Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 674
Filtrar
1.
PLoS Genet ; 20(8): e1011257, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39178312

RESUMEN

The pervasiveness of gene expression variation and its contribution to phenotypic variation and evolution is well known. This gene expression variation is context dependent, with differences in regulatory architecture often associated with intrinsic and environmental factors, and is modulated by regulatory elements that can act in cis (linked) or in trans (unlinked) relative to the genes they affect. So far, little is known about how this genetic variation affects the evolution of regulatory architecture among closely related tissues during population divergence. To address this question, we analyzed gene expression in the midgut, hindgut, and Malpighian tubule as well as microbiome composition in the two gut tissues in four Drosophila melanogaster strains and their F1 hybrids from two divergent populations: one from the derived, European range and one from the ancestral, African range. In both the transcriptome and microbiome data, we detected extensive tissue- and genetic background-specific effects, including effects of genetic background on overall tissue specificity. Tissue-specific effects were typically stronger than genetic background-specific effects, although the two gut tissues were not more similar to each other than to the Malpighian tubules. An examination of allele specific expression revealed that, while both cis and trans effects were more tissue-specific in genes expressed differentially between populations than genes with conserved expression, trans effects were more tissue-specific than cis effects. Despite there being highly variable regulatory architecture, this observation was robust across tissues and genetic backgrounds, suggesting that the expression of trans variation can be spatially fine-tuned as well as or better than cis variation during population divergence and yielding new insights into cis and trans regulatory evolution.


Asunto(s)
Alelos , Drosophila melanogaster , Antecedentes Genéticos , Animales , Drosophila melanogaster/genética , Especificidad de Órganos/genética , Túbulos de Malpighi/metabolismo , Transcriptoma/genética , Variación Genética , Regulación de la Expresión Génica , Masculino , Femenino
2.
Sci Rep ; 14(1): 15139, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956423

RESUMEN

Mineral element accumulation in plants is influenced by soil conditions and varietal factors. We investigated the dynamic accumulation of 12 elements in straw at the flowering stage and in grains at the mature stage in eight rice varieties with different genetic backgrounds (Japonica, Indica, and admixture) and flowering times (early, middle, and late) grown in soil with various pH levels. In straw, Cd, As, Mn, Zn, Ca, Mg, and Cu accumulation was influenced by both soil pH and varietal factors, whereas P, Mo, and K accumulation was influenced by pH, and Fe and Ni accumulation was affected by varietal factors. In grains, Cd, As, Mn, Cu, Ni, Mo, Ca, and Mg accumulation was influenced by both pH and varietal factors, whereas Zn, Fe, and P accumulation was affected by varietal factors, and K accumulation was not altered. Only As, Mn, Ca and Mg showed similar trends in the straw and grains, whereas the pH responses of Zn, P, K, and Ni differed between them. pH and flowering time had synergistic effects on Cd, Zn, and Mn in straw and on Cd, Ni, Mo, and Mn in grains. Soil pH is a major factor influencing mineral uptake in rice straw and grains, and genetic factors, flowering stage factors, and their interaction with soil pH contribute in a combined manner.


Asunto(s)
Minerales , Oryza , Suelo , Oryza/genética , Oryza/metabolismo , Suelo/química , Concentración de Iones de Hidrógeno , Minerales/metabolismo , Minerales/análisis , Antecedentes Genéticos , Grano Comestible/metabolismo , Grano Comestible/genética
3.
Endocrinology ; 165(7)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38836615

RESUMEN

About half of the world population carries at least one allele of the Ala92-DIO2, which slows down the activity of the type 2 deiodinase (D2), the enzyme that activates T4 to T3. Carrying the Ala92-DIO2 allele has been associated with increased body mass index and insulin resistance, but this has not been reproduced in all populations. To test if the genetic background affects the impact of this polymorphism, here we studied the genetically distant C57Bl/6J (B6) and FVB/N (FVB) mice carrying the Ala92-Dio2 allele as compared to control mice carrying the Thr92-Dio2 allele. Whereas B6-Ala92-Dio2 and B6-Thr92-Dio2 mice-fed chow or high-fat diet-behaved metabolically similar in studies using indirect calorimetry, glucose- and insulin tolerance tests, and measuring white adipose tissue (WAT) weight and liver steatosis, major differences were observed between FVB-Ala92-Dio2 and FVB-Thr92-Dio2 mice: carrying the Ala92-Dio2 allele (on a chow diet) resulted in hypercholesterolemia, smaller WAT pads, hepatomegaly, steatosis, and transcriptome changes in the interscapular brown adipose tissue (iBAT) typical of ER stress and apoptosis. Acclimatization at thermoneutrality (30 °C) eliminated most of the metabolic phenotype, indicating that impaired adaptive (BAT) thermogenesis can be involved. In conclusion, the metabolic impact of carrying the Ala92-Dio2 allele depends greatly on the genetic background of the mouse, varying from no phenotype in B6 mice to a major phenotype in FVB mice. These results will help the planning of future clinical trials studying the Thr92Ala-DIO2 polymorphism and may explain why some clinical studies performed in different populations across the globe have obtained inconsistent results.


Asunto(s)
Yoduro Peroxidasa , Yodotironina Deyodinasa Tipo II , Ratones Endogámicos C57BL , Animales , Masculino , Yoduro Peroxidasa/genética , Ratones , Dieta Alta en Grasa , Antecedentes Genéticos , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Pardo/metabolismo , Polimorfismo Genético , Resistencia a la Insulina/genética , Hígado Graso/genética
4.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891999

RESUMEN

Juvenile polyposis syndrome (JPS) is a rare autosomal dominant disorder characterized by multiple juvenile polyps in the gastrointestinal tract, often associated with mutations in genes such as Smad4 and BMPR1A. This study explores the impact of Smad4 knock-out on the development of intestinal polyps using collaborative cross (CC) mice, a genetically diverse model. Our results reveal a significant increase in intestinal polyps in Smad4 knock-out mice across the entire population, emphasizing the broad influence of Smad4 on polyposis. Sex-specific analyses demonstrate higher polyp counts in knock-out males and females compared to their WT counterparts, with distinct correlation patterns. Line-specific effects highlight the nuanced response to Smad4 knock-out, underscoring the importance of genetic variability. Multimorbidity heat maps offer insights into complex relationships between polyp counts, locations, and sizes. Heritability analysis reveals a significant genetic basis for polyp counts and sizes, while machine learning models, including k-nearest neighbors and linear regression, identify key predictors, enhancing our understanding of juvenile polyposis genetics. Overall, this study provides new information on understanding the intricate genetic interplay in the context of Smad4 knock-out, offering valuable insights that could inform the identification of potential therapeutic targets for juvenile polyposis and related diseases.


Asunto(s)
Modelos Animales de Enfermedad , Poliposis Intestinal , Síndromes Neoplásicos Hereditarios , Proteína Smad4 , Animales , Femenino , Masculino , Ratones , Ratones de Colaboración Cruzada/genética , Antecedentes Genéticos , Poliposis Intestinal/genética , Poliposis Intestinal/congénito , Poliposis Intestinal/patología , Pólipos Intestinales/genética , Pólipos Intestinales/patología , Ratones Noqueados , Síndromes Neoplásicos Hereditarios/genética , Proteína Smad4/genética
5.
Europace ; 26(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38875491

RESUMEN

AIMS: Patients with mutations in SCN5A encoding NaV1.5 often display variable severity of electrical and structural alterations, but the underlying mechanisms are not fully elucidated. We here investigate the combined modulatory effect of genetic background and age on disease severity in the Scn5a1798insD/+ mouse model. METHODS AND RESULTS: In vivo electrocardiogram and echocardiograms, ex vivo electrical and optical mapping, and histological analyses were performed in adult (2-7 months) and aged (8-28 months) wild-type (WT) and Scn5a1798insD/+ (mutant, MUT) mice from the FVB/N and 129P2 inbred strains. Atrio-ventricular (AV) conduction, ventricular conduction, and ventricular repolarization are modulated by strain, genotype, and age. An aging effect was present in MUT mice, with aged MUT mice of both strains showing prolonged QRS interval and right ventricular (RV) conduction slowing. 129P2-MUT mice were severely affected, with adult and aged 129P2-MUT mice displaying AV and ventricular conduction slowing, prolonged repolarization, and spontaneous arrhythmias. In addition, the 129P2 strain appeared particularly susceptible to age-dependent electrical, functional, and structural alterations including RV conduction slowing, reduced left ventricular (LV) ejection fraction, RV dilatation, and myocardial fibrosis as compared to FVB/N mice. Overall, aged 129P2-MUT mice displayed the most severe conduction defects, RV dilatation, and myocardial fibrosis, in addition to the highest frequency of spontaneous arrhythmia and inducible arrhythmias. CONCLUSION: Genetic background and age both modulate disease severity in Scn5a1798insD/+ mice and hence may explain, at least in part, the variable disease expressivity observed in patients with SCN5A mutations. Age- and genetic background-dependent development of cardiac structural alterations furthermore impacts arrhythmia risk. Our findings therefore emphasize the importance of continued assessment of cardiac structure and function in patients carrying SCN5A mutations.


Asunto(s)
Arritmias Cardíacas , Modelos Animales de Enfermedad , Fibrosis , Predisposición Genética a la Enfermedad , Mutación , Canal de Sodio Activado por Voltaje NAV1.5 , Animales , Canal de Sodio Activado por Voltaje NAV1.5/genética , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Factores de Edad , Índice de Severidad de la Enfermedad , Sistema de Conducción Cardíaco/fisiopatología , Potenciales de Acción , Electrocardiografía , Fenotipo , Antecedentes Genéticos , Ratones de la Cepa 129 , Masculino , Frecuencia Cardíaca/genética , Miocardio/patología , Envejecimiento/genética
6.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 27-32, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38814238

RESUMEN

In this study, BC3F2 convergent population [(K343*3/RML22 × K343*3/DHMAS) × K343] was constructed by marker-assisted backcross breeding using K343 as the recurrent parent. DHMAS and RML22 were used as donor parents for the rice blast resistance genes Pi54 and Pi9, respectively. The population was first characterized using GGT 2.0 software, which showed 96.7% of the recurrent genome recovery covering 13953.6 cM, while DHMAS and RML22 showed 1.6% (235.5 cM) and 1.2% (177.1 cM) introgression respectively. The chromosomal segment substitution lines (CSSLs) were then identified using CSSL Finder software. A total of 36 CSSLs were identified, including 22 for DHMAS/K343 and 14 for RML22/K343. Introgression rates for donor substituted segments in DHMAS/K343 CSSLs ranged from 0.54% to 5.99%, with donor coverage of 44.5%, while in RML22/K343 CSSLs, introgression rates ranged from 0.54% to 4.75%, with donor coverage of 24.5%. The identified CSSLs would be a valuable genetic pool and could be used as genomic resources for the discovery and mapping of important genes and QTLs in rice genetic improvement.


Asunto(s)
Cromosomas de las Plantas , Oryza , Oryza/genética , Cromosomas de las Plantas/genética , Fitomejoramiento/métodos , Antecedentes Genéticos , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Cruzamientos Genéticos , Genoma de Planta/genética , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico/métodos , Genes de Plantas
8.
Sci Rep ; 14(1): 12451, 2024 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816469

RESUMEN

The FZP gene plays a critical role in the formation of lateral branches and spikelets in rice panicle architecture. This study investigates the qSBN7 allele, a hypomorphic variant of FZP, and its influence on panicle architectures in different genetic backgrounds. We evaluated two backcross inbred lines (BILs), BC5_TCS10sbn and BC3_TCS10sbn, each possessing the homozygous qSBN7 allele but demonstrating differing degrees of spikelet degeneration. Our analysis revealed that BC5_TCS10sbn had markedly low FZP expression, which corresponded with an increase in axillary branches and severe spikelet degeneration. Conversely, BC3_TCS10sbn exhibited significantly elevated FZP expression, leading to fewer secondary and tertiary branches, and consequently decreased spikelet degeneration. Compared to BC5_TCS10sbn, BC3_TCS10sbn carries three additional chromosomal substitution segments from its donor parent, IR65598-112-2. All three segments significantly enhance the expression of FZP and reduce the occurrence of tertiary branch and spikelet degeneration. These findings enhance our understanding of the mechanisms regulating FZP and aid rice breeding efforts.


Asunto(s)
Oryza , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Alelos , Antecedentes Genéticos , Fitomejoramiento , Genes de Plantas , Genoma de Planta , Fenotipo
9.
PLoS One ; 19(5): e0301328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38713657

RESUMEN

Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting approximately 80% of all human proteins. The human essential X-linked gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. There is extensive genetic variation in humans with missense, splice-site, and C-terminal frameshift variants in NAA10. In mice, Naa10 is not an essential gene, as there exists a paralogous gene, Naa12, that substantially rescues Naa10 knockout mice from embryonic lethality, whereas double knockouts (Naa10-/Y Naa12-/-) are embryonic lethal. However, the phenotypic variability in the mice is nonetheless quite extensive, including piebaldism, skeletal defects, small size, hydrocephaly, hydronephrosis, and neonatal lethality. Here we replicate these phenotypes with new genetic alleles in mice, but we demonstrate their modulation by genetic background and environmental effects. We cannot replicate a prior report of "maternal effect lethality" for heterozygous Naa10-/X female mice, but we do observe a small amount of embryonic lethality in the Naa10-/y male mice on the inbred genetic background in this different animal facility.


Asunto(s)
Ratones Noqueados , Acetiltransferasa A N-Terminal , Acetiltransferasa E N-Terminal , Animales , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasa E N-Terminal/genética , Acetiltransferasa E N-Terminal/metabolismo , Ratones , Femenino , Masculino , Fenotipo , Antecedentes Genéticos , Herencia Materna/genética , Ratones Endogámicos C57BL
10.
Clin Genet ; 106(3): 247-257, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38561851

RESUMEN

Admixture refers to the mixing of genetic ancestry from different populations. Admixture is important for genomic medicine because it can affect how an individual responds to certain medications, how they metabolize drugs, and susceptibility to certain diseases. For example, some genetic variants associated with drug metabolism and response may be more common in certain populations, and individuals with admixed ancestry may have a different frequency of these variants than individuals from the ancestral populations. Understanding the patterns of admixture in a population can also help researchers identify new genetic variants associated with diseases or traits and develop more personalized and targeted treatments. In this study, we compared and classified the known and self-reported genetic backgrounds from 1000 Genomes Project and admixed samples from GTEx projects using supervised, unsupervised and statistical classification methodologies. We developed a novel tool called Admix-AI that uses a one-dimensional convolutional neural network to understand and classify admixed genetic backgrounds using 213 DNA-marker based genetic background labels. Admix-AI can be used to discover admixed proportions in samples and ultimately aid personalized genomic medicine by identifying specific biomarker systems. We compared Admix-AI to the existing admixture categorization software and found our tool to be computationally faster with 2× speedup and streamlined usage. Admix-AI is available as open-source code under GPL version 3.0 license at https://github.com/rpauly/Admix-AI.


Asunto(s)
Inteligencia Artificial , Humanos , Programas Informáticos , Antecedentes Genéticos , Genómica/métodos , Genética de Población , Redes Neurales de la Computación , Genoma Humano/genética
11.
Genes (Basel) ; 15(4)2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38674346

RESUMEN

Ketosis is a common metabolic disorder in the early lactation of dairy cows. It is typically diagnosed by measuring the concentration of ß-hydroxybutyrate (BHB) in the blood. This study aimed to estimate the genetic parameters of blood BHB and conducted a genome-wide association study (GWAS) based on the estimated breeding value. Phenotypic data were collected from December 2019 to August 2023, comprising blood BHB concentrations in 45,617 Holstein cows during the three weeks post-calving across seven dairy farms. Genotypic data were obtained using the Neogen Geneseek Genomic Profiler (GGP) Bovine 100 K SNP Chip and GGP Bovine SNP50 v3 (Illumina Inc., San Diego, CA, USA) for genotyping. The estimated heritability and repeatability values for blood BHB levels were 0.167 and 0.175, respectively. The GWAS result detected a total of ten genome-wide significant associations with blood BHB. Significant SNPs were distributed in Bos taurus autosomes (BTA) 2, 6, 9, 11, 13, and 23, with 48 annotated candidate genes. These potential genes included those associated with insulin regulation, such as INSIG2, and those linked to fatty acid metabolism, such as HADHB, HADHA, and PANK2. Enrichment analysis of the candidate genes for blood BHB revealed the molecular functions and biological processes involved in fatty acid and lipid metabolism in dairy cattle. The identification of novel genomic regions in this study contributes to the characterization of key genes and pathways that elucidate susceptibility to ketosis in dairy cattle.


Asunto(s)
Ácido 3-Hidroxibutírico , Estudio de Asociación del Genoma Completo , Lactancia , Polimorfismo de Nucleótido Simple , Animales , Bovinos/genética , Ácido 3-Hidroxibutírico/sangre , Estudio de Asociación del Genoma Completo/métodos , Estudio de Asociación del Genoma Completo/veterinaria , Femenino , Lactancia/genética , Cetosis/veterinaria , Cetosis/genética , Cetosis/sangre , Antecedentes Genéticos , Enfermedades de los Bovinos/genética , Enfermedades de los Bovinos/sangre , Genotipo
12.
Aging (Albany NY) ; 16(7): 5829-5855, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38613792

RESUMEN

Aging is characterized by declining health that results in decreased cellular resilience and neuromuscular function. The relationship between lifespan and health, and the influence of genetic background on that relationship, has important implications in the development of pharmacological anti-aging interventions. Here we assessed swimming performance as well as survival under thermal and oxidative stress across a nematode genetic diversity test panel to evaluate health effects for three compounds previously studied in the Caenorhabditis Intervention Testing Program and thought to promote longevity in different ways - NP1 (nitrophenyl piperazine-containing compound 1), propyl gallate, and resveratrol. Overall, we find the relationships among median lifespan, oxidative stress resistance, thermotolerance, and mobility vigor to be complex. We show that oxidative stress resistance and thermotolerance vary with compound intervention, genetic background, and age. The effects of tested compounds on swimming locomotion, in contrast, are largely species-specific. In this study, thermotolerance, but not oxidative stress or swimming ability, correlates with lifespan. Notably, some compounds exert strong impact on some health measures without an equally strong impact on lifespan. Our results demonstrate the importance of assessing health and lifespan across genetic backgrounds in the effort to identify reproducible anti-aging interventions, with data underscoring how personalized treatments might be required to optimize health benefits.


Asunto(s)
Caenorhabditis elegans , Longevidad , Estrés Oxidativo , Animales , Longevidad/efectos de los fármacos , Longevidad/genética , Estrés Oxidativo/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Resveratrol/farmacología , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Antecedentes Genéticos , Natación , Piperazinas/farmacología , Estilbenos/farmacología
13.
PLoS One ; 19(4): e0300276, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38557670

RESUMEN

Experimental evolution (EE) is a powerful research framework for gaining insights into many biological questions, including the evolution of reproductive systems. We designed a long-term and highly replicated EE project using the nematode C. elegans, with the main aim of investigating the impact of reproductive system on adaptation and diversification under environmental challenge. From the laboratory-adapted strain N2, we derived isogenic lines and introgressed the fog-2(q71) mutation, which changes the reproductive system from nearly exclusive selfing to obligatory outcrossing, independently into 3 of them. This way, we obtained 3 pairs of isogenic ancestral populations differing in reproductive system; from these, we derived replicate EE populations and let them evolve in either novel (increased temperature) or control conditions for over 100 generations. Subsequently, fitness of both EE and ancestral populations was assayed under the increased temperature conditions. Importantly, each population was assayed in 2-4 independent blocks, allowing us to gain insight into the reproducibility of fitness scores. We expected to find upward fitness divergence, compared to ancestors, in populations which had evolved in this treatment, particularly in the outcrossing ones due to the benefits of genetic shuffling. However, our data did not support these predictions. The first major finding was very strong effect of replicate block on populations' fitness scores. This indicates that despite standardization procedures, some important environmental effects were varying among blocks, and possibly compounded by epigenetic inheritance. Our second key finding was that patterns of EE populations' divergence from ancestors differed among the ancestral isolines, suggesting that research conclusions derived for any particular genetic background should never be generalized without sampling a wider set of backgrounds. Overall, our results support the calls to pay more attention to biological variability when designing studies and interpreting their results, and to avoid over-generalizations of outcomes obtained for specific genetic and/or environmental conditions.


Asunto(s)
Caenorhabditis elegans , Genitales , Animales , Caenorhabditis elegans/genética , Temperatura , Reproducibilidad de los Resultados , Antecedentes Genéticos , Evolución Biológica
14.
Vet Parasitol ; 328: 110165, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38490159

RESUMEN

The main objective of cattle breeders in tropical and subtropical regions is to acquire animals with taurine-productive traits adapted to the broad weather range of these regions. However, one of the main challenges on using taurine genetics in these areas is the high susceptibility of these animals to tick-borne diseases. Consequently, the present study evaluated from 10 November 2021-19 April 2022, the over 13 assessments, the Babesia bovis and Babesia bigemina DNA loads and the IgG anti-B. bovis and anti-B. bigemina levels in Angus (n = 17, 100% Taurine) and Ultrablack (n = 14, ∼82% taurine and 18% Zebu) calves. Data were analyzed using a multivariate mixed model with repeated measures of the same animal including the fixed effects of evaluation, genetic group, sex, Babesia spp., and their interactions. The repeatability values were estimated from the (co)variances matrix and expressed for each species. The correlations between the DNA loads (CNlog) and IgG titers (S/P) values for the two species were also estimated using the same model. Regarding the specific IgG antibody titers for both Babesia spp., no significant differences were observed between the two genetic groups. However, for B. bovis and B. bigemina DNA loads, Ultrablack calves presented significantly higher values than Angus calves. Under the conditions evaluated in this study, our findings suggest that the low percentage of Zebu genetic in the Ultrablack breed was insufficient to improve resistance against babesiosis. Further studies must demonstrate if the low percentages of Zebu genetics in Taurine breeds can modify the susceptibility to babesiosis infections.


Asunto(s)
Babesia , Babesiosis , Enfermedades de los Bovinos , Animales , Bovinos , Babesiosis/parasitología , Babesiosis/inmunología , Enfermedades de los Bovinos/parasitología , Enfermedades de los Bovinos/inmunología , Babesia/genética , Babesia/inmunología , Femenino , Masculino , Antecedentes Genéticos , Babesia bovis/genética , Babesia bovis/inmunología , Inmunoglobulina G/sangre , Resistencia a la Enfermedad/genética
15.
J Dairy Sci ; 107(7): 4772-4792, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38428498

RESUMEN

Hematological parameters refer to the assessment of changes in the number and distribution of blood cells, including leukocytes (LES), erythrocytes (ERS), and platelets (PLS), which are essential for the early diagnosis of hematological system disorders and other systemic diseases in livestock. In this context, the primary objectives of this study were to investigate the genomic background of 19 hematological parameters in Holstein cattle, focusing on LES, ERS, and PLS blood components. Genetic and phenotypic (co)variances of hematological parameters were calculated based on the average information restricted maximum likelihood method and 1,610 genotyped individuals and 5,499 hematological parameter records from 4,543 cows. Furthermore, we assessed the genetic relationship between these hematological parameters and other economically important traits in dairy cattle breeding programs. We also carried out genome-wide association studies and candidate gene analyses. Blood samples from 21 primiparous cows were used to identify candidate genes further through RNA sequencing (RNA-seq) analyses. Hematological parameters generally exhibited low-to-moderate heritabilities ranging from 0.01 to 0.29, with genetic correlations between them ranging from -0.88 ± 0.09 (between mononuclear cell ratio and lymphocyte cell ratio) to 0.99 ± 0.01 (between white blood cell count and granulocyte cell count). Furthermore, low-to-moderate approximate genetic correlations between hematological parameters with one longevity, 4 fertility, and 5 health traits were observed. One hundred ninety-nine significant SNP located primarily on the Bos taurus autosomes (BTA) BTA4, BTA6, and BTA8 were associated with 16 hematological parameters. Based on the RNA-seq analyses, 6,687 genes were significantly downregulated and 4,119 genes were upregulated when comparing 2 groups of cows with high and low phenotypic values. By integrating genome-wide association studies (GWAS), RNA-seq, and previously published results, the main candidate genes associated with hematological parameters in Holstein cattle were ACRBP, ADAMTS3, CANT1, CCM2L, CNN3, CPLANE1, GPAT3, GRIP2, PLAGL2, RTL6, SOX4, WDFY3, and ZNF614. Hematological parameters are heritable and moderately to highly genetically correlated among themselves. The large number of candidate genes identified based on GWAS and RNA-seq indicate the polygenic nature and complex genetic determinism of hematological parameters in Holstein cattle.


Asunto(s)
Estudio de Asociación del Genoma Completo , Análisis de Secuencia de ARN , Animales , Bovinos/genética , Estudio de Asociación del Genoma Completo/veterinaria , Análisis de Secuencia de ARN/veterinaria , Fenotipo , Antecedentes Genéticos , Genotipo , Cruzamiento , Femenino
16.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542212

RESUMEN

The acute heart rate response (AHRR) to physical activity, which refers to the change in heart rate during and after exercise, has been associated with cardiovascular and all-cause mortality. Previous studies have shown that AHRR is significantly determined by genetics in addition to environmental and lifestyle factors. The aim of this study was to investigate the genetic background of AHRR by analysing ten single nucleotide polymorphisms (SNPs) associated with leisure-time physical activity (LTPA) in 620 samples from the Hungarian population. The AHRR can be characterised as the difference between post-exercise and resting heart rate, i.e., the delta heart rate (ΔHR) defined by the YMCA 3 min step test, with a lower value indicating better cardiovascular fitness. The association of SNPs with ΔHR was analysed both separately and in combination using an optimised polygenic score (oPGS). The results showed that five SNPs (rs10252228, rs459465, rs6022999, rs8097348, and rs12405556) had at least nominally significant (p < 0.05) individual associations with ΔHR. After optimizing the PGS, a cumulative effect was observed for eight SNPs (rs6022999, rs12405556, rs459465, rs10252228, rs8097348, rs10887741, rs12612420, and rs7023003) that had a strong and statistically significant association with ΔHR (B = -2.51, 95% CI: -3.46--1.76; p = 2.99 × 10-9). Of the four main domains of physical activity, the oPGS showed a significant positive association only with LTPA (B = 84.60; 95%CI: 25.23-143.98; p = 0.005). In conclusion, our results suggest that the SNPs we investigated influence individual leisure-time physical activity, mediated by their effects on the acute heart rate response.


Asunto(s)
Ejercicio Físico , Actividad Motora , Frecuencia Cardíaca/genética , Ejercicio Físico/fisiología , Antecedentes Genéticos
17.
PLoS One ; 19(3): e0289439, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478535

RESUMEN

Atherosclerotic Cardiovascular Disease (ASCVD) represents the leading cause of death worldwide, and individual screening should be based on behavioral, metabolic, and genetic profile derived from data collected in large population-based studies. Due to the polygenic nature of ASCVD, we aimed to assess the association of genomics with ASCVD risk and its impact on the occurrence of acute myocardial infarction, stroke, or peripheral artery thrombotic-ischemic events at population level. CardioVascular Genes (CV-GENES) is a nationwide, multicenter, 1:1 case-control study of 3,734 patients in Brazil. Inclusion criterion for cases is the first occurrence of one of the ASCVD events. Individuals without known ASCVD will be eligible as controls. A core lab will perform the genetic analyses through low-pass whole genome sequencing and whole exome sequencing. In order to estimate the independent association between genetic polymorphisms and ASCVD, a polygenic risk score (PRS) will be built through a hybrid approach including effect size of each Single Nucleotide Polymorphism (SNP), number of effect alleles observed, sample ploidy, total number of SNPs included in the PRS, and number of non-missing SNPs in the sample. In addition, the presence of pathogenic or likely pathogenic variants will be screened in 8 genes (ABCG5, ABCG8, APOB, APOE, LDLR, LDLRAP1, LIPA, PCSK9) associated with atherosclerosis. Multiple logistic regression will be applied to estimate adjusted odds ratios (OR) and 95% confidence intervals (CI), and population attributable risks will be calculated. Clinical trial registration: This study is registered in clinicaltrials.gov (NCT05515653).


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Humanos , Proproteína Convertasa 9 , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/prevención & control , Estudios de Casos y Controles , Brasil/epidemiología , Factores de Riesgo , Aterosclerosis/genética , Aterosclerosis/epidemiología , Antecedentes Genéticos , Estudios Multicéntricos como Asunto
18.
Insect Biochem Mol Biol ; 168: 104089, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38485097

RESUMEN

In insects, cuticle proteins interact with chitin and chitosan of the exoskeleton forming crystalline, amorphic or composite material structures. The biochemical and mechanical composition of the structure defines the cuticle's physical properties and thus how the insect cuticle behaves under mechanical stress. The tissue-specific ratio between chitin and chitosan and its pattern of deacetylation are recognized and interpreted by cuticle proteins depending on their local position in the body. Despite previous research, the assembly of the cuticle composites in time and space including its functional impact is widely unexplored. This review is devoted to the genetics underlying the temporal and spatial distribution of elastic proteins and the potential function of elastic proteins in insects with a focus on Resilin in the fruit fly Drosophila. The potential impact and function of localized patches of elastic proteins is discussed for movements in leg joints, locomotion and damage resistance of the cuticle. We conclude that an interdisciplinary research approach serves as an integral example for the molecular mechanisms of generation and interpretation of the chitin/chitosan matrix, not only in Drosophila but also in other arthropod species, and might help to synthesize artificial material composites.


Asunto(s)
Quitosano , Animales , Quitina/metabolismo , Insectos/genética , Insectos/metabolismo , Proteínas de Insectos/metabolismo , Drosophila/metabolismo , Locomoción , Antecedentes Genéticos
19.
Eur J Neurosci ; 59(9): 2276-2292, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38385867

RESUMEN

Anxiety disorders are prevalent mental disorders. Their predisposition involves a combination of genetic and environmental risk factors, such as psychosocial stress. Myelin plasticity was recently associated with chronic stress in several mouse models. Furthermore, we found that changes in both myelin thickness and node of Ranvier morphology after chronic social defeat stress are influenced by the genetic background of the mouse strain. To understand cellular and molecular effects of stress-associated myelin plasticity, we established an oligodendrocyte (OL) model consisting of OL primary cell cultures isolated from the C57BL/6NCrl (B6; innately non-anxious and mostly stress-resilient strain) and DBA/2NCrl (D2; innately anxious and mostly stress-susceptible strain) mice. Characterization of naïve cells revealed that D2 cultures contained more pre-myelinating and mature OLs compared with B6 cultures. However, B6 cultures contained more proliferating oligodendrocyte progenitor cells (OPCs) than D2 cultures. Acute exposure to corticosterone, the major stress hormone in mice, reduced OPC proliferation and increased OL maturation and myelin production in D2 cultures compared with vehicle treatment, whereas only OL maturation was reduced in B6 cultures. In contrast, prolonged exposure to the synthetic glucocorticoid dexamethasone reduced OPC proliferation in both D2 and B6 cultures, but only D2 cultures displayed a reduction in OPC differentiation and myelin production. Taken together, our results reveal that genetic factors influence OL sensitivity to glucocorticoids, and this effect is dependent on the cellular maturation stage. Our model provides a novel framework for the identification of cellular and molecular mechanisms underlying stress-associated myelin plasticity.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Corticosterona , Glucocorticoides , Ratones Endogámicos C57BL , Vaina de Mielina , Oligodendroglía , Animales , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Diferenciación Celular/efectos de los fármacos , Vaina de Mielina/metabolismo , Vaina de Mielina/efectos de los fármacos , Ratones , Proliferación Celular/efectos de los fármacos , Glucocorticoides/farmacología , Corticosterona/farmacología , Ratones Endogámicos DBA , Células Cultivadas , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Células Precursoras de Oligodendrocitos/metabolismo , Antecedentes Genéticos , Masculino , Linaje de la Célula/efectos de los fármacos , Estrés Psicológico/metabolismo
20.
Cells ; 13(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38391958

RESUMEN

Ovarian cancer is a leading cause of death among women with gynecological cancers, and is often diagnosed at advanced stages, leading to poor outcomes. This review explores genetic aspects of high-grade serous, endometrioid, and clear-cell ovarian carcinomas, emphasizing personalized treatment approaches. Specific mutations such as TP53 in high-grade serous and BRAF/KRAS in low-grade serous carcinomas highlight the need for tailored therapies. Varying mutation prevalence across subtypes, including BRCA1/2, PTEN, PIK3CA, CTNNB1, and c-myc amplification, offers potential therapeutic targets. This review underscores TP53's pivotal role and advocates p53 immunohistochemical staining for mutational analysis. BRCA1/2 mutations' significance as genetic risk factors and their relevance in PARP inhibitor therapy are discussed, emphasizing the importance of genetic testing. This review also addresses the paradoxical better prognosis linked to KRAS and BRAF mutations in ovarian cancer. ARID1A, PIK3CA, and PTEN alterations in platinum resistance contribute to the genetic landscape. Therapeutic strategies, like restoring WT p53 function and exploring PI3K/AKT/mTOR inhibitors, are considered. The evolving understanding of genetic factors in ovarian carcinomas supports tailored therapeutic approaches based on individual tumor genetic profiles. Ongoing research shows promise for advancing personalized treatments and refining genetic testing in neoplastic diseases, including ovarian cancer. Clinical genetic screening tests can identify women at increased risk, guiding predictive cancer risk-reducing surgery.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Femenino , Humanos , Proteína BRCA1/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Proto-Oncogénicas B-raf/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína BRCA2/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Carcinogénesis , Transformación Celular Neoplásica , Cistadenocarcinoma Seroso/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Antecedentes Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA