Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118.058
Filtrar
1.
Nat Commun ; 15(1): 7754, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237588

RESUMEN

Cytomegalovirus (CMV) infection poses risks to newborns, necessitating effective therapies. Given that the damage includes both viral infection of brain cells and immune system-related damage, here we investigate the involvement of cellular prion protein (PrP), which plays vital roles in neuroprotection and immune regulation. Using a murine model, we show the role of PrP in tempering neonatal T cell immunity during CMV infection. PrP-null mice exhibit enhanced viral control through elevated virus-specific CD8 T cell responses, leading to reduced viral titers and pathology. We further unravel the molecular mechanisms by showing CMV-induced upregulation followed by release of PrP via the metalloproteinase ADAM10, impairing CD8 T cell response specifically in neonates. Additionally, we confirm PrP downregulation in human CMV (HCMV)-infected fibroblasts, underscoring the broader relevance of our observations beyond the murine model. Furthermore, our study highlights how PrP, under the stress of viral pathogenesis, reveals its impact on neonatal immune modulation.


Asunto(s)
Animales Recién Nacidos , Linfocitos T CD8-positivos , Infecciones por Citomegalovirus , Citomegalovirus , Ratones Noqueados , Animales , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Citomegalovirus/inmunología , Humanos , Ratones , Linfocitos T CD8-positivos/inmunología , Femenino , Fibroblastos/metabolismo , Fibroblastos/virología , Proteínas Priónicas/metabolismo , Proteínas Priónicas/genética , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Proteína ADAM10/metabolismo , Proteína ADAM10/genética
2.
Virulence ; 15(1): 2397512, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39282989

RESUMEN

Porcine epidemic diarrhea virus (PEDV) causes diarrhea and vomiting in piglets, leading to a mortality rate of 100%. Due to the high frequency of mutation, it is important to monitor the evolution of PEDV and develop potential vaccine candidates. In this study, two PEDV strains (ZJ2022 and ZQ2022) were identified by PCR. These strains were subsequently isolated, and their genome sequences, growth characteristics, and pathogenicity were compared. Phylogenetic and recombination analyses revealed that both strains belonged to GIIa-subgroup, and ZQ2022 was identified as a recombinant strain derived from ZJ2022. Further sequence analysis showed that the ZJ2022 strain had a modified top region of the S1 protein due to a three amino acid insertion (T380_Y380insGGE) in the S1 gene. According to the virus growth curve, ZJ2022 exhibited better cellular adaptation than ZQ2022, with higher viral titers from 8 hpi to 24 hpi. Additionally, ZQ2022 exhibited a high level of pathogenicity, causing severe diarrhea in piglets at 36 hpi and a 100% mortality rate by 96 hpi. In contrast, ZJ2022 showed lower pathogenicity, inducing severe diarrhea in piglets at 60 hpi, with a mortality rate of 60% at 96 hpi and 100% at 120 hpi. In summary, our findings provided evidence of the undergoing mutations in Chinese PEDV strains. Furthermore, the S gene insertion strain ZJ2022 exhibited strong cellular adaptability and low pathogenicity, making it a potential candidate strain for vaccine development.


Asunto(s)
Animales Recién Nacidos , Infecciones por Coronavirus , Diarrea , Filogenia , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/patogenicidad , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Virus de la Diarrea Epidémica Porcina/clasificación , Porcinos , Enfermedades de los Porcinos/virología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Virulencia , Diarrea/virología , Diarrea/veterinaria , Glicoproteína de la Espiga del Coronavirus/genética , Genoma Viral , Mutagénesis Insercional , China , Células Vero
3.
Redox Rep ; 29(1): 2394714, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39284589

RESUMEN

Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe disease with a poor prognosis, whose clinical treatment is still limited to therapeutic hypothermia with limited efficacy. Perillyl alcohol (POH), a natural monoterpene found in various plant essential oils, has shown neuroprotective properties, though its effects on HIE are not well understood. This study investigates the neuroprotective effects of POH on HIE both in vitro and in vivo. We established an in vitro model using glucose deprivation and hypoxia/reperfusion (OGD/R) in PC12 cells, alongside an in vivo model via the modified Rice-Vannucci method. Results indicated that POH acted as an indirect antioxidant, reducing inducible nitric oxide synthase and malondialdehyde production, maintaining content of antioxidant molecules and enzymes in OGD/R-induced PC12 cells. In vivo, POH remarkably lessened infarct volume, reduced cerebral edema, accelerated tissue regeneration, and blocked reactive astrogliosis after hypoxic-ischemic brain injury. POH exerted antiapoptotic activities through both the intrinsic and extrinsic apoptotic pathways. Mechanistically, POH activated Nrf2 and inactivated its negative regulator Keap1. The use of ML385, a Nrf2 inhibitor, reversed these effects. Overall, POH mitigates neuronal damage in HIE by combating oxidative stress, reducing inflammation, and inhibiting apoptosis via the Nrf2/Keap1 pathway, suggesting its potential for HIE treatment.


Asunto(s)
Animales Recién Nacidos , Hipoxia-Isquemia Encefálica , Proteína 1 Asociada A ECH Tipo Kelch , Monoterpenos , Factor 2 Relacionado con NF-E2 , Fármacos Neuroprotectores , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Ratas , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Transducción de Señal/efectos de los fármacos , Monoterpenos/farmacología , Monoterpenos/uso terapéutico , Células PC12 , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos
4.
Commun Biol ; 7(1): 1121, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261625

RESUMEN

Neurodevelopmental disorders are currently one of the major complications faced by patients with congenital heart disease (CHD). Chronic hypoxia in the prenatal and postnatal preoperative brain may be associated with neurological damage and impaired long-term cognitive function, but the exact mechanisms are unknown. In this study, we find that delayed neuronal migration and impaired synaptic development are attributed to altered Atoh1 under chronic hypoxia. This is due to the fact that excessive Atoh1 facilitates expression of Kif21b, which causes excess in free-state α-tubulin, leading to disrupted microtubule dynamic stability. Furthermore, the delay in neonatal brain maturation induces cognitive disabilities in adult mice. Then, by down-regulating Atoh1 we alleviate the impairment of cell migration and synaptic development, improving the cognitive behavior of mice to some extent. Taken together, our work unveil that Atoh1 may be one of the targets to ameliorate hypoxia-induced neurodevelopmental disabilities and cognitive impairment in CHD.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Disfunción Cognitiva , Neuronas , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ratones , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Neuronas/metabolismo , Hipoxia/metabolismo , Femenino , Neurogénesis , Animales Recién Nacidos , Ratones Endogámicos C57BL , Masculino , Movimiento Celular
5.
Front Endocrinol (Lausanne) ; 15: 1402905, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268230

RESUMEN

Background: Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age and is closely associated with chronic low-grade inflammation and insulin resistance. To clarify the contribution of prepubertal weight gain to the development of insulin resistance in PCOS, we investigated the effects of early postnatal overfeeding on inflammatory and energy-sensing pathways as well as on markers of insulin signaling in the liver of the PCOS rat model. Methods: Obesity induced by overfeeding was achieved by reducing litter size, while the PCOS-like condition was developed by treatment with 5α-dihydrotestosterone (DHT). Western blot and qPCR were used to analyze the expression of pro-inflammatory transcription factors and cytokines, as well as markers of the energy sensing and insulin signaling pathways. Results: The results showed that hepatic insulin sensitivity was impaired only in DHT-treated rats raised in small litters, as evidenced by increased phosphorylation of IRS1 on Ser307 and decreased expression of total IRS1. Postnatal overfeeding stimulated JNK1 activation independent of hyperandrogenemia; nevertheless, the synergistic effect of both factors triggered NLRP3 activation and increased IL1ß expression in the small litter DHT-treated group. This pro-inflammatory state was accompanied by decreased activatory phosphorylation of AMPK and reduced levels of its protein targets. Conclusions: Overfeeding in the early postnatal period leads to a decrease in hepatic insulin sensitivity in the rat model of PCOS, which is associated with decreased activation of AMPK and stimulation of the hepatic NLRP3-IL1ß signaling pathway. Accordingly, the inhibition of NLRP3 activation could provide a basis for the development of new therapeutic strategies for the treatment of insulin resistance in women with PCOS.


Asunto(s)
Dihidrotestosterona , Modelos Animales de Enfermedad , Inflamación , Resistencia a la Insulina , Hígado , Hipernutrición , Síndrome del Ovario Poliquístico , Animales , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/patología , Femenino , Ratas , Dihidrotestosterona/farmacología , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Inflamación/metabolismo , Inflamación/patología , Hipernutrición/metabolismo , Hipernutrición/complicaciones , Ratas Wistar , Obesidad/metabolismo , Animales Recién Nacidos , Transducción de Señal/efectos de los fármacos , Proteínas Sustrato del Receptor de Insulina/metabolismo
6.
Nat Commun ; 15(1): 8066, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277581

RESUMEN

High mitochondrial DNA (mtDNA) amount has been reported to be beneficial for resistance and recovery of metabolic stress, while increased mtDNA synthesis activity can drive aging signs. The intriguing contrast of these two mtDNA boosting outcomes prompted us to jointly elevate mtDNA amount and frequency of replication in mice. We report that high activity of mtDNA synthesis inhibits perinatal metabolic maturation of the heart. The offspring of the asymptomatic parental lines are born healthy but manifest dilated cardiomyopathy and cardiac collapse during the first days of life. The pathogenesis, further enhanced by mtDNA mutagenesis, involves prenatal upregulation of mitochondrial integrated stress response and the ferroptosis-inducer MESH1, leading to cardiac fibrosis and cardiomyocyte death after birth. Our evidence indicates that the tight control of mtDNA replication is critical for early cardiac homeostasis. Importantly, ferroptosis sensitivity is a potential targetable mechanism for infantile-onset cardiomyopathy, a common manifestation of mitochondrial diseases.


Asunto(s)
Replicación del ADN , ADN Mitocondrial , Miocitos Cardíacos , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Femenino , Masculino , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Ferroptosis/genética , Miocardio/metabolismo , Miocardio/patología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/genética , Ratones Endogámicos C57BL , Animales Recién Nacidos , Humanos , Corazón/fisiopatología , Fibrosis
7.
Brain Behav ; 14(9): e70009, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39236116

RESUMEN

BACKGROUND: Preterm birth is associated with brain injury and long-term behavioral abnormalities, for which there are limited prevention options. When born preterm, infants prematurely lose placental neurosteroid (allopregnanolone) support. This increases the risk of excitotoxic damage to the brain, which increases the risk of injury, causing long-term deficits in behavior, myelination, and alterations to neurotransmitter pathways. We propose that postnatal restoration of neurosteroid action through zuranolone therapy will reduce neurological impairments following preterm birth. METHODS: Guinea pig dams underwent survival cesarean section surgery to deliver pups prematurely (GA64) or at term (GA69). Between birth and term equivalence age, preterm pups received vehicle (15% ß-cyclodextrin) or the allopregnanolone analogue zuranolone (1 mg/kg/day). Behavioral analysis was performed at postnatal day (PND) 7 and 40, before tissue collection at PND 42. Immunostaining for myelin basic protein (MBP), as well as real-time polymerase chain reaction to characterize oligodendrocyte lineage and neurotransmitter pathways, was performed in frontal cortex tissues. RESULTS: Zuranolone treatment prevented the hyperactive phenotype in preterm-born offspring, most markedly in males. Additionally, preterm-related reductions in MBP were ameliorated. Several preterm-related alterations in mRNA expression of dopaminergic, glutamatergic, and GABAergic pathways were also restored back to that of a term control level. CONCLUSION: This is the first study to assess zuranolone treatment as a neuroprotective therapy following preterm birth. Zuranolone treatment improved behavioral outcomes and structural changes in the preterm offspring, which continued long term until at least a late childhood timepoint. Clinical studies are warranted for further exploring the neuroprotective possibilities of this treatment following preterm birth.


Asunto(s)
Lóbulo Frontal , Pregnanolona , Nacimiento Prematuro , Animales , Pregnanolona/farmacología , Femenino , Cobayas , Masculino , Nacimiento Prematuro/prevención & control , Nacimiento Prematuro/tratamiento farmacológico , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Animales Recién Nacidos , Embarazo , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Proteína Básica de Mielina/metabolismo
8.
Respir Res ; 25(1): 328, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223619

RESUMEN

BACKGROUND: The interplay between intrauterine and early postnatal environments has been associated with an increased risk of cardiovascular diseases in adulthood, including pulmonary arterial hypertension (PAH). While emerging evidence highlights the crucial role of mitochondrial pathology in PAH, the specific mechanisms driving fetal-originated PAH remain elusive. METHODS AND RESULTS: To elucidate the role of mitochondrial dynamics in the pathogenesis of fetal-originated PAH, we established a rat model of postnatal catch-up growth following intrauterine growth restriction (IUGR) to induce pulmonary arterial hypertension (PAH). RNA-seq analysis of pulmonary artery samples from the rats revealed dysregulated mitochondrial metabolic genes and pathways associated with increased pulmonary arterial pressure and pulmonary arterial remodeling in the RC group (postnatal catch-up growth following IUGR). In vitro experiments using pulmonary arterial smooth muscle cells (PASMCs) from the RC group demonstrated elevated proliferation, migration, and impaired mitochondrial functions. Notably, reduced expression of Mitofusion 2 (Mfn2), a mitochondrial outer membrane protein involved in mitochondrial fusion, was observed in the RC group. Reconstitution of Mfn2 resulted in enhanced mitochondrial fusion and improved mitochondrial functions in PASMCs of RC group, effectively reversing the Warburg effect. Importantly, Mfn2 reconstitution alleviated the PAH phenotype in the RC group rats. CONCLUSIONS: Imbalanced mitochondrial dynamics, characterized by reduced Mfn2 expression, plays a critical role in the development of fetal-originated PAH following postnatal catch-up growth after IUGR. Mfn2 emerges as a promising therapeutic strategy for managing IUGR-catch-up growth induced PAH.


Asunto(s)
Retardo del Crecimiento Fetal , GTP Fosfohidrolasas , Ratas Sprague-Dawley , Animales , Retardo del Crecimiento Fetal/metabolismo , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Ratas , Femenino , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/patología , Hipertensión Arterial Pulmonar/fisiopatología , Dinámicas Mitocondriales/fisiología , Masculino , Células Cultivadas , Embarazo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Modelos Animales de Enfermedad , Mitocondrias/metabolismo , Mitocondrias/patología , Animales Recién Nacidos , Proteínas Mitocondriales
9.
Food Res Int ; 195: 114993, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277254

RESUMEN

Recent studies have shown that 1-oleo-2-palmito-3-linoleyl glycerol (OPL) is the most abundant triacylglycerol in human breast milk in China. Epidemiologic studies have shown that sn-2 palmitate improves the absorption of fatty acids and calcium in infants. However, there have been few studies of the specific mechanism by which OPL affects intestinal function. In the present study, we have characterized the effects of various levels of OPL supplementation on the development of the intestinal epithelium and the intestinal microbiota of neonatal mice. OPL supplementation increased the body masses and intestinal lengths of weaned mice and promoted defecation. These positive effects were related to the effect of OPL to promote the development of intestinal villi and crypts. OPL increased the expression of the intestinal stem cell markers Olfm4 and Sox9 in the jejunum and ileum, which promoted their differentiation into goblet cells and Paneth cells. It also promoted the integrity of the epithelial barrier by increasing the secretion of mucin 2 and lysozyme 1 and the expression of the tight junction proteins occludin, ZO1, claudin 2, and claudin 3. More importantly, we found that low dose-OPL promotes the transformation of the intestinal microbiota of neonatal mice to the mature state in 3-month-old mice, increases the proportion of Firmicutes, and reduces the proportion of Bacteroidota. The proportions of anaerobic genera of bacteria, such as Lachnospiraceae_NK4A136_group, Lachnoclostridium, Ligilactobacillus, and Bifidobacterium were higher, as were the key producers of short-chain fatty acids, such as Bacteroides and Blautia. OPL also increased the butyric acid content of the feces, which significantly correlated with the abundance of Lactobacillus. High-dose OPL tended to be more effective at promoting defecation and the development of the villi and crypts, but these effects did not significantly differ from those achieved using the lower dose. A low dose of OPL was more effective at increasing the butyric acid content and causing the maturation of microbes. In summary, the OPL supplementation of newborn mice promotes the establishment of the intestinal epithelial layer structure and barrier function, and also promotes the transformation of the intestinal microbiota to a mature state. This study lays a theoretical foundation for the inclusion of OPL in infant formula and provides a scientific basis for the development of intestinal health products.


Asunto(s)
Animales Recién Nacidos , Suplementos Dietéticos , Microbioma Gastrointestinal , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Intestino Delgado/metabolismo , Intestino Delgado/efectos de los fármacos , Intestino Delgado/microbiología , Mucosa Intestinal/metabolismo , Masculino , Glicéridos/metabolismo , Ratones Endogámicos C57BL , Ácidos Oléicos
10.
J Coll Physicians Surg Pak ; 34(9): 1029-1034, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39262000

RESUMEN

OBJECTIVE: To determine the long-term effects of early postnatal malnutrition and various degrees of catch-up growth on metabolic (serum glucose, leptin, triacylglycerides) and neurodevelopmental parameters (learning and memory) among male and female rodent models, mimicking human preterm infants. STUDY DESIGN: Randomized controlled trial. Place and Duration of the Study: CMH Multan Insitute of Medical Sciences, from September 2021 to December 2021. METHDOLOGY: This study included 142 neonatal Wister rats, stratified into subgroups to mimic the human preterm infant model of postnatal malnutrition and catch-up growth. Metabolic consequences were assessed via serum analysis of glucose, leptin, and triacylglycerides. The neurocognitive comparison was made among subgroups via a passive avoidance test. Gender-specific comparison of all quantitative parameters was made among subgroups. RESULTS: Malnourished rats with accelerated catch-up growth achieved similar weight gain as normally fed rats when provided with adlibitum feeding in both males (p = 0.92) and females (p >0.99). Rats undergoing accelerated catch-up growth exhibited higher fasting serum glucose levels compared to those undergoing no, or normal catch-up growth (p <0.001). Malnourished female rats undergoing accelerated (p = 0.007), or no catchup growth (p = 0.004) exhibited significant deficits in learning and memory as compared to normally fed rats. Female malnourished rats with normal catchup growth exhibited no neurocognitive deficit as compared to normally fed rats (p = 0.08). CONCLUSION: Accelerated catch-up growth effectively addresses somatic growth disparities, while normal catch-up growth offers more favourable metabolic and neurodevelopmental outcomes. Particularly, female malnourished rats exhibited poor neurodevelopment in response to both accelerated and no catch-up growth. Gender-specific variations in neurodevelopment underscore the need for personalised care approaches for preterm nutritional care. KEY WORDS: Growth retardation, Leptin, Extrauterine growth restriction, Malnutrition, Neurodevelopment.


Asunto(s)
Ratas Wistar , Animales , Ratas , Femenino , Masculino , Animales Recién Nacidos , Glucemia/metabolismo , Factores Sexuales , Modelos Animales de Enfermedad , Leptina/sangre , Desnutrición , Triglicéridos/sangre
11.
Molecules ; 29(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39275007

RESUMEN

Agathisflavone is a flavonoid that exhibits anti-inflammatory and anti-oxidative properties. Here, we investigated the neuroprotective effects of agathisflavone on central nervous system (CNS) neurons and glia in the cerebellar slice ex vivo model of neonatal ischemia. Cerebellar slices from neonatal mice, in which glial fibrillary acidic protein (GFAP) and SOX10 drive expression of enhanced green fluorescent protein (EGFP), were used to identify astrocytes and oligodendrocytes, respectively. Agathisflavone (10 µM) was administered preventively for 60 min before inducing ischemia by oxygen and glucose deprivation (OGD) for 60 min and compared to controls maintained in normal oxygen and glucose (OGN). The density of SOX-10+ oligodendrocyte lineage cells and NG2 immunopositive oligodendrocyte progenitor cells (OPCs) were not altered in OGD, but it resulted in significant oligodendroglial cell atrophy marked by the retraction of their processes, and this was prevented by agathisflavone. OGD caused marked axonal demyelination, determined by myelin basic protein (MBP) and neurofilament (NF70) immunofluorescence, and this was blocked by agathisflavone preventative treatment. OGD also resulted in astrocyte reactivity, exhibited by increased GFAP-EGFP fluorescence and decreased expression of glutamate synthetase (GS), and this was prevented by agathisflavone pretreatment. In addition, agathisflavone protected Purkinje neurons from ischemic damage, assessed by calbindin (CB) immunofluorescence. The results demonstrate that agathisflavone protects neuronal and myelin integrity in ischemia, which is associated with the modulation of glial responses in the face of ischemic damage.


Asunto(s)
Animales Recién Nacidos , Cerebelo , Flavonoides , Fármacos Neuroprotectores , Animales , Fármacos Neuroprotectores/farmacología , Ratones , Cerebelo/metabolismo , Cerebelo/efectos de los fármacos , Flavonoides/farmacología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Glucosa/metabolismo , Biflavonoides
12.
Nat Cardiovasc Res ; 3(9): 1083-1097, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39223390

RESUMEN

The neonatal mammalian heart can regenerate following injury through cardiomyocyte proliferation but loses this potential by postnatal day 7. Stimulating adult cardiomyocytes to reenter the cell cycle remains unclear. Here we show that cardiomyocyte proliferation depends on its metabolic state. Given the connection between the tricarboxylic acid cycle and cell proliferation, we analyzed these metabolites in mouse hearts from postnatal day 0.5 to day 7 and found that α-ketoglutarate ranked highest among the decreased metabolites. Injection of α-ketoglutarate extended the window of cardiomyocyte proliferation during heart development and promoted heart regeneration after myocardial infarction by inducing adult cardiomyocyte proliferation. This was confirmed in Ogdh-siRNA-treated mice with increased α-ketoglutarate levels. Mechanistically, α-ketoglutarate decreases H3K27me3 deposition at the promoters of cell cycle genes in cardiomyocytes. Thus, α-ketoglutarate promotes cardiomyocyte proliferation through JMJD3-dependent demethylation, offering a potential approach for treating myocardial infarction.


Asunto(s)
Proliferación Celular , Histona Demetilasas con Dominio de Jumonji , Ácidos Cetoglutáricos , Infarto del Miocardio , Miocitos Cardíacos , Regeneración , Animales , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Infarto del Miocardio/patología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Regeneración/efectos de los fármacos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Animales Recién Nacidos , Células Cultivadas , Histonas/metabolismo , Ratones , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Complejo Cetoglutarato Deshidrogenasa/genética , Masculino
13.
BMC Vet Res ; 20(1): 404, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256763

RESUMEN

BACKGROUND: The peripartum period constitutes a delicate physiological moment in mares showing a transient state of oxidative stress. Diet supplementation with antioxidants during pregnancy in women appears to have a beneficial effect on mother and neonate health. The aim of this work was to evaluate the effects of diet supplementation with a commercial product containing a mix of antioxidants (Oxyliver®, Candioli) on the length of gestation, weight, and haemato-biochemical parameters in Italian Salernitano mares and their newborn foals. Eight late-term pregnant mares were randomly divided into two groups: Antiox group receiving 30 g/day of antioxidants, and Car group receiving the same amount of carrot powder, from 290 to 320 days of gestation. The following parameters were evaluated in mares: weight, colostrum composition, haemato-biochemical parameters, progesterone, and cortisol blood concentrations, along with blood oxidant/antioxidant status. Assessments were conducted at specific time points: immediately before the start of diet supplementation (T0), 15 days after (T1), at the end of diet supplementation (T2), within 8 h after parturition (T3), and 10 days post-partum (T4). Foal parameters such as weight, haemato-biochemical values, cortisol concentration, and blood oxidative stress variables were assessed within 8 h of birth (TF0) and at 10 days of age (TF1). RESULTS: Pregnancy was shorter in the Antiox group (P < 0.05) compared with the Car group; the foals' weight increase of group Antiox (40%) was higher (P < 0.05) compared to those of the Car group (28.6%). The colostrum of the Antiox group exhibited higher levels of Brix, total solids, protein, nonfat solids, casein, urea, density, free fatty acids, and glucose, while lower levels of fat and lactose were observed compared to the Car group (P < 0.05). Mares' serum albumin at T1 and T3, creatinine, glucose, total proteins, total bilirubin, AST, and ALT at T3 were lower in Antiox than in the Car group. No significant differences were found in foals. CONCLUSIONS: While the limited sample size and the potential variability of evaluated parameters, the observed outcomes suggest that Oxyliver® supplementation in mares might safely decrease gestation length and enhance liver function, thus potentially improving colostrum quality and offspring development.


Asunto(s)
Animales Recién Nacidos , Antioxidantes , Dieta , Suplementos Dietéticos , Animales , Caballos , Femenino , Antioxidantes/administración & dosificación , Embarazo , Dieta/veterinaria , Alimentación Animal/análisis , Estrés Oxidativo/efectos de los fármacos , Calostro/química
14.
Stem Cell Res Ther ; 15(1): 295, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256862

RESUMEN

BACKGROUND: Premature infants requiring mechanical ventilation and supplemental oxygen for respiratory support are at increased risk for bronchopulmonary dysplasia (BPD), wherein inflammation have been proposed as a driver of hyperoxia-induced injuries, including persistent loss of endothelial progenitor cells (EPCs), impaired vascularization and eventual alveolar simplification in BPD lungs. However, the underlying mechanisms linking these phenomena remain poorly defined. METHODS: We used clodronate liposomes to deplete macrophages in a mouse model of neonatal hyperoxia-induced lung injury to evaluate if EPC loss in BPD lungs could be an effect of macrophage infiltration. We further generated in vitro culture systems initiated with cord blood (CB)-derived CD34+ EPCs and neonatal macrophages either polarized from CB-derived monocytes or isolated from tracheal aspirates of human preterm infants requiring mechanical ventilation and oxygen supplementation, to identify EV-transmitted molecular mechanism that is critical for inhibitory actions of hyperoxic macrophages on EPCs. RESULTS: Initial experiments using mouse model identified the crucial role of macrophage infiltration in eliciting significant reduction of c-Kit+ EPCs in BPD lungs. Further examination of this concept in human system, we found that hyperoxia-exposed neonatal macrophages hamper human CD34+ EPC maintenance and impair endothelial function in the differentiated progeny via the EV transmission of miR-23a-3p. Notably, treatment with antagomiR-23a-3p to silence miR-23a-3p in vivo enhances c-Kit+ EPC maintenance, and increases capillary density, and consequently mitigates simplified alveolarization in BPD lungs. CONCLUSION: Our findings highlight the importance of pulmonary intercellular communication in the pathophysiology of BPD, by identifying a linkage through vesicle transfer of miR-23a-3p from hyperoxic macrophages to EPCs, and thus demonstrating potential for novel therapeutic target in BPD.


Asunto(s)
Células Progenitoras Endoteliales , Vesículas Extracelulares , Hiperoxia , Lesión Pulmonar , Macrófagos , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Animales , Células Progenitoras Endoteliales/metabolismo , Hiperoxia/metabolismo , Vesículas Extracelulares/metabolismo , Ratones , Macrófagos/metabolismo , Lesión Pulmonar/patología , Lesión Pulmonar/metabolismo , Recién Nacido , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patología , Displasia Broncopulmonar/genética , Animales Recién Nacidos , Modelos Animales de Enfermedad
15.
Ann Anat ; 256: 152316, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39191298

RESUMEN

BACKGROUND: The ossification centers in rabbit limbs are related to fetal age and bone maturation. OBJECTIVE: To address the limited studies on ossification in the hind limbs of New Zealand rabbits, we investigated the prenatal and postnatal development of the pelvic and femur bones. METHODS: Double staining with Alcian Blue and Alizarin Red, computed tomography (CT), and 3D reconstruction were employed to visualize and analyze ossification centers in detail. RESULTS: Using double staining, we observed these patterns: At prenatal days 18 and 21, ossification centers appeared in the ilium. By prenatal days 23 and 25, ossification began in the ischium. On postnatal day 1, ilium ossification centers spread across most of the ilium wings, except for the iliac crest, and new centers appeared in the pubis and cotyloid bones. Most bones had ossified by the third week and one month postnatal, except for the iliac crest and ischial tuberosity. At 1.5 months, both were fully ossified. On day 18 post coitum, an ossification center was visible in the middle of the femur shaft. By day 28 post coitum, ossification extended through the shaft, and postnatally, new ossification spots appeared at the extremities by day one and week one. By the third week, complete ossification of the femur head, lesser trochanter, third trochanter, medial condyle, and lateral condyle was observed. At 1.5 months, the entire proximal extremity was ossified. CONCLUSION: 3D CT provided clear imaging of ossification progression in the pelvic and femur bones. This study enhances our understanding of vertebrate skeletal development.


Asunto(s)
Fémur , Imagenología Tridimensional , Osteogénesis , Huesos Pélvicos , Tomografía Computarizada por Rayos X , Animales , Conejos , Fémur/crecimiento & desarrollo , Fémur/diagnóstico por imagen , Fémur/anatomía & histología , Osteogénesis/fisiología , Imagenología Tridimensional/métodos , Huesos Pélvicos/diagnóstico por imagen , Huesos Pélvicos/crecimiento & desarrollo , Huesos Pélvicos/anatomía & histología , Femenino , Coloración y Etiquetado/métodos , Animales Recién Nacidos/crecimiento & desarrollo
16.
Sci Rep ; 14(1): 20222, 2024 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215116

RESUMEN

The adult mammalian heart has extremely limited cardiac regenerative capacity. Most cardiomyocytes live in a state of permanent cell-cycle arrest and are unable to re-enter the cycle. Cardiomyocytes switch from cell proliferation to a maturation state during neonatal development. Although several signaling pathways are involved in this transition, the molecular mechanisms by which these inputs coordinately regulate cardiomyocyte maturation are not fully understood. Retinoic acid (RA) plays a pivotal role in development, morphogenesis, and regeneration. Despite the importance of RA signaling in embryo heart development, little is known about its function in the early postnatal period. We found that mRNA expression of aldehyde dehydrogenase 1 family member A2 (Aldh1a2), which encodes the key enzyme for synthesizing all-trans retinoic acid (ATRA) and is an important regulator for RA signaling, was transiently upregulated in neonatal mouse ventricles. Single-cell transcriptome analysis and immunohistochemistry revealed that Aldh1a2 expression was enriched in cardiac fibroblasts during the early postnatal period. Administration of ATRA inhibited cardiomyocyte proliferation in cultured neonatal rat cardiomyocytes and human cardiomyocytes. RNA-seq analysis indicated that cell proliferation-related genes were downregulated in prenatal rat ventricular cardiomyocytes treated with ATRA, while cardiomyocyte maturation-related genes were upregulated. These findings suggest that RA signaling derived from cardiac fibroblasts is one of the key regulators of cardiomyocyte proliferation and maturation during neonatal heart development.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1 , Proliferación Celular , Miocitos Cardíacos , Retinal-Deshidrogenasa , Transducción de Señal , Tretinoina , Animales , Tretinoina/farmacología , Tretinoina/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Ratones , Familia de Aldehído Deshidrogenasa 1/metabolismo , Familia de Aldehído Deshidrogenasa 1/genética , Retinal-Deshidrogenasa/metabolismo , Retinal-Deshidrogenasa/genética , Proliferación Celular/efectos de los fármacos , Ratas , Humanos , Regulación hacia Arriba , Animales Recién Nacidos , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Corazón/efectos de los fármacos , Corazón/crecimiento & desarrollo , Células Cultivadas
17.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39201589

RESUMEN

Hypoxic-ischemic encephalopathy (HIE) is a severe neurological disorder caused by perinatal asphyxia with significant consequences. Early recognition and intervention are crucial, with therapeutic hypothermia (TH) being the primary treatment, but its efficacy depends on early initiation of treatment. Accurately assessing the HIE severity in neonatal care poses challenges, but omics approaches have made significant contribution to understanding its complex pathophysiology. Our study further explores the impact of HIE on the blood metabolome over time and investigated changes associated with hypothermia's therapeutic effects. Using a rat model of hypoxic-ischemic brain injury, we comprehensively analyzed dried blood spot samples for fat-soluble compounds using HPLC-MS. Our research shows significant changes in the blood metabolome after HIE, with a particularly rapid recovery of lipid metabolism observed. Significant changes in lipid metabolites were observed after 3 h of HIE, including increases in ceramides, carnitines, certain fatty acids, phosphocholines, and phosphoethanolamines, while sphingomyelins and N-acylethanolamines (NAEs) decreased (p < 0.05). Furthermore, NAEs were found to be significant features in the OPLS-DA model for HIE diagnosis, with an area under the curve of 0.812. TH showed a notable association with decreased concentrations of ceramides. Enrichment analysis further corroborated these observations, showing modulation in several key metabolic pathways, including arachidonic acid oxylipin metabolism, eicosanoid metabolism via lipooxygenases, and leukotriene C4 synthesis deficiency. Our study reveals dynamic changes in the blood metabolome after HIE and the therapeutic effects of hypothermia, which improves our understanding of the pathophysiology of HIE and could lead to the development of new rapid diagnostic approaches for neonatal HIE.


Asunto(s)
Animales Recién Nacidos , Modelos Animales de Enfermedad , Pruebas con Sangre Seca , Hipoxia-Isquemia Encefálica , Metaboloma , Animales , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/sangre , Ratas , Pruebas con Sangre Seca/métodos , Metabolismo de los Lípidos , Hipotermia Inducida/métodos , Ratas Sprague-Dawley , Metabolómica/métodos , Masculino , Ceramidas/sangre , Ceramidas/metabolismo , Femenino
18.
Genes (Basel) ; 15(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39202331

RESUMEN

(1) Background: Weaning is a challenging and stressful event in the pig's life, which disrupts physiological balance and induces oxidative stress. Microbiota play a significant role during the weaning process in piglets. Therefore, this study aimed to investigate key gut microbiota and metabolites associated with weaning stress in piglets. (2) Methods: A total of ten newborn piglet littermates were randomly assigned to two groups: S (suckling normally) and W (weaned at 21 d; all euthanized at 23 d). Specimens of the cecum were dehydrated with ethanol, cleared with xylene, embedded in paraffin, and cut into 4 mm thick serial sections. After deparaffinization, the sections were stained with hematoxylin and eosin (H&E) for morphometric analysis. Cecal metagenomic and liver LC-MS-based metabolomics were employed in this study. Statistical comparisons were performed by a two-tailed Student's t-test, and p < 0.05 indicated statistical significance. (3) Results: The results showed that weaning led to intestinal morphological damage in piglets. The intestinal villi of suckling piglets were intact, closely arranged in an orderly manner, and finger-shaped, with clear contours of columnar epithelial cells. In contrast, the intestines of weaned piglets showed villous atrophy and shedding, as well as mucosal bleeding. Metagenomics and metabolomics analyses showed significant differences in composition and function between suckling and weaned piglets. The W piglets showed a decrease and increase in the relative abundance of Bacteroidetes and Proteobacteria (p < 0.05), respectively. The core cecal flora in W piglets were Campylobacter and Clostridium, while those in S piglets were Prevotella and Lactobacillus. At the phylum level, the relative abundance of Bacteroidetes significantly decreased (p < 0.05) in weaned piglets, while Proteobacteria significantly increased (p < 0.05). Significant inter-group differences were observed in pathways and glycoside hydrolases in databases, such as the KEGG and CAZymes, including fructose and mannose metabolism, salmonella infection, antifolate resistance, GH135, GH16, GH32, and GH84. We identified 757 differential metabolites between the groups through metabolomic analyses-350 upregulated and 407 downregulated (screened in positive ion mode). In negative ion mode, 541 differential metabolites were identified, with 270 upregulated and 271 downregulated. Major differential metabolites included glycerophospholipids, histidine, nitrogen metabolism, glycine, serine, threonine, ß-alanine, and primary bile acid biosynthesis. The significant differences in glycine, serine, and threonine metabolites may be potentially related to dysbiosis caused by weaning stress. Taken together, the identification of microbiome and metabolome signatures of suckling and weaned piglets has paved the way for developing health-promoting nutritional strategies, focusing on enhancing bacterial metabolite production in early life stages.


Asunto(s)
Microbioma Gastrointestinal , Metabolómica , Metagenómica , Destete , Animales , Porcinos , Metabolómica/métodos , Metagenómica/métodos , Estrés Fisiológico , Metaboloma , Animales Recién Nacidos , Ciego/microbiología , Ciego/metabolismo
19.
Genes (Basel) ; 15(8)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39202427

RESUMEN

DNA methylation plays an important role in the development and tissue differentiation of eukaryotes. In this study, bisulfite sequencing (BS-seq) technology was used to analyze the DNA methylation profiles of liver tissues taken from Rongchang pigs at three postnatal feeding stages, including newborn, suckling, and adult. The DNA methylation pattern across the genomes or genic region showed little difference between the three stages. We observed 419 differentially methylated regions (DMRs) in promoters, corresponding to 323 genes between newborn and suckling stages, in addition to 288 DMRs, corresponding to 134 genes, between suckling and adult stages and 351 DMRs, corresponding to 293 genes, between newborn and adult stages. These genes with DMRs were mainly enriched in metabolic, immune-related functional processes. Correlation analysis showed that the methylation level of gene promoters was significantly negatively correlated with gene expression. Further, we found that genes related to nutritional metabolism, e.g., carbohydrate metabolism (FAHD1 and GUSB) or fatty acid metabolism (LPIN1 and ACOX2), lost DNA methylation in their promoter, with mRNA expression increased in newborn pigs compared with those in the suckling stage. A few fatty acid metabolism-related genes (SLC27A5, ACOX2) were hypomethylated and highly expressed in the newborn stage, which might satisfy the nutritional requirements of Rongchang pigs with high neonatal birth rates. In the adult stage, HMGCS2-which is related to fatty acid ß-oxidation-was hypomethylated and highly expressed, which explains that the characteristics of high energy utilization in adult Rongchang pigs and their immune-related genes (CD68, STAT2) may be related to the establishment of liver immunity. This study provides a comprehensive analysis of genome-wide DNA methylation patterns in pig liver postnatal development and growth. Our findings will serve as a valuable resource in hepatic metabolic studies and the agricultural food industry.


Asunto(s)
Metilación de ADN , Hígado , Regiones Promotoras Genéticas , Animales , Hígado/metabolismo , Hígado/crecimiento & desarrollo , Porcinos/crecimiento & desarrollo , Porcinos/genética , Animales Recién Nacidos/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Epigénesis Genética
20.
Gut Microbes ; 16(1): 2392876, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39172643

RESUMEN

Fecal filtrate transfer (FFT) is emerging as a safer alternative to traditional fecal microbiota transplantation (FMT) - particularly in the context of necrotizing enterocolitis (NEC), a severe gastrointestinal condition affecting preterm infants. Using a preterm piglet model, FFT has demonstrated superiority over FMT in safety and NEC prevention. Since FFT is virtually devoid of bacteria, prokaryotic viruses (bacteriophages) are assumed to mediate the beneficial effects. However, this assumption remains unproven. To address this gap, we separated virus-like particles (30 kDa to 0.45 µm) of donor feces from the residual postbiotic fluid. We then compared clinical and gut microbiota responses to these fractions with the parent FFT solution after transferring them to NEC-susceptible preterm piglets. Virome transfer was equally effective as FFT in reducing the severity of NEC-like pathology. The bacterial compositional data corroborated clinical findings as virome transfer reduced the relative abundance of several NEC-associated pathogens e.g. Klebsiella pneumoniae and Clostridium perfringens. Virome transfer diversified gut viral communities with concomitant constraining effects on the bacterial composition. Unexpectedly, virome transfer, but not residual postbiotic fluid, led to earlier diarrhea. While diarrhea may be a minor concern in human infants, future work should identify ways of eliminating this side effect without losing treatment efficacy.


Asunto(s)
Enterocolitis Necrotizante , Trasplante de Microbiota Fecal , Heces , Microbioma Gastrointestinal , Enterocolitis Necrotizante/prevención & control , Enterocolitis Necrotizante/terapia , Animales , Heces/virología , Heces/microbiología , Trasplante de Microbiota Fecal/métodos , Porcinos , Humanos , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Animales Recién Nacidos , Modelos Animales de Enfermedad , Viroma , Clostridium perfringens , Bacteriófagos/genética , Bacteriófagos/fisiología , Diarrea/terapia , Diarrea/virología , Diarrea/prevención & control , Diarrea/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA