dosificación , Modelos Animales de Enfermedad , Inmunización , Hidrolasas Diéster Fosfóricas
3.
J Ethnopharmacol ; 335: 118642, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39098623

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Species of the Jatropha genus (Euphorbiaceae) are used indiscriminately in traditional medicine to treat accidents involving venomous animals. Jatropha mutabilis Baill., popularly known as "pinhão-de-seda," is found in the semi-arid region of Northeastern Brazil. It is widely used as a vermifuge, depurative, laxative, and antivenom. AIM OF THE STUDY: Obtaining the phytochemical profile of the latex of Jatropha mutabilis (JmLa) and evaluate its acute oral toxicity and inhibitory effects against the venom of the scorpion Tityus stigmurus (TstiV). MATERIALS AND METHODS: The latex of J. mutabilis (JmLa) was obtained through in situ incisions in the stem and characterized using HPLC-ESI-QToF-MS. Acute oral toxicity was investigated in mice. The protein profile of T. stigmurus venom was obtained by electrophoresis. The ability of latex to interact with venom components (TstiV) was assessed using SDS-PAGE, UV-Vis scanning spectrum, and the neutralization of fibrinogenolytic and hyaluronidase activities. Additionally, the latex was evaluated in vivo for its ability to inhibit local edematogenic and nociceptive effects induced by the venom. RESULTS: The phytochemical profile of the latex revealed the presence of 75 compounds, including cyclic peptides, glycosides, phenolic compounds, alkaloids, coumarins, and terpenoids, among others. No signs of acute toxicity were observed at a dose of 2000 mg/kg (p.o.). The latex interacted with the protein profile of TstiV, inhibiting the venom's fibrinogenolytic and hyaluronidase activities by 100%. Additionally, the latex was able to mitigate local envenomation effects, reducing nociception by up to 56.5% and edema by up to 50% compared to the negative control group. CONCLUSIONS: The latex of Jatropha mutabilis exhibits a diverse phytochemical composition, containing numerous classes of metabolites. It does not present acute toxic effects in mice and has the ability to inhibit the enzymatic effects of Tityus stigmurus venom in vitro. Additionally, it reduces nociception and edema in vivo. These findings corroborate popular reports regarding the antivenom activity of this plant and indicate that the latex has potential for treating scorpionism.


Asunto(s)
Antivenenos , Jatropha , Látex , Extractos Vegetales , Venenos de Escorpión , Escorpiones , Animales , Antivenenos/farmacología , Antivenenos/química , Ratones , Látex/química , Látex/farmacología , Jatropha/química , Venenos de Escorpión/toxicidad , Venenos de Escorpión/química , Masculino , Extractos Vegetales/farmacología , Extractos Vegetales/química , Femenino , Animales Ponzoñosos
4.
Arch Toxicol ; 98(10): 3503-3512, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39009783

RESUMEN

In Brazil, around 80% of snakebites are caused by snakes of the genus Bothrops. A three-dimensional culture model was standardized and used to perform treatments with Bothrops erythromelas venom (BeV) and its antivenom (AV). The MRC-5 and L929 cell lines were cultured at increasing cell densities. Morphometric parameters were evaluated through images obtained from an inverted microscope: solidity, circularity, and Feret diameter. L929 microtissues (MT) showed better morphometric data, and thus they were used for further analysis. MT viability was assessed using the acridine orange and ethidium bromide staining method, which showed viable cells in the MT on days 5, 7, and 10 of cultivation. Histochemical and histological analyses were performed, including hematoxylin/eosin staining, which showed a good structure of the spheroids. Alcian blue staining revealed the presence of acid proteoglycans. Immunohistochemical analysis with ki-67 showed different patterns of cell proliferation. The MT were also subjected to pharmacological tests using the BeV, in the presence or absence of its AV. The results showed that the venom was not cytotoxic, but it caused morphological changes. The MT showed cell detachment, losing their structure. The antivenom was able to partially prevent the venom activities.


Asunto(s)
Antivenenos , Bothrops , Supervivencia Celular , Venenos de Crotálidos , Fibroblastos , Animales , Venenos de Crotálidos/toxicidad , Antivenenos/farmacología , Supervivencia Celular/efectos de los fármacos , Línea Celular , Fibroblastos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratones , Humanos , Técnicas de Cultivo de Célula , Serpientes Venenosas
5.
J Ethnopharmacol ; 335: 118619, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39053713

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hymenaea eriogyne Benth (Fabaceae) is popularly known as "Jatobá". Despite its use in folk medicine to treat inflammatory disorders, there are no descriptions that show its anti-inflammatory potential. AIM OF THE STUDY: In this sense, this study aimed to evaluate the anti-inflammatory and antivenom action of bark and leaves extract of H. eriogyne. MATERIALS AND METHODS: The in vivo anti-inflammatory activity was conducted by carrageenan-induced paw edema and zymosan-induced air pouch models, evaluating the edematogenic effect, leukocyte migration, protein concentration, levels of pro-inflammatory cytokines, malondialdehyde (MDA) and myeloperoxidase (MPO) activity. The antivenom potential was investigated in vitro on the enzymatic action (proteolytic, phospholipase and hyaluronidase) of Bothrops brazili and B. leucurus venom, as well as in vivo on the paw edema model induced by B. leucurus. Furthermore, the influence of its markers (astilbin and rutin) on MPO activity was investigated in silico. For molecular docking, AutodockVina, Biovia Discovery Studio, and Chimera 1.16 software were used. RESULTS: The extracts and bark and leaves of H. eriogyne revealed a high anti-inflammatory effect, with a reduction in all inflammatory parameters evaluated. The bark extract showed superior results when compared to the leaf extract, suggesting the influence of the astilbin concentration, higher in the bark, on the anti-inflammatory action. In addition, only the H. eriogyne bark extract was able to reduce MDA, indicating an associated antioxidant effect. Regarding the in vitro antivenom action, the extracts (bark and leaves) revealed the ability to inhibit the proteolytic, phospholipase and hyaluronidase action of both bothropic venom, with a greater effect against B. leucurus venom. In vivo, extracts from the bark and leaves of H. eriogyne (50-200 mg/kg) showed antiedematogenic activity, reducing the release of MPO and pro-inflammatory cytokines, indicating the presence of bioactive components useful in controlling the inflammatory process induced by the venom. In the in silico assays, astilbin and rutin showed reversible interactions of 9 possible positions and orientations towards MPO, with affinities of -9.5 and -10.4 kcal/mol and interactions with Phe407, Gln91, His95 and Arg239, important active pockets of MPO. Rutin demonstrated more effective types of interactions with MPO. CONCLUSION: This approach reveals for the first time the anti-inflammatory action of H. eriogyne bark and leaf extracts in vivo, as well as its antiophidic potential. Moreover, the distinct effect of pharmacogens as antioxidant agents and distinct effect of astilbin and rutin under MPO sheds light on the different anti-inflammatory mechanisms of bioactive compounds present in H. eriogyne extracts, with high potential for the prospection of new pharmacological agents.


Asunto(s)
Antiinflamatorios , Carragenina , Edema , Simulación del Acoplamiento Molecular , Corteza de la Planta , Extractos Vegetales , Hojas de la Planta , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Edema/tratamiento farmacológico , Edema/inducido químicamente , Hojas de la Planta/química , Corteza de la Planta/química , Masculino , Relación Estructura-Actividad , Peroxidasa/metabolismo , Fabaceae/química , Antivenenos/farmacología , Antivenenos/química , Ratas Wistar , Venenos de Crotálidos/toxicidad , Ratones , Bothrops , Citocinas/metabolismo , Zimosan , Biomarcadores/metabolismo , Rutina/farmacología
6.
Biochem Biophys Res Commun ; 732: 150420, 2024 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-39047403

RESUMEN

Antivenoms are essential in the treatment of the neurotoxicity caused by elapid snakebites. However, there are elapid neurotoxins, e.g., long-chain α-neurotoxins (also known as long-chain three-finger toxins) that are barely neutralized by commercial elapid antivenoms; so, recombinant elapid neurotoxins could be an alternative or complements for improving antibody production against the lethal long-chain α-neurotoxins from elapid venoms. This work communicates the expression of a recombinant long-chain α-neurotoxin, named HisrLcNTx or rLcNTx, which based on the most lethal long-chain α-neurotoxins reported, was constructed de novo. The gene of rLcNTx was synthesized and introduced into the expression vector pQE30, which contains a proteolytic cleavage region for exscinding the mature protein, and His residues in tandem for affinity purification. The cloned pQE30/rLcNTx was transfected into Escherichia coli Origami cells to express rLcNTx. After expression, it was found in inclusion bodies, and folded in multiple Cys-Cys structural isoforms. To observe the capability of those isoforms to generate antibodies against native long-chain α-neurotoxins, groups of rabbits were immunized with different cocktails of Cys-Cys rLcNTx isoforms. In vitro, and in vivo analyses revealed that rabbit antibodies raised against different rLcNTx Cys-Cys isoforms were able to recognize pure native long-chain α-neurotoxins and their elapid venoms, but they were unable to neutralize bungarotoxin, a classical long-chain α-neurotoxin, and other elapid venoms. The rLcNTx Cys-Cys isoform 2 was the immunogen that produced the best neutralizing antibodies in rabbits. Yet to neutralize the elapid venoms from the black mamba Dendroaspis polylepis, and the coral shield cobra Aspidelaps lubricus, it was required to use two types of antibodies, the ones produced using rLcNTx Cys-Cys isoform 2 and antibodies produced using short-chain α-neurotoxins. Expression of recombinant elapid neurotoxins as immunogens could be an alternative to improve elapid antivenoms; nevertheless, recombinant elapid neurotoxins must be well-folded to be used as immunogens for obtaining neutralizing antibodies.


Asunto(s)
Antivenenos , Venenos Elapídicos , Neurotoxinas , Pliegue de Proteína , Proteínas Recombinantes , Animales , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Venenos Elapídicos/inmunología , Venenos Elapídicos/genética , Venenos Elapídicos/química , Antivenenos/inmunología , Antivenenos/química , Neurotoxinas/inmunología , Neurotoxinas/genética , Neurotoxinas/química , Anticuerpos Neutralizantes/inmunología , Conejos , Secuencia de Aminoácidos
7.
PLoS Negl Trop Dis ; 18(7): e0012301, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38968299

RESUMEN

Access to antivenoms in cases of snakebite continues to be an important public health issue around the world, especially in rural areas with poorly developed health care systems. This study aims to evaluate therapeutic itineraries and antivenom accessibility following snakebites in the states of Oaxaca and Chiapas in southern Mexico. Employing an intercultural health approach that seeks to understand and bridge allopathic and traditional medical perceptions and practices, we conducted field interviews with 47 snakebite victims, documenting the therapeutic itineraries of 54 separate snakebite incidents that occurred between 1977 and 2023. Most victims used traditional remedies as a first line of treatment, often to withstand the rigors of a long journey to find antivenoms. The main obstacles to antivenom access were distance, poor antivenom availability, and cost. Standard antivenom treatment is highly valued and sought after, even as traditional beliefs and practices persist within a cultural framework known as the "hot-cold" system. The findings are crucial for informing future enhancements to antivenom distribution systems, health education initiatives, and other interventions aimed at mitigating the impact of snakebites in the region.


Asunto(s)
Antivenenos , Accesibilidad a los Servicios de Salud , Mordeduras de Serpientes , Mordeduras de Serpientes/terapia , Mordeduras de Serpientes/tratamiento farmacológico , Mordeduras de Serpientes/epidemiología , Humanos , México/epidemiología , Antivenenos/uso terapéutico , Masculino , Femenino , Adulto , Persona de Mediana Edad , Adolescente , Adulto Joven , Anciano
8.
Toxins (Basel) ; 16(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39057941

RESUMEN

Alternative recombinant sources of antivenoms have been successfully generated. The application of such strategies requires the characterization of the venoms for the development of specific neutralizing molecules against the toxic components. Five toxic peptides to mammals from the Mexican scorpion Centruroides villegasi were isolated by chromatographic procedures by means of gel filtration on Sephadex G-50, followed by ion-exchange columns on carboxy-methyl-cellulose (CMC) resins and finally purified by high-performance chromatography (HPLC) columns. Their primary structures were determined by Edman degradation. They contain 66 amino acids and are maintained well packed by four disulfide bridges, with molecular mass from 7511.3 to 7750.1 Da. They are all relatively toxic and deadly to mice and show high sequence identity with known peptides that are specific modifiers of the gating mechanisms of Na+ ion channels of type beta-toxin (ß-ScTx). They were named Cv1 to Cv5 and used to test their recognition by single-chain variable fragments (scFv) of antibodies, using surface plasmon resonance. Three different scFvs generated in our laboratory (10FG2, HV, LR) were tested for recognizing the various new peptides described here, paving the way for the development of a novel type of scorpion antivenom.


Asunto(s)
Péptidos , Venenos de Escorpión , Escorpiones , Anticuerpos de Cadena Única , Animales , Venenos de Escorpión/química , Venenos de Escorpión/toxicidad , Venenos de Escorpión/inmunología , Péptidos/química , Anticuerpos de Cadena Única/química , Humanos , Ratones , Secuencia de Aminoácidos , Antivenenos/inmunología , Antivenenos/química , Antivenenos/farmacología , Animales Ponzoñosos
9.
Toxicon ; 247: 107852, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38971476

RESUMEN

Severe Lonomia caterpillar envenoming is an increasing hazard in South America. It can trigger severe coagulation disorders that can progress to systemic complications and death. We report the first documented case of severe Lonomia caterpillar envenoming in Guyana. It was managed using antivenom provided by the Brazilian Ministry of Health as part of humanitarian support. This case describes a successful international collaboration driving a favorable outcome for the envenomed patient.


Asunto(s)
Antivenenos , Animales , Humanos , Antivenenos/uso terapéutico , Guyana , Cooperación Internacional , Masculino , Mordeduras y Picaduras de Insectos , Mariposas Nocturnas , Venenos de Artrópodos , Adulto , Brasil
10.
Artículo en Inglés | MEDLINE | ID: mdl-39002622

RESUMEN

It is well known that C. d. terrificus venom causes pathophysiological effects such as neuropathies, coagulopathies, and even death. Previous studies have reported that ASC16 can interact with monomeric phospholipases A2 from the venom of various snake species (e.g., Vipera russelli and Echis carinatus). As a result, ASC16 has been proposed as an inhibitor of the toxic effects induced by the heterodimeric complex (crotoxin) and other components of the venom of C. d. terrificus. To investigate this further, in silico studies were designed using the crotoxin (CTX) protein complex as a model, and experimental assays were conducted to evaluate the inhibitory effect of ASC16 on CTX, as well as on other venom enzymes such as thrombin-like enzyme (TLE), phosphodiesterase (PDE) and l-aminoxidase (LAAO). For in vitro assays, specific substrates were used, and lethal activity was measured over 48 h using an in vivo murine experimental model (CF01). In silico studies have indicated that the hydrophilic portion of ASC16 adopts a stable conformation while interacting with the catalytic site of crotoxin. At the highest concentrations, ASC16 significantly inhibited the activities of PLA2 (40.89 ± 0.09 %), TLE (11.03 ± 0.69 %), PDE (51.33 ± 2.83 %), and LAAO (56.79 ± 2.91 %). Furthermore, ASC16 neutralized the 2 LD50 lethality of crotalic venom. These findings lay the groundwork for designing promising adjuvants that can facilitate the incorporation of a larger quantity of proteins in immunization schemes. Consequently, this approach aims to achieve higher antibody titers, reduce the number of required immunizations, and minimize local damage in the producer animal.


Asunto(s)
Crotalus , Crotoxina , Serpientes Venenosas , Animales , Masculino , Ratones , Antivenenos/farmacología , Crotoxina/antagonistas & inhibidores , Crotoxina/toxicidad , Simulación del Acoplamiento Molecular , Fosfolipasas A2/toxicidad , Fosfolipasas A2/metabolismo , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/farmacología
11.
Artículo en Inglés | MEDLINE | ID: mdl-39025425

RESUMEN

In this study, we report the innovative application of whole-cell patch-clamp electrophysiology in assessing broad-spectrum neutralisation by three different antivenoms, of venoms from the medically significant scorpion genus Centruroides. Envenomations by as many as 21 species from the Centruroides genus result in up to 300,000 envenomations per year in Mexico, which poses significant and potentially life-threatening pathophysiology. We first evaluated the in vitro manifestation of envenomation against two human voltage-gated sodium (hNaV) channel subtypes: hNaV1.4 and hNaV1.5, which are primarily expressed in skeletal muscles and cardiomyocytes, respectively. The neutralisation of venom activity was then characterised for three different antivenoms using a direct competition model against the more potent target, hNaV1.4. While broad-spectrum neutralisation was identified, variation in neutralisation arose for Centruroides elegans, C. limpidus, C. noxius and C. suffusus venoms, despite the presence of a number of these venoms within the immunising mixture. This raises questions regarding the truly "broad" neutralisation capacity of the antivenoms. This study not only extends previous validation of the in vitro investigation of antivenom efficacy utilising the whole-cell patch-clamp technique but also underscores the potential of this animal-free model in exploring cross-reactivity, experimental scalability, and most importantly, informing clinical management practices regarding the administration of antivenom in Mexico.


Asunto(s)
Antivenenos , Venenos de Escorpión , Escorpiones , Animales , Venenos de Escorpión/toxicidad , Antivenenos/farmacología , Humanos , Picaduras de Escorpión/tratamiento farmacológico , Técnicas de Placa-Clamp , Especificidad de la Especie , México , Animales Ponzoñosos
12.
Toxicon ; 247: 107826, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38909759

RESUMEN

This case report presents an exotic envenomation by a Chinese snake, Protobothrops mangshanensis. Its venom exhibited potent activity against plasma and fibrinogen, among other enzymatic activities. The patient initially presented with edema of the right upper limb, without tissue necrosis. There were no signs of bleeding; however, severe hypofibrinogenemia was observed (nadir value at 0.4 g/L), with a marked increase in fibrinogen degradation products and D-dimers, without any other coagulation disturbances. In the absence of a specific antivenom available against Asian Crotalinae venoms, the patient was treated at the 29th hour after bite with six vials of Antivipmyn™ TRI (Instituto Bioclon, Mexico, Mexico), a Mexican antivenom initially intended for American Crotalinae venoms, i.e., Bothrops asper, Lachesis muta and Crotalus durissus. Fibrinogen began to rise 6 hours after the antivenom infusion and was within the normal range 38 hours later. The report also underscores the utility of ClotPro® (Haemonetics ®USA), a viscoelastic test, for real-time monitoring of the snakebite-related coagulopathy. The clotting time was extended to 188 seconds on the EX-test while the MCF was decreased to 31 mm on the EX-test and the AP-test and was not measurable on the FIB-test, confirming severe hypofibrinogenemia. In order to confirm the paraspecificity of antivenom on the venom of P. mangshanensis, we studied the experimental neutralization of the venom procoagulant effect by Antivipmyn TRI and Green Pit Viper antivenom, which has been used in previous published clinical cases of P. mangshanensis envenomation. Both Antivipmyn™ TRI and Green Pit Viper antivenom corrected the procoagulant effect induced by P. mangshanensis venom. These findings suggest that Antivipmyn™ TRI cross-reacts with Protobothrops mangshanensis venom. In the absence of antivenom covering Asian Crotalinae, Antivipmyn TRI should be considered to treat an envenomation by Protobothrops spp.


Asunto(s)
Antivenenos , Venenos de Crotálidos , Mordeduras de Serpientes , Antivenenos/uso terapéutico , Animales , Mordeduras de Serpientes/tratamiento farmacológico , Humanos , Venenos de Crotálidos/toxicidad , Masculino , México , Francia , Crotalinae , Coagulación Sanguínea/efectos de los fármacos , Fibrinógeno
13.
Toxicon ; 247: 107837, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945216

RESUMEN

Camelid immunoglobulins represent a unique facet of antibody biology, challenging conventional understandings of antibody diversification. IgG2 and IgG3 in particular are composed solely of heavy chains and exhibit a reduced molecular weight (90 kDa); their elongated complementarity determining region (CDR) loops play a pivotal role in their functioning, delving deep into enzyme active sites with precision. Serum therapy stands as the primary venom-specific treatment for snakebite envenomation, harnessing purified antibodies available in diverse forms such as whole IgG, monovalent fragment antibody (Fab), or divalent fragment antibody F (ab')2. This investigation looks into the intricacies of IgGs derived from camelid serum previously immunized with crotamine and crotoxin, toxins predominantly in Crotalus durissus venom, exploring their recognition capacity, specificity, and cross-reactivity to snake venoms and its toxins. Initially, IgG purification employed affinity chromatography via protein A and G columns to segregate conventional antibodies (IgG1) from heavy chain antibodies (IgG2 and IgG3) of camelid isotypes sourced from Lama glama serum. Subsequent electrophoretic analysis (SDS-PAGE) revealed distinct bands corresponding to molecular weight profiles of IgG's fractions representing isotypes in Lama glama serum. ELISA cross-reactivity assays demonstrated all three IgG isotypes' ability to recognize the tested venoms. Notably, IgG1 exhibited the lowest interactivity in analyses involving bothropic and crotalic venoms. However, IgG2 and IgG3 displayed notable cross-reactivity, particularly with crotalic venoms and toxins, albeit with exceptions such as PLA2-CB, showing reduced reactivity, and C. atrox, where IgGs exhibited insignificant reactivity. In Western blot assays, IgG2 and IgG3 exhibited recognition of proteins within molecular weight (≈15 kDa) of C. d. collilineatus to C. d. terrificus, with some interaction observed even with bothropic proteins despite lower reactivity. These findings underscore the potential of camelid heavy-chain antibodies, suggesting Lama glama IgGs as prospective candidates for a novel class of serum therapies. However, further investigations are imperative to ascertain their suitability for serum therapy applications.


Asunto(s)
Antivenenos , Inmunoglobulina G , Animales , Antivenenos/inmunología , Inmunoglobulina G/inmunología , Crotalus/inmunología , Venenos de Crotálidos/inmunología , Reacciones Cruzadas , Camélidos del Nuevo Mundo/inmunología , Crotoxina/inmunología , Camelidae/inmunología
14.
Toxicon ; 247: 107793, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38838861

RESUMEN

Bothrops atrox envenomations in the Brazilian Amazon are responsible for a number of local and systemic effects. Among these, stroke presents the worst prognosis for the patient since it may evolve into disabilities and/or premature death. This complication is caused by coagulation disorders and generates hemorrhagic and thrombotic conditions. This study presents a case report of a 54-year-old female patient who presented extensive cerebral ischemia after a B. atrox envenomation that occurred in the state of Amazonas, Brazil. The patient was hospitalized for 102 days, which included a stay in the intensive care unit. Clinical and laboratory findings indicated a thrombogenic coagulopathy. On discharge, the patient had no verbal response, partial motor response, and right hemiplegia. The assessment carried out four years after discharge evidenced incapacitation, global aphasia and bilateral lower and upper limbs showed hypotrophy with a global decrease in strength. Ischemic stroke is a possible complication of B. atrox snakebites even after antivenom treatment, with the potential to cause debilitating long-term consequences.


Asunto(s)
Antivenenos , Bothrops , Mordeduras de Serpientes , Mordeduras de Serpientes/complicaciones , Femenino , Persona de Mediana Edad , Animales , Humanos , Brasil , Antivenenos/uso terapéutico , Accidente Cerebrovascular Isquémico/etiología , Venenos de Crotálidos/toxicidad , Venenos de Crotálidos/envenenamiento , Isquemia Encefálica/etiología , Bothrops atrox
15.
PLoS Negl Trop Dis ; 18(5): e0012152, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38717980

RESUMEN

BACKGROUND: Each year, 3,800 cases of snakebite envenomation are reported in Mexico, resulting in 35 fatalities. The only scientifically validated treatment for snakebites in Mexico is the use of antivenoms. Currently, two antivenoms are available in the market, with one in the developmental phase. These antivenoms, produced in horses, consist of F(ab')2 fragments generated using venoms from various species as immunogens. While previous studies primarily focused on neutralizing the venom of the Crotalus species, our study aims to assess the neutralization capacity of different antivenom batches against pit vipers from various genera in Mexico. METHODOLOGY: We conducted various biological and biochemical tests to characterize the venoms. Additionally, we performed neutralization tests using all three antivenoms to evaluate their effectiveness against lethal activity and their ability to neutralize proteolytic and fibrinogenolytic activities. RESULTS: Our results reveal significant differences in protein content and neutralizing capacity among different antivenoms and even between different batches of the same product. Notably, the venom of Crotalus atrox is poorly neutralized by all evaluated batches despite being the primary cause of envenomation in the country's northern region. Furthermore, even at the highest tested concentrations, no antivenom could neutralize the lethality of Metlapilcoatlus nummifer and Porthidium yucatanicum venoms. These findings highlight crucial areas for improving existing antivenoms and developing new products. CONCLUSION: Our research reveals variations in protein content and neutralizing potency among antivenoms, emphasizing the need for consistency in venom characteristics as immunogens. While Birmex neutralizes more LD50 per vial, Antivipmyn excels in specific neutralization. The inability of antivenoms to neutralize certain venoms, especially M. nummifer and P. yucatanicum, highlights crucial improvement opportunities, given the medical significance of these species.


Asunto(s)
Antivenenos , Pruebas de Neutralización , Antivenenos/farmacología , Antivenenos/inmunología , Animales , México , Mordeduras de Serpientes/tratamiento farmacológico , Mordeduras de Serpientes/inmunología , Viperidae , Crotalus , Venenos de Crotálidos/inmunología
16.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791221

RESUMEN

Snakebite accidents, neglected tropical diseases per the WHO, pose a significant public health threat due to their severity and frequency. Envenomation by Bothrops genus snakes leads to severe manifestations due to proteolytic enzymes. While the antibothropic serum produced by the Butantan Institute saves lives, its efficacy is limited as it fails to neutralize certain serine proteases. Hence, developing new-generation antivenoms, like monoclonal antibodies, is crucial. This study aimed to explore the inhibitory potential of synthetic peptides homologous to the CDR3 regions of a monoclonal antibody targeting a snake venom thrombin-like enzyme (SVTLE) from B. atrox venom. Five synthetic peptides were studied, all stable against hydrolysis by venoms and serine proteases. Impressively, four peptides demonstrated uncompetitive SVTLE inhibition, with Ki values ranging from 10-6 to 10-7 M. These findings underscore the potential of short peptides homologous to CDR3 regions in blocking snake venom toxins, suggesting their promise as the basis for new-generation antivenoms. Thus, this study offers potential advancements in combatting snakebites, addressing a critical public health challenge in tropical and subtropical regions.


Asunto(s)
Anticuerpos Monoclonales , Bothrops , Péptidos , Serina Proteasas , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacología , Péptidos/química , Péptidos/farmacología , Serina Proteasas/química , Serina Proteasas/metabolismo , Antivenenos/química , Antivenenos/inmunología , Antivenenos/farmacología , Regiones Determinantes de Complementariedad/química , Venenos de Crotálidos/antagonistas & inhibidores , Venenos de Crotálidos/inmunología , Venenos de Crotálidos/enzimología , Venenos de Crotálidos/química , Secuencia de Aminoácidos , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología
17.
J Ethnopharmacol ; 332: 118349, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38762214

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Snakebite envenomation (SBE) is the world's most lethal neglected tropical disease. Bothrops jararaca is the species that causes the greatest number of SBEs in the South and Southeastern of Brazil. The main symptoms are local (inflammation, edema, hemorrhage, and myonecrosis) and systemic (hemorrhage, hemostatic alterations with consumptive coagulopathy, and death) effects. Species of the genus Siparuna, Siparunaceae, are used in folk and traditional medicine to treat SBE. However, limited information is available concerning Brazilian Siparuna species against SBE. AIM OF THE STUDY: To investigate the correlation between the compounds present in the extracts of five Siparuna species as potential agents against proteolytic activity, plasma coagulation, and phospholipase A2 (PLA2) activity caused by B. jararaca venom, using data obtained by UHPLC-MS/MS, biological activity, and multivariate statistics. MATERIALS AND METHODS: The ethanol extracts from leaves of S. ficoides, S. decipiens, S. glycycarpa, S. reginae, and S. cymosa were fractionated by liquid-liquid extraction using different solvents of increasing polarity (hexane, dichloromethane, ethyl acetate, and n-butanol), affording their respective extracts, totaling 25 samples that were assayed through in vitro plasma coagulation and proteolytic activity assays. Moreover, the extracts were analyzed by UHPLC-MS/MS, using electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI) in negative and positive ionization modes. The data was processed in MZmine v. 2.53 and evaluated by multivariate statistical tests (PLS) using the software UnscramblerX v. 10.4. These data were also used to build molecular networks (GNPS), and some ions of interest could be annotated using the library of molecules on the GNPS platform. RESULTS: A total of 19 extracts inhibited B. jararaca-induced plasma coagulation, with emphasis on S. cymosa and S. reginae (800 s). The inhibition of the proteolytic activity was also promising, ranging from 16% (S. glycycarpa) to 99% (S. cymosa, S. decipiens, and S. reginae). In addition, most extracts from S. cymosa and S. reginae inhibited 70-90% of PLA2 activity. Based on data from positive mode APCI analyses, it was possible to obtain a statistic model with reliable predictive capacity which exhibited an average R2 of 0.95 and a Q2 of 0.88, indicating a robust fit. This process revealed five ions, identified as the alkaloids: coclaurine (1), stepholidine (2) O-methylisopiline (3), nornantenine (4) and laurolitsine (5). This is the first study to evidence the potential antivenom of alkaloids from Siparuna species. CONCLUSIONS: Altogether, our results give support to the popular use of Siparuna extracts in SBE accidents, suggesting their potential as an alternative or complementary strategy against envenoming by B. jararaca venom. The predicted ions in the chemometric analysis for the assayed activities can also be correlated with the blocking activity and encourage the continuation of this study for possible isolation and testing of individual compounds on the used models.


Asunto(s)
Alcaloides , Coagulación Sanguínea , Bothrops , Venenos de Crotálidos , Extractos Vegetales , Animales , Coagulación Sanguínea/efectos de los fármacos , Venenos de Crotálidos/toxicidad , Extractos Vegetales/farmacología , Extractos Vegetales/química , Alcaloides/farmacología , Alcaloides/aislamiento & purificación , Alcaloides/química , Brasil , Proteolisis/efectos de los fármacos , Fosfolipasas A2/metabolismo , Inhibidores de Fosfolipasa A2/farmacología , Inhibidores de Fosfolipasa A2/aislamiento & purificación , Hojas de la Planta/química , Antivenenos/farmacología , Antivenenos/aislamiento & purificación , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/aislamiento & purificación , Espectrometría de Masas en Tándem , Bothrops jararaca
18.
PLoS Negl Trop Dis ; 18(5): e0012187, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38809847

RESUMEN

BACKGROUND: Snakebite envenomation inflicts a high burden of mortality and morbidity in sub-Saharan Africa. Antivenoms are the mainstay in the therapy of envenomation, and there is an urgent need to develop antivenoms of broad neutralizing efficacy for this region. The venoms used as immunogens to manufacture snake antivenoms are normally selected considering their medical importance and availability. Additionally, their ability to induce antibody responses with high neutralizing capability should be considered, an issue that involves the immunization scheme and the animal species being immunized. METHODOLOGY/PRINCIPAL FINDINGS: Using the lethality neutralization assay in mice, we compared the intrageneric neutralization scope of antisera generated by immunization of horses with monospecific, bispecific/monogeneric, and polyspecific/monogeneric immunogens formulated with venoms of Bitis spp., Echis spp., Dendroaspis spp., spitting Naja spp. or non-spitting Naja spp. It was found that the antisera raised by all the immunogens were able to neutralize the homologous venoms and, with a single exception, the heterologous congeneric venoms (considering spitting and non-spitting Naja separately). In general, the polyspecific antisera of Bitis spp, Echis spp, and Dendroaspis spp gave the best neutralization profile against venoms of these genera. For spitting Naja venoms, there were no significant differences in the neutralizing ability between monospecific, bispecific and polyspecific antisera. A similar result was obtained in the case of non-spitting Naja venoms, except that polyspecific antiserum was more effective against the venoms of N. melanoleuca and N. nivea as compared to the monospecific antiserum. CONCLUSIONS/SIGNIFICANCE: The use of polyspecific immunogens is the best alternative to produce monogeneric antivenoms with wide neutralizing coverage against venoms of sub-Saharan African snakes of the Bitis, Echis, Naja (non-spitting) and Dendroaspis genera. On the other hand, a monospecific immunogen composed of venom of Naja nigricollis is suitable to produce a monogeneric antivenom with wide neutralizing coverage against venoms of spitting Naja spp. These findings can be used in the design of antivenoms of wide neutralizing scope for sub-Saharan Africa.


Asunto(s)
Antivenenos , Pruebas de Neutralización , Animales , Caballos/inmunología , Antivenenos/inmunología , Antivenenos/administración & dosificación , Ratones , África del Sur del Sahara , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Venenos de Serpiente/inmunología , Sueros Inmunes/inmunología , Venenos Elapídicos/inmunología , Mordeduras de Serpientes/inmunología
19.
Int Immunopharmacol ; 134: 112215, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744173

RESUMEN

Camelid single-domain antibodies (VHH) represent a promising class of immunobiologicals for therapeutic applications due to their remarkable stability, specificity, and therapeutic potential. To enhance the effectiveness of antivenoms for snakebites, various methods have been explored to address limitations associated with serum therapy, particularly focusing on mitigating local damage and ensuring sustainable production. Our study aimed to characterize the pharmacological profile and neutralization capacity of anti-Phospholipase A2 (PLA2) monomeric VHH (Genbank accessions: KC329718). Using a post-envenoming mouse model, we used intravital microscopy to assess leukocyte influx, measured CK and LDH levels, and conducted a histopathology analysis to evaluate VHH KC329718's ability to neutralize myotoxic activity. Our findings demonstrated that VHH KC329718 exhibited heterogeneous distribution in muscle tissue. Treatment with VHH KC329718 reduced leukocyte influx caused by BthTX-I (a Lys-49 PLA2) by 28 %, as observed through intravital microscopy. When administered at a 1:10 ratio [venom or toxin:VHH (w/w)], VHH KC329718 significantly decreased myotoxicity, resulting in a 35-40 % reduction in CK levels from BthTX-I and BthTX-II (an Asp-49 PLA2) and a 60 % decrease in CK levels from B. jararacussu venom. LDH levels also showed reductions of 60%, 80%, and 60% induced by BthTX-I, BthTX-II, and B. jararacussu venom, respectively. Histological analysis confirmed the neutralization potential, displaying a significant reduction in tissue damage and inflammatory cell count in mice treated with VHH KC329718 post B. jararacussu venom inoculation. This study underscores the potential of monomeric anti-PLA2 VHH in mitigating myotoxic effects, suggesting a promising avenue for the development of new generation antivenoms to address current therapeutic limitations.


Asunto(s)
Antivenenos , Bothrops , Fosfolipasas A2 , Anticuerpos de Dominio Único , Mordeduras de Serpientes , Animales , Anticuerpos de Dominio Único/inmunología , Mordeduras de Serpientes/tratamiento farmacológico , Mordeduras de Serpientes/inmunología , Antivenenos/farmacología , Antivenenos/uso terapéutico , Ratones , Fosfolipasas A2/metabolismo , Venenos de Crotálidos/inmunología , Venenos de Crotálidos/toxicidad , Masculino , Modelos Animales de Enfermedad , Músculo Esquelético/patología , Músculo Esquelético/efectos de los fármacos , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Humanos , Creatina Quinasa/sangre
20.
Toxins (Basel) ; 16(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38668613

RESUMEN

BACKGROUND: Snakebite envenomation (SBE) causes diverse toxic effects in humans, including disability and death. Current antivenom therapies effectively prevent death but fail to block local tissue damage, leading to an increase in the severity of envenomation; thus, seeking alternative treatments is crucial. METHODS: This study analyzed the potential of two fucoidan sulfated polysaccharides extracted from brown seaweeds Fucus vesiculosus (FVF) and Undaria pinnatifida (UPF) against the fibrinogen or plasma coagulation, proteolytic, and phospholipase A2 (PLA2) activities of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom. The toxicity of FVF and UPF was assessed by the hemocompatibility test. RESULTS: FVF and UPF did not lyse human red blood cells. FVF and UPF inhibited the proteolytic activity of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom by approximately 25%, 50%, and 75%, respectively, while all venoms led to a 20% inhibition of PLA2 activity. UPF and FVF delayed plasma coagulation caused by the venoms of B. jararaca and B. neuwiedi but did not affect the activity of B. jararacussu venom. FVF and UPF blocked the coagulation of fibrinogen induced by all these Bothropic venoms. CONCLUSION: FVF and UPF may be of importance as adjuvants for SBE caused by species of Bothrops, which are the most medically relevant snakebite incidents in South America, especially Brazil.


Asunto(s)
Coagulación Sanguínea , Venenos de Crotálidos , Fucus , Fosfolipasas A2 , Polisacáridos , Undaria , Animales , Antivenenos/farmacología , Coagulación Sanguínea/efectos de los fármacos , Bothrops , Bothrops jararaca , Venenos de Crotálidos/toxicidad , Venenos de Crotálidos/enzimología , Algas Comestibles/química , Fucus/química , Fosfolipasas A2/metabolismo , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Proteolisis/efectos de los fármacos , Algas Marinas/química , Undaria/química , Serpientes Venenosas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA