Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Mater Sci Mater Med ; 32(1): 15, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33475855

RESUMEN

Skeletal muscle is capable of regeneration following minor damage, more significant volumetric muscle loss (VML) however results in permanent functional impairment. Current multimodal treatment methodologies yield variable functional recovery, with reconstructive surgical approaches restricted by limited donor tissue and significant donor morbidity. Tissue-engineered skeletal muscle constructs promise the potential to revolutionise the treatment of VML through the regeneration of functional skeletal muscle. Herein, we review the current status of tissue engineering approaches to VML; firstly the design of biocompatible tissue scaffolds, including recent developments with electroconductive materials. Secondly, we review the progenitor cell populations used to seed scaffolds and their relative merits. Thirdly we review in vitro methods of scaffold functional maturation including the use of three-dimensional bioprinting and bioreactors. Finally, we discuss the technical, regulatory and ethical barriers to clinical translation of this technology. Despite significant advances in areas, such as electroactive scaffolds and three-dimensional bioprinting, along with several promising in vivo studies, there remain multiple technical hurdles before translation into clinically impactful therapies can be achieved. Novel strategies for graft vascularisation, and in vitro functional maturation will be of particular importance in order to develop tissue-engineered constructs capable of significant clinical impact.


Asunto(s)
Atrofia Muscular/terapia , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/clasificación , Materiales Biocompatibles/uso terapéutico , Humanos , Músculo Esquelético/patología , Músculo Esquelético/fisiología , Atrofia Muscular/fisiopatología , Regeneración/fisiología , Andamios del Tejido/química , Andamios del Tejido/clasificación
2.
J Biomater Appl ; 35(6): 709-719, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33059518

RESUMEN

Ectomesenchymal stem cells (EMSCs) are typical adult stem cells obtained from the cranial neural crest. They have the potential to differentiate into various cell types, such as osseous cells, neurons and glial cells. Three-dimensional (3 D) printing is a novel method to construct biological structures by rapid prototyping. Previously, our group reported on the stemness and multi-lineage differentiation potential of EMSCs on gels. However, the exploration of EMSCs in 3 D printing and then evaluation of the growth and neuronal differentiation of EMSCs on extruded 3 D printable hybrid hydrogels has not been reported. Therefore, the current study explored the novel hybrid Sodium alginate-Matrigel (SA-MA) hydrogel extruded 3 D printing to design an in vitro scaffold to promote the differentiation and growth of EMSCs. In addition, the physical properties of the hydrogel were characterized and its drug-releasing property determined. Notably, the results showed that the construct exhibited a sustain-released effect of growth factor BDNF in accordance with the Higuchi equation. Moreover, the cell survival rate on the 3 D printed scaffold was 88.22 ± 1.13% with higher neuronal differentiation efficiency compared with 2 D culture. Thus, SA-MA's ability to enhanced EMSCs neuronal differentiation offers a new biomaterial for neurons regeneration in the treatment of spinal cord injury.


Asunto(s)
Alginatos/química , Factor Neurotrófico Derivado del Encéfalo/química , Colágeno/química , Portadores de Fármacos/química , Hidrogeles/química , Laminina/química , Proteoglicanos/química , Andamios del Tejido/clasificación , Alginatos/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular , Células Cultivadas , Colágeno/metabolismo , Combinación de Medicamentos , Liberación de Fármacos , Femenino , Humanos , Hidrogeles/metabolismo , Laminina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Hueso Nasal , Neurogénesis , Neuronas/citología , Impresión Tridimensional , Proteoglicanos/metabolismo , Ratas Sprague-Dawley , Piel , Ingeniería de Tejidos , Viscosidad
3.
Mayo Clin Proc ; 94(10): 2099-2116, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31515102

RESUMEN

Chronic wound management is an enormous economic strain and quality-of-life issue for patients. Current treatments are ineffective or expensive and invasive. Materials (native and artificial) can act as the basis to enhance wound repair but often fall short of complete healing. The therapeutic index of materials have often been enhanced by combining them with drug or biologic elution technologies. Combination of materials with living drugs (cells) presents a new paradigm for enhancing therapy. Cell material interaction and therapeutic output will depend on variables ascribed to the living drug as well as variables ascribed to the underlying matrix. In this article, we review medical matrices currently approved by the US Food and Drug Administration (FDA) that would likely be the first generation of materials to be used in this manner. Currently there are hundreds of different materials on the market. Identification of the right combinations would benefit from a classification scheme to group materials with similar composition or derivation. We provide a classification scheme and FDA documentation references that should provide researchers and clinicians a starting point for testing these materials in the laboratory and rapidly transitioning cell therapies to the bedside.


Asunto(s)
Materiales Biocompatibles/clasificación , Procedimientos de Cirugía Plástica , Ingeniería de Tejidos , Andamios del Tejido/clasificación , Cicatrización de Heridas , Humanos , Estados Unidos , United States Food and Drug Administration
4.
Adv Exp Med Biol ; 1059: 315-330, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29736580

RESUMEN

The control of the different angiogenic process is an important point in osteochondral regeneration. Angiogenesis is a prerequisite for osteogenesis in vivo; insufficient neovascularization of bone constructs after scaffold implantation resulted in hypoxia and cellular necrosis. Otherwise, angiogenesis must be avoided in chondrogenesis; vascularization of the cartilage contributes to structural damage and pain. Finding a balance between these processes is important to design a successful treatment for osteochondral regeneration. This chapter shows the most important advances in the control of angiogenic process for the treatment of osteochondral diseases focused on the administration of pro- or anti-angiogenic factor and the design of the scaffold.


Asunto(s)
Huesos/irrigación sanguínea , Cartílago Articular/irrigación sanguínea , Neovascularización Fisiológica , Andamios del Tejido , Inhibidores de la Angiogénesis/uso terapéutico , Moduladores de la Angiogénesis/uso terapéutico , Enfermedades Óseas/fisiopatología , Enfermedades Óseas/cirugía , Enfermedades de los Cartílagos/fisiopatología , Enfermedades de los Cartílagos/cirugía , Cationes/uso terapéutico , Condrogénesis/fisiología , Predicción , Humanos , Neovascularización Patológica/prevención & control , Osteogénesis/fisiología , Complicaciones Posoperatorias/prevención & control , Andamios del Tejido/clasificación
5.
São José dos Campos; s.n; 2018. 68 p. il., graf., tab..
Tesis en Portugués | BBO - Odontología | ID: biblio-980503

RESUMEN

As membranas reabsorvíveis tem sido utilizadas para promover o crescimento ósseo em defeitos causados por doenças periodontais, periapicais ou por exodontia. Essas membranas possuem diversas composições, podendo ter em sua estrutura polímeros como Policaprolactona (PCL) que combinado com o biovidro que facilita a neoformação óssea. O objetivo desta pesquisa foi desenvolver um scaffold de PCL com 10% de biovidro obtido por meio de duas rotas, Fusão e SolGel. Foram preparadas soluções de 15% PCL dissolvidos em acetona pura e incorporados 10% de biovidro de acordo com meio de obtenção das partículas, resultando em 3 soluções: Controle: somente PCL, e dois grupos experimentais: PCL/Biovidro, divididas de acordo com o tipo de produção das partículas de biovidro: PCL/biov. fusão - solução de PCL com 10% de Biovidro por fusão e PCL/biov. Sol-Gel - solução de PCL com 10% de Biovidro Sol-Gel. A solução foi eletrofiada com os seguintes parâmetros: 12 kv, 12 cm de distância ponta/coletor e fluxo de 1ml/h. As mantas obtidas tiveram suas propriedades físico/químicas e biológicas analisadas por: Morfologia (MEV e FEG), propriedades físico-químicas; (Análise do diâmetro médio das fibras, Ângulo de contato, EDS, FTIR) e Celular: MTT, Fosfatase alcalina, Adesão celular, Proteína total e Formação de nódulos de mineralização. Os dados obtidos foram analisados estatisticamente pelos testes ANOVA e Tukey (5%) e os resultados apresentados em gráficos e tabelas. Foi evidenciado a incorporação das partículas de biovidro nas fibras de PCL, tal incorporação proporcionou características como maior porcentagem de fosfatase alcalina (ALP) e formação de matriz óssea quando comparado a fibra de PCL sem a presença de biovidro. O sccaffold de PCL proporcionou um meio favorável para adesão e proliferação celular, e a adição das partículas de biovidro intensificaram o processo de formação de matriz óssea, principalmente o biovidro obtido pelo método sol-gel, atuando de forma ativa no processo de regeneração e favorecendo uma reparação adequada no defeito ósseo(AU)


Resorbable membranes have been used to promote bone growth in defects caused by periodontal, periapical or exodontic diseases. These membranes have several compositions, and can have in their structure polymers such as polycaprolactone (PCL) that combined with the bioglass that facilitates the bone formation. The objective of this research was to develop a PCL scaffold with 10% bioglass obtained through two routes, Fusion and Sol-Gel. A solution of 15% PCL dissolved in pure acetone and incorporated in 10% of bioglass according to the medium of the particles was prepared, resulting in 3 solutions: Control: PCL only, and two experimental groups: PCL/Biovidro, divided according to type of production of the bioglass particles: PCL/biov. fusão - PCL solution with 10% of Bioglass by melting and PCL / biov.Sol-Gel - PCL solution with 10% of bio.solgel. The solution was electrophied with the following parameters: 12 kv, 12 cm tip / collector distance and 1ml / h flow. The obtained blankets had their physical / chemical and biological properties analyzed by: Morphology (SEM and FEG), physicochemical properties; (Analysis of mean fiber diameter, contact angle, EDS, FTIR) and Cellular: MTT, alkaline phosphatase, cell adhesion, total protein and formation of mineralization nodules. The data were analyzed statistically by ANOVA and Tukey tests (5%) and the results presented in graphs and tables. It was evidenced the incorporation of the bioglass particles in the PCL fibers, such incorporation provided characteristics as a higher percentage of alkaline phosphatase (ALP) and formation of bone matrix when compared to PCL fiber without the presence of bioglass. The PCL sccaffold provided a favorable medium for adhesion and cell proliferation, and the addition of the bioglass particles intensified the process of bone matrix formation, mainly the bioglass obtained by the sol-gel method, acting actively in the regeneration process and favoring adequate repair of the bone defect. (AU)


Asunto(s)
Humanos , Osteogénesis/genética , Huesos , Ensayo de Materiales/métodos , Andamios del Tejido/clasificación
6.
Histol Histopathol ; 31(11): 1221-39, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26965505

RESUMEN

AIM: The aim of this study was to evaluate proliferation and chondrogenic differentiation of human bone-marrow mesenchymal stromal cells (hBMSCs) cultured on collagen biomaterials. MATERIALS AND METHODS: hBMSCs were seeded on five different collagen (Col) sponges: C1C2 (types I and II Col), C1C2HS (types I and II Col plus heparan sulphate (HS)), C1C2CHS (types I and II Col plus chondroitin sulphate (CHS)), C1-OLH3 (type I Col plus low molecular weight heparin) and C1CHS (type I Col plus CHS). The resulting constructs were analyzed by histological and immunohistochemical staining, molecular biology and electron microscopy. Col released into culture media was measured by a dye-binding method Results: hBMSCs on biomaterials C1C2, C1C2HS and C1C2CHS had more capacity to attach, proliferate and synthesize Col II and proteoglycans in the extracellular matrix (ECM) than on C1-OLH3 and C1CHS. The presence of aggrecan was detected only at the gene level. Total Col liberated by the cells in the supernatants in all scaffold cultures was detected. The level of Col I in the ECM was lower in C1-OLH3 and that of Col II was highest in C1C2 and C1C2HS. Electron microscopy showed differently shaped cells, from rounded to flattened, in all constructs. Col fibers in bundles were observed in C1C2CHS by transmission electron microscopy. CONCLUSIONS: The results show that Col I and Col II (C1C2, C1C2HS and C1C2CHS) biomaterials allowed cell proliferation and chondrogenic-like differentiation of hBMSCs at an early stage. Constructs cultured on C1C2HS and C1C2CHS showed better cartilage-like phenotype than the other ones.


Asunto(s)
Condrocitos/citología , Colágeno , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos/métodos , Andamios del Tejido/clasificación , Anciano , Cartílago/crecimiento & desarrollo , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Matriz Extracelular , Femenino , Citometría de Flujo , Humanos , Inmunohistoquímica , Masculino , Microscopía Electrónica , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
J Dent Res ; 93(12): 1250-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25143513

RESUMEN

Tissue loss due to oral diseases requires the healing and regeneration of tissues of multiple lineages. While stem cells are native to oral tissues, a current major limitation to regeneration is the ability to direct their lineage-specific differentiation. This work utilizes polymeric scaffold systems with spatiotemporally controlled morphogen cues to develop precise morphogen fields to direct mesenchymal stem cell differentiation. First, a simple three-layer scaffold design was developed that presented two spatially segregated, lineage-specific cues (Dentinogenic TGF-ß1 and Osteogenic BMP4). However, this system resulted in diffuse morphogen fields, as assessed by the in vitro imaging of cell-signaling pathways triggered by the morphogens. Mathematical modeling was then exploited, in combination with incorporation of specific inhibitors (neutralizing antibodies or a small molecule kinase inhibitor) into each morphogen in an opposing spatial pattern as the respective morphogen, to design a five-layer scaffold that was predicted to yield distinct, spatially segregated zones of morphogen signaling. To validate this system, undifferentiated MSCs were uniformly seeded in these scaffold systems, and distinct mineralized tissue differentiation were noted within these morphogen zones. Finally, to demonstrate temporal control over morphogen signaling, latent TGF-ß1 was incorporated into one region of a concentric scaffold design, and laser treatment was used to activate the morphogen on-demand and to induce dentin differentiation solely within that specific spatial zone. This study demonstrates a significant advance in scaffold design to generate precise morphogen fields that can be used to develop in situ models to explore tissue differentiation and may ultimately be useful in engineering multi-lineage tissues in clinical dentistry.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Ingeniería de Tejidos/métodos , Animales , Proteína Morfogenética Ósea 4/farmacología , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Dentinogénesis/efectos de los fármacos , Difusión , Humanos , Ácido Láctico/química , Láseres de Semiconductores , Ratones , Modelos Biológicos , Osteogénesis/efectos de los fármacos , Comunicación Paracrina/efectos de los fármacos , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Diseño de Prótesis , Ingeniería de Tejidos/instrumentación , Andamios del Tejido/química , Andamios del Tejido/clasificación , Factor de Crecimiento Transformador beta1/farmacología
8.
J Dent Res ; 93(12): 1212-21, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25139362

RESUMEN

For a successful clinical outcome, periodontal regeneration requires the coordinated response of multiple soft and hard tissues (periodontal ligament, gingiva, cementum, and bone) during the wound-healing process. Tissue-engineered constructs for regeneration of the periodontium must be of a complex 3-dimensional shape and adequate size and demonstrate biomechanical stability over time. A critical requirement is the ability to promote the formation of functional periodontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in multiphasic scaffold fabrication and how these scaffolds can be combined with cell- and growth factor-based approaches to form tissue-engineered constructs capable of recapitulating the complex temporal and spatial wound-healing events that will lead to predictable periodontal regeneration. This can be achieved through a variety of approaches, with promising strategies characterized by the use of scaffolds that can deliver and stabilize cells capable of cementogenesis onto the root surface, provide biomechanical cues that encourage perpendicular alignment of periodontal fibers to the root surface, and provide osteogenic cues and appropriate space to facilitate bone regeneration. Progress on the development of multiphasic constructs for periodontal tissue engineering is in the early stages of development, and these constructs need to be tested in large animal models and, ultimately, human clinical trials.


Asunto(s)
Regeneración Tisular Guiada Periodontal/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido/clasificación , Animales , Materiales Biocompatibles/uso terapéutico , Fenómenos Biomecánicos , Materiales Biomiméticos/uso terapéutico , Regeneración Ósea/fisiología , Regeneración Tisular Guiada Periodontal/instrumentación , Humanos , Diseño de Prótesis , Ingeniería de Tejidos/instrumentación
9.
J Craniomaxillofac Surg ; 42(7): 1128-32, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24530074

RESUMEN

Over the last 20 years, the highly interdisciplinary field of tissue engineering (TE) has become an established subspecialty in research facilities all over the world. Numerous methods and protocols are available for various research intentions and aims, but there are no data indicating which of these methods and resources are generally used. This study is an overview of the resources and methods that are commonly applied in TE research in general, and in the field of oral and maxillofacial surgery (OMFS) in Germany, Austria and Switzerland. The DÖSAK collaborative group for TE developed a detailed questionnaire and collected information from participating university hospitals in these three countries. We evaluated the availability of research facilities, in vitro realisation and in vivo designs for animal studies in these departments. 11 units who replied, out of 35 we contacted, conducted research on bone regeneration in interdisciplinary research facilities. 10 departments used xenogeneic and alloplastic scaffolds for in vitro and in vivo applications. In this case, the most commonly utilised trademarks were Bio-Oss(®) and CERASORB(®). 9 units used osteoblasts (73%) and 10 proliferation assays in vitro, whereas rats served as the standard animal model for histology/immunohistochemistry in 6. All research units were interested in establishing a platform for research exchange and communication. This study shows that tissue engineering is well established and highly accepted in most participating university hospitals and research facilities. The presented data, together with data published in a foregoing paper will help arrange more readily available standardised procedures for further investigations.


Asunto(s)
Huesos Faciales/cirugía , Procedimientos de Cirugía Plástica/métodos , Ingeniería de Tejidos/métodos , Animales , Austria , Regeneración Ósea/fisiología , Sustitutos de Huesos/uso terapéutico , Fosfatos de Calcio/uso terapéutico , Técnicas de Cultivo de Célula , Línea Celular , Alemania , Hospitales Universitarios , Difusión de la Información , Laboratorios , Minerales/uso terapéutico , Modelos Animales , Osteoblastos/fisiología , Ratas , Proyectos de Investigación , Suiza , Andamios del Tejido/clasificación
10.
J Oral Maxillofac Surg ; 72(5): 1001-12, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24480768

RESUMEN

PURPOSE: Peripheral nerve trauma results in functional loss in the innervated organ, and recovery without surgical intervention is rare. Many surgical techniques can be used for repair in experimental models. The authors investigated the source and delivery method of stem cells in experimental outcomes, seeking to clarify whether stem cells must be differentiated in the injured facial nerve and improve the regenerative process. MATERIALS AND METHODS: The following key terms were used: nervous regeneration, nerve regeneration, facial nerve regeneration, stem cells, embryonic stem cells, fetal stem cells, adult stem cells, facial nerve, facial nerve trauma, and facial nerve traumatism. The search was restricted to experimental studies that applied stem cell therapy and tissue engineering for nerve repair. RESULTS: Eight studies meeting the inclusion criteria were reviewed. Different sources of stem and precursor cells were explored (bone marrow mesenchymal stem cells, adipose-derived stem cells, dental pulp cells, and neural stem cells) for their potential application in the scenario of facial nerve injuries. Different material conduits (vases, collagen, and polyglycolic acid) were used as bridges. Immunochemistry and electrophysiology are the principal methods for analyzing regenerative effects. Although recent studies have shown that stem cells can act as a promising bridge for nerve repair, considerable optimization of these therapies will be required for their potential to be realized in a clinical setting. CONCLUSION: Based on these studies, the use of stem cells derived from different sources presents promising results related to facial nerve regeneration and produces effective functional results. The use of tubes also optimizes nerve repair, thus promoting greater myelination and axonal growth of peripheral nerves.


Asunto(s)
Traumatismos del Nervio Facial/cirugía , Regeneración Nerviosa/fisiología , Células Madre/fisiología , Ingeniería de Tejidos , Animales , Traumatismos del Nervio Facial/fisiopatología , Procedimientos Neuroquirúrgicos/métodos , Trasplante de Células Madre/métodos , Células Madre/clasificación , Andamios del Tejido/clasificación
11.
J Oral Implantol ; 40(5): 561-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23343341

RESUMEN

Several procedures have been proposed to achieve maxillary ridge augmentation. These require bone replacement materials to be manually cut, shaped, and formed at the time of implantation, resulting in an expensive and time-consuming process. In the present study, we describe a technique for the design and fabrication of custom-made scaffolds for maxillary ridge augmentation, using three-dimensional computerized tomography (3D CT) and computer-aided design/computer-aided manufacturing (CAD/CAM). CT images of the atrophic maxillary ridge of 10 patients were acquired and modified into 3D reconstruction models. These models were transferred as stereolithographic files to a CAD program, where a virtual 3D reconstruction of the alveolar ridge was generated, producing anatomically shaped, custom-made scaffolds. CAM software generated a set of tool-paths for manufacture by a computer-numerical-control milling machine into the exact shape of the reconstruction, starting from porous hydroxyapatite blocks. The custom-made scaffolds were of satisfactory size, shape, and appearance; they matched the defect area, suited the surgeon's requirements, and were easily implanted during surgery. This helped reduce the time for surgery and contributed to the good healing of the defects.


Asunto(s)
Aumento de la Cresta Alveolar/métodos , Diseño Asistido por Computadora , Maxilar/cirugía , Andamios del Tejido/clasificación , Anciano , Aumento de la Cresta Alveolar/instrumentación , Atrofia , Coronas , Implantes Dentales , Prótesis Dental de Soporte Implantado , Femenino , Estudios de Seguimiento , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Arcada Parcialmente Edéntula/cirugía , Masculino , Maxilar/patología , Persona de Mediana Edad , Tempo Operativo , Osteogénesis/fisiología , Planificación de Atención al Paciente , Estudios Prospectivos , Diseño de Prótesis , Procedimientos de Cirugía Plástica/instrumentación , Procedimientos de Cirugía Plástica/métodos , Ingeniería de Tejidos/instrumentación , Tomografía Computarizada por Rayos X/métodos , Interfaz Usuario-Computador
12.
J Oral Maxillofac Surg ; 70(10): 2309-15, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21940092

RESUMEN

PURPOSE: The aim of this study was the establishment of a minimally invasive technique of mesenchymal stem cell (MSC) harvesting and a predictable isolation and cultivation method on 2 different bone substitutes used as potential scaffolds. MATERIALS AND METHODS: Human MSCs isolated from the posterior maxilla were characterized by flow cytometric analysis. After in vitro expansion, cells were cultured and differentiated toward osteogenic, adipogenic, and chondrogenic lineages in 2-dimensional cultures and on natural bone mineral of bovine origin and ß-tricalcium phosphate scaffolds. Three-dimensional growth was analyzed using live cell staining and confocal laser scanning microscopy. RESULTS: MSCs from all patients demonstrated the same immunophenotype, with expression of CD73, CD90, and CD105 but no expression of CD45, CD34, CD14, CD11, and HLA-DR. The potential of MSCs for multilineage differentiation along osteogenic, adipogenic, and chondrogenic lines was shown. Based on knowledge of the characteristics of the cells, a method was established to increase MSC expansion efficiency and seeding conditions on each scaffold. Results of the in vitro characterization and laser scanning microscopy visualized the 3-dimensional growth of MSCs on the 2 scaffold types. CONCLUSIONS: The present data showed that intraoral MSCs can be cultured predictably under 2- and 3-dimensional conditions, have proved multiple potencies, and thus seem to be potential candidates for tissue engineering approaches in maxillofacial reconstructions.


Asunto(s)
Sustitutos de Huesos/química , Fosfatos de Calcio/química , Maxilar/citología , Células Madre Mesenquimatosas/fisiología , Minerales/química , Andamios del Tejido , Recolección de Tejidos y Órganos/métodos , 5'-Nucleotidasa/análisis , Adipogénesis/fisiología , Adolescente , Animales , Antígenos CD/análisis , Bovinos , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Linaje de la Célula , Movimiento Celular/fisiología , Separación Celular , Supervivencia Celular/fisiología , Condrogénesis/fisiología , Endoglina , Citometría de Flujo , Proteínas Ligadas a GPI/análisis , Humanos , Imagenología Tridimensional/métodos , Inmunofenotipificación , Microscopía Confocal/métodos , Osteogénesis/fisiología , Receptores de Superficie Celular/análisis , Antígenos Thy-1/análisis , Andamios del Tejido/clasificación , Adulto Joven
13.
Compend Contin Educ Dent ; 32(2): 18, 20-7; quiz 28, 40, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21473297

RESUMEN

Currently, PDGF-BB is FDA-approved for periodontal regeneration as part of a dental bone-filling device only. Although this device uses beta-TCP as the scaffold carrier, there has been considerable clinical interest in combining this growth factor with other bone replacement grafts, particularly bone allografts. This article reports on clinical experiences using rhPDGF-BB with bone allografts for implant site development. After careful evaluation of clinical parameters and consideration of current and emerging evidence, the off-label use of rhPDGF-BB was determined in the following case reports to be consistent with good clinical practice and in the patient's best interest. Clinical, radiographic, and histologic observations from the following selected cases are presented to illustrate treatment outcomes achieved using this combination strategy: ridge preservation for extraction sockets with alveolar wall defects; ridge preservation for extraction sockets minimally invasive techniques; lateral ridge augmentation; and sinus augmentation. All of the cases presented and reviewed were surgically managed using 0.5 ml of 0.3 mg/ml of rhPDGF delivered using a particulate bone allograft (FDBA or DFDBA) as a scaffold. Controlled clinical trials are necessary to establish the relative effectiveness of rhPDGF-BB combined with different mammalian scaffolds for alveolar augmentation.


Asunto(s)
Inductores de la Angiogénesis/uso terapéutico , Trasplante Óseo/métodos , Implantes Dentales , Regeneración Tisular Guiada Periodontal/métodos , Factor de Crecimiento Derivado de Plaquetas/uso terapéutico , Ingeniería de Tejidos , Adulto , Aumento de la Cresta Alveolar/métodos , Becaplermina , Diente Canino/lesiones , Femenino , Encía/trasplante , Humanos , Incisivo/lesiones , Masculino , Maxilar/cirugía , Seno Maxilar/cirugía , Membranas Artificiales , Persona de Mediana Edad , Procedimientos Quirúrgicos Mínimamente Invasivos , Uso Fuera de lo Indicado , Oseointegración/fisiología , Osteogénesis/fisiología , Proteínas Proto-Oncogénicas c-sis , Proteínas Recombinantes , Andamios del Tejido/clasificación , Fracturas de los Dientes/cirugía , Raíz del Diente/lesiones , Alveolo Dental/cirugía , Trasplante Homólogo , Resultado del Tratamiento
14.
Can J Physiol Pharmacol ; 88(9): 855-73, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20921972

RESUMEN

Tissue engineering of small diameter (<5 mm) blood vessels is a promising approach for developing viable alternatives to autologous vascular grafts. It involves in vitro seeding of cells onto a scaffold on which the cells attach, proliferate, and differentiate while secreting the components of extracellular matrix that are required for creating the tissue. The scaffold should provide the initial requisite mechanical strength to withstand in vivo hemodynamic forces until vascular smooth muscle cells and fibroblasts reinforce the extracellular matrix of the vessel wall. Hence, the choice of scaffold is crucial for providing guidance cues to the cells to behave in the required manner to produce tissues and organs of the desired shape and size. Several types of scaffolds have been used for the reconstruction of blood vessels. They can be broadly classified as biological scaffolds, decellularized matrices, and polymeric biodegradable scaffolds. This review focuses on the different types of scaffolds that have been designed, developed, and tested for tissue engineering of blood vessels, including use of stem cells in vascular tissue engineering.


Asunto(s)
Prótesis Vascular , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Enfermedad de la Arteria Coronaria/cirugía , Humanos , Células Madre/metabolismo , Ingeniería de Tejidos/métodos , Andamios del Tejido/clasificación
15.
Int J Oral Maxillofac Implants ; 25(4): 699-705, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20657864

RESUMEN

PURPOSE: Bone tissue engineering is a promising approach for bone reconstruction in oral and maxillofacial surgery. The aim of this study was to investigate the microstructure and biocompatibility of a novel albumin scaffold developed from human serum on human alveolar osteoblasts. MATERIALS AND METHODS: Samples of mandibular bone were obtained during routine oral surgery. Osteoblast cells were cultured and plated in a spongy, noncalcified protein scaffold prepared with plasmatic albumin crossed with a glutaraldehyde-type agent (study group) and in a large-particle mineralized cancellous allograft (control group). Measurement of the differentiation marker alkaline phosphatase and histologic examination were performed after 30 days of incubation. The cultures were examined for cell growth patterns and morphology by scanning electron microscopy and histomorphometry. RESULTS: Cultured osteoblasts showed comparable phenotypic profiles and expressed alkaline phosphatase in albumin scaffold. Hematoxylin-eosin staining revealed a bonelike extracellular matrix in study scaffold and mineralization of osteoblasts cultured in the albumin scaffold was confirmed by von Kossa staining. CONCLUSION: Osteoblasts were able to proliferate in vitro and synthesize a bonelike extracellular matrix and mineralized tissue. The results indicate that this novel albumin scaffold is a favorable substrate for the growth and differentiation of osteoblasts and a promising material for bone tissue engineering and repair of bone defects.


Asunto(s)
Materiales Biocompatibles/química , Técnicas de Cultivo de Célula , Mandíbula/citología , Osteoblastos/fisiología , Albúmina Sérica/química , Andamios del Tejido/clasificación , Adulto , Fosfatasa Alcalina/análisis , Biomarcadores/análisis , Matriz Ósea , Calcificación Fisiológica/fisiología , Calcio/análisis , Diferenciación Celular/fisiología , Proliferación Celular , Reactivos de Enlaces Cruzados/química , Microanálisis por Sonda Electrónica , Matriz Extracelular/ultraestructura , Glutaral/química , Humanos , Masculino , Microscopía Electrónica de Rastreo , Osteoblastos/citología , Fenotipo , Fósforo/análisis , Factores de Tiempo
16.
Int J Oral Maxillofac Implants ; 25(4): 722-8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20657867

RESUMEN

PURPOSE: The purpose of this study was to determine whether osseous tissues engineered in three-dimensional (3D) environments preserved their mineralizing capacity and retained biologic characteristics when cultured on dental implant surfaces. MATERIALS AND METHODS: Human preosteoblast cells were cultured in both 3D rotary wall vessels and on 2D tissue culture plastic plates for 3 days. Aggregates from the 3D chambers and cells from the 2D plates were collected and transferred to commercially pure titanium disks with either 600-grit polished or sandblasted surfaces. These were cultured for an additional 7 days. The aggregates and cells from the disks were collected and prepared for scanning electron microscopy for microscopic evaluation and atomic adsorption assays for mineral content analysis. Additionally, staining with Alizarin red S was performed to compare the mineralization amount and pattern in each group. Polymerase chain reaction analysis was performed to evaluate expression of osteogenic genes, including Runx2, FAK, bone morphogenetic protein 2, and osteocalcin. RESULTS: Cells from 3D rotary wall vessel cultures attached to implant surfaces and presented cell attachment and growth patterns similar to those of standard 2D cultured cells, showing evidence of radial and random growth, yet they formed multiple focal niches on implant surfaces out of which cells proliferated. The 3D cultured cells and osseous tissues retained higher amounts of mineral formed during the initial culture and showed a higher tendency toward mineralization on implant surfaces compared to standard cultured cells. The 3D cultured cells and osseous tissues on implant surfaces at 1 week showed higher key gene protein expression. RNA expression at 1 week was equivalent to that of standard cultured cells. CONCLUSION: Culture of human osteogenic cells and tissues in 3D rotary wall vessels may expedite the osseointegration process on dental implant surfaces, thus reducing the overall treatment time.


Asunto(s)
Técnicas de Cultivo de Célula , Implantes Dentales , Osteoblastos/fisiología , Andamios del Tejido/clasificación , Antraquinonas , Proteína Morfogenética Ósea 2/análisis , Calcificación Fisiológica/fisiología , Calcio/análisis , Adhesión Celular/fisiología , Diferenciación Celular/fisiología , Proliferación Celular , Colorantes , Subunidad alfa 1 del Factor de Unión al Sitio Principal/análisis , Grabado Dental , Materiales Dentales/química , Pulido Dental , Quinasa 1 de Adhesión Focal/análisis , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Minerales/análisis , Osteocalcina/análisis , Espectrofotometría Atómica , Propiedades de Superficie , Factores de Tiempo , Titanio/química
17.
J Biol ; 9(1): 2, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20092610

RESUMEN

Delineation of the mechanisms that establish and maintain the polarity of epithelial tissues is essential to understanding morphogenesis, tissue specificity and cancer. Three-dimensional culture assays provide a useful platform for dissecting these processes but, as discussed in a recent study in BMC Biology on the culture of mammary gland epithelial cells, multiple parameters that influence the model must be taken into account.


Asunto(s)
Diferenciación Celular/fisiología , Polaridad Celular/fisiología , Células Epiteliales/fisiología , Glándulas Mamarias Humanas/citología , Animales , Apoptosis/fisiología , Proliferación Celular , Supervivencia Celular/fisiología , Células Cultivadas , Células Epiteliales/citología , Epitelio/fisiología , Humanos , Glándulas Mamarias Animales/citología , Transducción de Señal/fisiología , Técnicas de Cultivo de Tejidos/métodos , Ingeniería de Tejidos , Andamios del Tejido/clasificación
18.
J Dent Res ; 88(12): 1077-91, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19897785

RESUMEN

The human innate regenerative ability is known to be limited by the intensity of the insult together with the availability of progenitor cells, which may cause certain irreparable damage. It is only recently that the paradigm of tissue engineering found its way to the treatment of irreversibly affected body structures with the challenge of reconstructing the lost part. In the current review, we underline recent trials that target engineering of human craniofacial structures, mainly bone, cartilage, and teeth. We analyze the applied engineering strategies relative to the selection of cell types to lay down a specific targeted tissue, together with their association with an escorting scaffold for a particular engineered site, and discuss their necessity to be sustained by growth factors. Challenges and expectations for facial skeletal engineering are discussed in the context of future treatment.


Asunto(s)
Cartílago/anatomía & histología , Huesos Faciales/anatomía & histología , Regeneración/fisiología , Cráneo/anatomía & histología , Ingeniería de Tejidos , Diente/anatomía & histología , Animales , Humanos , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Neovascularización Fisiológica/fisiología , Células Madre/fisiología , Andamios del Tejido/clasificación
19.
Dent Update ; 36(9): 577-9, 581-2, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20099610

RESUMEN

UNLABELLED: A new direction in the field of vital pulp therapy is given by the introduction of tissue engineering as an emerging science. It aims to regenerate a functional tooth-tissue structure by the interplay of three basic key elements: stem cells, morphogens and scaffolds. It is a multidisciplinary approach that combines the principles of biology, medicine, and engineering to repair and/or regenerate a damaged tissue and/or organ. This two part article reviews and discusses the basic concept and strategies so far studied and researched for the engineering of basic dental tissues, to restore a functional tooth anatomy. This first part focuses on a detailed description of key elements used in tissue engineering and their applied clinical applications in dentistry. The second part will deal with the strategies that are being used and/or developed to regenerate the tooth tissues with the help of this scientific principle. CLINICAL RELEVANCE: The field of tissue engineering has recently shown promising results and a good prospect in dentistry for the development of the most ideal restorations to replace the lost tooth structure with a functional replacement.


Asunto(s)
Regeneración/fisiología , Ingeniería de Tejidos , Diente/fisiología , Animales , Materiales Biocompatibles/clasificación , Pulpa Dental/citología , Humanos , Péptidos y Proteínas de Señalización Intercelular/fisiología , Ligamento Periodontal/citología , Células Madre/clasificación , Células Madre/fisiología , Andamios del Tejido/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA