Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
1.
Int J Biol Macromol ; 277(Pt 4): 134473, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111474

RESUMEN

Conducting biopolymer blend nanocomposites of cashew gum (CG) and polypyrrole (PPy), with varying concentrations of copper oxide (CuO) nanoparticles were synthesized through an in-situ polymerization method using water as a sustainable solvent. The formation of blend nanocomposites was characterized using UV-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). UV spectroscopy revealed a significant reduction in absorption intensity with the addition of CuO, indicating enhanced optical properties. FT-IR and XRD analysis confirmed the successful incorporation of CuO into the CG/PPy blend. FE-SEM images revealed the uniform distribution of nanoparticles throughout the biopolymer blend, particularly in the 7 wt% sample. TGA and DSC results demonstrated a significant enhancement in thermal stability, increasing from 352 °C to 412 °C and a rise in the glass transition temperature from 89 °C to 106 °C in the blend nanocomposites. The dielectric constant, dielectric loss, impedance, Nyquist plot, electrical conductivity, and electric modulus were extensively examined at different temperatures and frequencies. The dielectric constant of the CG/PPy blend increased from 2720 to 92,950 with the addition of 7 wt% CuO, measured at 100 Hz. The improved glass transition temperature, thermal stability, and superior electrical properties imply potential usage of the developed nanocomposite in nanoelectronics and energy storage applications.


Asunto(s)
Anacardium , Cobre , Tecnología Química Verde , Gomas de Plantas , Polímeros , Pirroles , Cobre/química , Pirroles/química , Anacardium/química , Polímeros/química , Gomas de Plantas/química , Tecnología Química Verde/métodos , Nanocompuestos/química , Conductividad Eléctrica , Difracción de Rayos X , Suministros de Energía Eléctrica , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas/química
2.
Crit Rev Food Sci Nutr ; 64(21): 7426-7450, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39093582

RESUMEN

The health benefits of nut consumption have been extensively demonstrated in observational studies and intervention trials. Besides the high nutritional value, countless evidences show that incorporating nuts into the diet may contribute to health promotion and prevention of certain diseases. Such benefits have been mostly and certainly attributed not only to their richness in healthy lipids (plentiful in unsaturated fatty acids), but also to the presence of a vast array of phytochemicals, such as polar lipids, squalene, phytosterols, tocochromanols, and polyphenolic compounds. Thus, many nut chemical compounds apply well to the designation "nutraceuticals," a broad umbrella term used to describe any food component that, in addition to the basic nutritional value, can contribute extra health benefits. This contribution analyses the general chemical profile of groundnut and common tree nuts (almond, walnut, cashew, hazelnut, pistachio, macadamia, pecan), focusing on lipid components and phytochemicals, with a view on their bioactive properties. Relevant scientific literature linking consumption of nuts, and/or some of their components, with ameliorative and/or preventive effects on selected diseases - such as cancer, cardiovascular, metabolic, and neurodegenerative pathologies - was also reviewed. In addition, the bioactive properties were analyzed in the light of known mechanistic frameworks.


Asunto(s)
Suplementos Dietéticos , Juglans , Nueces , Fitoquímicos , Pistacia , Nueces/química , Fitoquímicos/análisis , Fitoquímicos/farmacología , Humanos , Suplementos Dietéticos/análisis , Juglans/química , Pistacia/química , Lípidos/análisis , Valor Nutritivo , Anacardium/química , Macadamia/química , Corylus/química , Fitosteroles/análisis , Carya/química , Prunus dulcis/química , Enfermedades Cardiovasculares/prevención & control
3.
Artículo en Inglés | MEDLINE | ID: mdl-39008629

RESUMEN

This study aimed to develop and validate a multi-mycotoxin analysis method applied to cashew nuts by employing a miniaturized QuEChERS method followed by determination by ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Satisfactory recoveries for the concentrations 1, 10 and 30 ng g-1, ranging from 66% (fumonisin B1) to 110% (ochratoxin A) and relative standard deviations lower than 9% (fumonisin B2) were obtained for the target compounds. Limits of quantification ranged from 0.004 ng g-1 (sterigmatocystin) to 0.59 ng g-1 (alternariol). The applicability of the analytical method was verified by analyzing 30 cashew nut samples from the city of Rio de Janeiro, RJ, southeastern Brazil. Aflatoxins M1, G2, G1, B2, B1, ochratoxin A and sterigmatocystin were detected, respectively, in 27%, 10%, 17%, 30%, 30%, 30% and 50% of the analyzed samples, at maximum concentrations of 0.56, 0.67, 1.43, 2.02, 4.93, 4.81, and 0.35 ng g-1. The maximum limit established by Brazilian legislation for aflatoxins was not exceeded by any of the analyzed samples.


Asunto(s)
Anacardium , Contaminación de Alimentos , Micotoxinas , Nueces , Espectrometría de Masas en Tándem , Micotoxinas/análisis , Anacardium/química , Cromatografía Líquida de Alta Presión , Contaminación de Alimentos/análisis , Nueces/química , Aflatoxinas/análisis , Cromatografía Líquida con Espectrometría de Masas
4.
Int J Biol Macromol ; 275(Pt 1): 133588, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960246

RESUMEN

The understanding of cancer immunity and antitumor factors generated by natural polysaccharides is not yet fully comprehended. Polysaccharides, like cashew gum (CG), can exhibit immunomodulatory action and may assist in the antitumor process and side effects relieve. This study aimed to determine the antitumor effect of CG alone or in combination with cyclophosphamide (CTX), and its interactions with immune cells, in a murine melanoma model, using the B16-F10 cell line. Tumor growth inhibition, hematological, histopathological, ELISA, flow cytometry, immunofluorescence, and qRT-PCR analyses were performed to elucidate the antitumor potential, involvement of immune cells, and potential toxic effects. CG showed significant tumor growth inhibition, reaching up to 42.9 % alone and 51.4 % in combination with CTX, with mild toxicity to organs. CG enhanced leukocyte count, even in the presence of CTX. Furthermore, CG influenced the activation of tumor-associated macrophages (TAM), characterized by an increase in Il4, as well as a reduction in Ifng, Il1b, Tgfb, and Il6 gene expression. Nevertheless, these effects did not compromise the antitumor activity of CG. In summary, the combination of CG with CTX is a promising approach for leukopenia, one of the most important side effects of cancer treatment and deserves further investigation.


Asunto(s)
Anacardium , Ciclofosfamida , Melanoma Experimental , Animales , Ciclofosfamida/farmacología , Ratones , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Anacardium/química , Gomas de Plantas/química , Gomas de Plantas/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Citocinas/metabolismo , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología
5.
Molecules ; 29(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38998943

RESUMEN

The leaves of mulberry, Azolla spp., sunflower sprouts, cashew nut, and mung bean are considered rich sources of plant protein with high levels of branched-chain amino acids. Furthermore, they contain beneficial phytochemicals such as antioxidants and anti-inflammatory agents. Additionally, there are reports suggesting that an adequate consumption of amino acids can reduce nerve cell damage, delay the onset of memory impairment, and improve sleep quality. In this study, protein isolates were prepared from the leaves of mulberry, Azolla spp., sunflower sprouts, cashew nut, and mung bean. The amino acid profile, dietary fiber content, phenolic content, and flavonoid content were evaluated. Pharmacological properties, such as antioxidant, anticholinesterase, monoamine oxidase, and γ-aminobutyric acid transaminase (GABA-T) activities, were also assessed. This study found that concentrated protein from mung beans has a higher quantity of essential amino acids (52,161 mg/100 g protein) compared to concentrated protein from sunflower sprouts (47,386 mg/100 g protein), Azolla spp. (42,097 mg/100 g protein), cashew nut (26,710 mg/100 g protein), and mulberry leaves (8931 mg/100 g protein). The dietary fiber content ranged from 0.90% to 3.24%, while the phenolic content and flavonoid content ranged from 0.25 to 2.29 mg/g and 0.01 to 2.01 mg/g of sample, respectively. Sunflower sprout protein isolates exhibited the highest levels of dietary fiber (3.24%), phenolic content (2.292 ± 0.082 mg of GAE/g), and flavonoids (2.014 mg quercetin/g of sample). The biological efficacy evaluation found that concentrated protein extract from sunflower sprouts has the highest antioxidant activity; the percentages of inhibition of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical were 20.503 ± 0.288% and 18.496 ± 0.105%, respectively. Five plant-based proteins exhibited a potent inhibition of acetylcholinesterase (AChE) enzyme activity, monoamine oxidase (MAO) inhibition, and GABA-T ranging from 3.42% to 24.62%, 6.14% to 20.16%, and 2.03% to 21.99%, respectively. These findings suggest that these plant protein extracts can be used as natural resources for developing food supplements with neuroprotective activity.


Asunto(s)
Aminoácidos , Antioxidantes , Flavonoides , Fármacos Neuroprotectores , Fenoles , Extractos Vegetales , Proteínas de Plantas , 4-Aminobutirato Transaminasa/antagonistas & inhibidores , Aminoácidos/química , Anacardium/química , Antioxidantes/farmacología , Antioxidantes/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Fibras de la Dieta , Flavonoides/química , Flavonoides/farmacología , Morus/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fenoles/química , Fenoles/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Proteínas de Plantas/farmacología , Proteínas de Plantas/química , Tailandia , Vigna/química , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología
6.
Biofouling ; 40(5-6): 348-365, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38836472

RESUMEN

Our research focuses on developing environmentally friendly biodegradable ultrafiltration (UF) membranes for small-scale water purification in areas lacking infrastructure or during emergencies. To address biofouling challenges without resorting to harmful chemicals, we incorporate bio-based extracts, such as methyl gallate from A. occidentale leaves, a Malaysian ulam herb, known for its quorum sensing inhibition (QSI) properties. The methyl gallate enriched extract was purified by solvent partitioning and integrated into cellulose-based UF membranes (0 to 7.5% w w-1) through phase inversion technique. The resulting membranes exhibited enhanced anti-organic fouling and anti-biofouling properties, with flux recovery ratio (FRR) of 87.84 ± 2.00% against bovine serum albumin and FRRs of 76.67 ± 1.89% and 69.57 ± 1.77% against E. coli and S. aureus, respectively. The CA/MG-5 membrane showed a 224% improvement in pure water flux (PWF) compared to the neat CA membrane. Our innovative approach significantly improves PWF, presenting an environmentally friendly method for biofouling prevention in UF membrane applications.


Asunto(s)
Anacardium , Incrustaciones Biológicas , Escherichia coli , Membranas Artificiales , Extractos Vegetales , Ultrafiltración , Purificación del Agua , Incrustaciones Biológicas/prevención & control , Ultrafiltración/métodos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Escherichia coli/efectos de los fármacos , Anacardium/química , Purificación del Agua/métodos , Staphylococcus aureus/efectos de los fármacos , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacología , Ácido Gálico/química , Albúmina Sérica Bovina/química
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124639, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38878723

RESUMEN

Precision nutrient management in orchard crops needs precise, accurate, and real-time information on the plant's nutritional status. This is limited by the fact that it requires extensive leaf sampling and chemical analysis when it is to be done over more extensive areas like field- or landscape scale. Thus, rapid, reliable, and repeatable means of nutrient estimations are needed. In this context, lab-based remote sensing or spectroscopy has been explored in the current study to predict the foliar nutritional status of the cashew crop. Novel spectral indices (normalized difference and simple ratio), chemometric modeling, and partial least square regression (PLSR) combined machine learning modeling of the visible near-infrared hyperspectral data were employed to predict macro- and micronutrients content of the cashew leaves. The full dataset was divided into calibration (70 % of the full dataset) and validation (30 % of the full dataset) datasets. An independent validation dataset was used for the validation of the algorithms tested. The approach of spectral indices yielded very poor and unreliable predictions for all eleven nutrients. Among the chemometric models tested, the performance of the PLSR was the best, but still, the predictions were not acceptable. The PLSR combined machine learning modeling approach yielded acceptable to excellent predictions for all the nutrients except sulphur and copper. The best predictions were observed when PLSR was combined with Cubist for nitrogen, phosphorus, potassium, manganese, and zinc; support vector machine regression for calcium, magnesium, iron, copper, and boron; elastic net for sulphur. The current study showed hyperspectral remote sensing-based models could be employed for non-destructive and rapid estimation of cashew leaf macro- and micro-nutrients. The developed approach is suggested to employ within the operational workflows for site-specific and precision nutrient management of the cashew orchards.


Asunto(s)
Anacardium , Aprendizaje Automático , Micronutrientes , Hojas de la Planta , Anacardium/química , Hojas de la Planta/química , Micronutrientes/análisis , Análisis de los Mínimos Cuadrados , Espectroscopía Infrarroja Corta/métodos , Quimiometría/métodos
8.
Int J Biol Macromol ; 274(Pt 2): 133048, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857734

RESUMEN

Epiisopiloturine (EPI) is a compound found in jaborandi leaves with antiparasitic activity, which can be enhanced when incorporated into nanoparticles (NP). Cashew Gum (CG), modified by carboxymethylation, is used to produce polymeric nanomaterials with biological activity. In this study, we investigated the antimicrobial potential of carboxymethylated CG (CCG) NP containing EPI (NPCCGE) and without the alkaloid (NPCCG) against bacteria and parasites of the genus Leishmania. We conducted theoretical studies, carboxymethylated CG, synthesized NP by nanoprecipitation, characterized them, and tested them in vitro. Theoretical studies confirmed the stability of modified carbohydrates and showed that the EPI-4A30 complex had the best interaction energy (-8.47 kcal/mol). CCG was confirmed by FT-IR and presented DSabs of 0.23. NPCCG and NPCCGE had average sizes of 221.94 ± 144.086 nm and 247.36 ± 3.827 nm, respectively, with homogeneous distribution and uniform surfaces. No NP showed antibacterial activity or cytotoxicity to macrophages. NPCCGE demonstrated antileishmanial activity against L. amazonensis, both in promastigote forms (IC50 = 9.52 µg/mL, SI = 42.01) and axenic amastigote forms (EC50 = 6.6 µg/mL, SI = 60.60). The results suggest that nanostructuring EPI in CCG enhances its antileishmanial activity.


Asunto(s)
Anacardium , Antiinfecciosos , Nanopartículas , Gomas de Plantas , Anacardium/química , Nanopartículas/química , Gomas de Plantas/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Animales , Ratones , Leishmania/efectos de los fármacos , Simulación por Computador , Imidazoles , 4-Butirolactona/análogos & derivados
9.
Food Chem ; 451: 139433, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692238

RESUMEN

Hazelnut, pistachio and cashew are tree nuts with health benefits but also with allergenic properties being prevalent food allergens in Europe. The allergic characteristics of these tree nuts after processing combining heat, pressure and enzymatic digestion were analyzed through in vitro (Western blot and ELISA) and in vivo test (Prick-Prick). In the analyzed population, the patients sensitized to Cor a 8 (nsLTP) were predominant over those sensitized against hazelnut seed storage proteins (Sprot, Cor a 9 and 14), which displayed higher IgE reactivity. The protease E5 effectively hydrolyzed proteins from hazelnut and pistachio, while E7 was efficient for cashew protein hydrolysis. When combined with pressured heating (autoclave and Controlled Instantaneous Depressurization (DIC)), these proteases notably reduced the allergenic reactivity. The combination of DIC treatment before enzymatic digestion resulted in the most effective methodology to drastically reduce or indeed eliminate the allergenic capacity of tree nuts.


Asunto(s)
Alérgenos , Corylus , Hipersensibilidad a la Nuez , Nueces , Humanos , Hipersensibilidad a la Nuez/inmunología , Hidrólisis , Nueces/química , Nueces/inmunología , Alérgenos/inmunología , Alérgenos/química , Corylus/química , Corylus/inmunología , Calor , Pistacia/química , Pistacia/inmunología , Anacardium/química , Anacardium/inmunología , Inmunoglobulina E/inmunología , Femenino , Adulto , Masculino , Adulto Joven , Manipulación de Alimentos , Proteínas de Plantas/inmunología , Proteínas de Plantas/química , Péptido Hidrolasas/química , Péptido Hidrolasas/inmunología , Niño
10.
Int J Biol Macromol ; 269(Pt 2): 132065, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714280

RESUMEN

Natural gums due to availability, multifunctionality, and nontoxicity are multifaceted in application. In corrosion inhibition applications, their performance, in unmodified form is unsatisfactory because of high hydration rate, solubility issues, algal and microbial contamination, as well as thermal instability. This work attempts to enhance the inhibitive performance of Berlinia grandiflora (BEG) and cashew (CEG) exudate gums through various modification approaches. The potential of biogenic BEG and CEG gums-silver (Ag) nanocomposites (NCPs) for corrosion inhibition of mild steel in 1 M HCl is studied. The nanocomposites were characterized using the FTIR, UV-vis, and TEM techniques. The corrosion studies through the gravimetric and electrochemical (PDP, EIS, LPR, and EFM) analyses reveal moderate inhibition performance by the nanocomposites. Furthermore, the PDP results reveal that both inhibitors are mixed-type with maximum corrosion inhibition efficiencies (IEs) of 61.2 % and 54.2 % for BEG-Ag NCP and CEG-Ag NCP, respectively at an optimum concentration of 1.0 %. Modification of these inhibitors with iodide ion (KI) significantly increased the IE values to 90.1 % and 88.5 % for BEG-Ag NCP and CEG-Ag NCP at the same concentration. Surface observation of the uninhibited and inhibited steel samples using SEM/EDAX, 3D Surface profilometer, and AFM affirm that the modified nanocomposites are highly effective.


Asunto(s)
Ácido Clorhídrico , Nanocompuestos , Gomas de Plantas , Plata , Acero , Plata/química , Acero/química , Nanocompuestos/química , Corrosión , Ácido Clorhídrico/química , Gomas de Plantas/química , Exudados de Plantas/química , Exudados de Plantas/farmacología , Anacardium/química
11.
Int J Biol Macromol ; 271(Pt 1): 132396, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821801

RESUMEN

Anacardium occidentale (cashew) tree gum is being used in several sectors, including the pharmaceutical sector. This gum has been explored more in the medical field by many previous researchers, but there is a big research gap regarding its thermal and mechanical properties. Therefore, this research is intended to reveal the thermal, chemical, and mechanical characteristics of Anacardium occidentale tree gum. The results obtained in this regard are then compared with certain properties of artificial resins. Thermal analysis is carried out using a thermogravimetric analyzer, and differential scanning calorimeter, elemental analysis is carried out using a scanning electron microscope and a micro-X-ray fluorescence analyzer; and mechanical tests are carried out using a nano-indentation tester and a universal testing machine. The pH of 4.76 shows that the gum is acidic in nature, and the peaks obtained from thermal analysis demonstrate that it doesn't have a melting point. The microhardness value, tensile strength, flexural strength, and compressive strength of cashew gum are 218.39 MPa, 1.667 MPa, 3.64 MPa, and 2.667 MPa, respectively. The obtained results show that, Anacardium occidentale tree gum has comparable thermal properties to those of artificial resins and other natural gums.


Asunto(s)
Anacardium , Gomas de Plantas , Anacardium/química , Gomas de Plantas/química , Fenómenos Mecánicos , Resistencia a la Tracción , Temperatura , Árboles/química , Concentración de Iones de Hidrógeno , Termogravimetría , Fuerza Compresiva
12.
Int J Biol Macromol ; 268(Pt 1): 131661, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641286

RESUMEN

In this study, two nanoemulsions were formulated with essential oil (EO) of Ocimum gratissimum with (EON) or without (EOE) cashew gum (CG). Subsequently, inhibition of melanosis and preservation of the quality of shrimp stored for 16 days at 4 ± 0.5 °C were evaluated. A computational approach was performed to predict the system interactions. Dynamic light scattering (DLS) and atomic force microscopy (AFM) were used for nanoparticle analysis. Gas chromatography and flame ionization detector (GC-FID) determined the chemical composition of the EO constituents. Shrimps were evaluated according to melanosis's appearance, psychrotrophic bacteria's count, pH, total volatile basic nitrogen, and thiobarbituric acid reactive substances. EON exhibited a particle size three times smaller than EOE. The shrimp treated with EON showed a more pronounced sensory inhibition of melanosis, which was considered mild by the 16th day. Meanwhile, in the other groups, melanosis was moderate (EOE) or severe (untreated group). Both EON and EOE treatments exhibited inhibition of psychrotrophic bacteria and demonstrated the potential to prevent lipid oxidation, thus extending the shelf life compared to untreated fresh shrimp. EON with cashew gum, seems more promising due to its physicochemical characteristics and superior sensory performance in inhibiting melanosis during shrimp preservation.


Asunto(s)
Anacardium , Ocimum , Aceites Volátiles , Animales , Aceites Volátiles/farmacología , Aceites Volátiles/química , Ocimum/química , Anacardium/química , Penaeidae/química , Gomas de Plantas/química , Conservación de Alimentos/métodos
13.
J AOAC Int ; 107(3): 443-452, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430003

RESUMEN

BACKGROUND: Food allergen cross-contact during food preparation and production is one of the causes of unintentional allergen presence in packaged foods. However, little is known about allergen cross-contact in shared frying or roasting oil, which prevents the establishment of effective allergen controls and may put allergic individuals at risk. To better understand the quantity of allergen transferred to frying oil and subsequent products, an analytical method is needed for quantifying protein in oil that has been exposed to frying/roasting conditions. OBJECTIVE: The goal of this study was to develop a parallel reaction monitoring LC-MS/MS method to quantify the amount of cashew protein in shared roasting oil. METHODS: The sample preparation method was evaluated to improve protein extractability and peptide performance. Four quantitative peptides representing cashew 2S and 11S proteins were selected as targets based on their sensitivity, heat stability, and specificity. A calibration strategy was developed to quantify the amount of total cashew protein in oil. Method performance was evaluated using a heated cashew-in-oil model system. RESULTS: The method showed high recovery in oil samples spiked with 100 or 10 parts per million (ppm) total cashew protein heated at 138 or 166°C for 2-30 min. Samples (100 ppm total cashew protein) heated for 30 min had more than 90% recovery when treated at 138°C and more than 50% when heated at 166°C. CONCLUSION: The method is fit-for-purpose for the analysis of cashew allergen cross-contact in oil. HIGHLIGHTS: A novel MS-based method was developed that can accurately quantify the amount of cashew protein present in heated oil.


Asunto(s)
Anacardium , Calor , Proteínas de Plantas , Espectrometría de Masas en Tándem , Anacardium/química , Proteínas de Plantas/análisis , Espectrometría de Masas en Tándem/métodos , Aceites de Plantas/química , Aceites de Plantas/análisis , Alérgenos/análisis , Culinaria , Cromatografía Liquida/métodos
14.
Int J Biol Macromol ; 262(Pt 2): 130169, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38365138

RESUMEN

Hydrogels are versatile materials with a three-dimensional network structure that can retain water and release bioactive compounds. They have found applications in various fields, including agriculture, biomaterial synthesis, and pharmaceuticals. Incorporating natural antimicrobial compounds into hydrogels is a promising approach to developing non-toxic biomedical materials, particularly for wound healing dressings. It was evaluated the extraction and use of cashew apple bagasse lignin (CAB-Lig) due to its healing, anti-inflammatory, and antimicrobial properties for producing a hydrogel-based bandage. The extraction process involved acid and alkali treatments followed by precipitation. The antimicrobial potential of CAB-Lig was evaluated at different concentrations for formulating hydrogels. Hydrogels containing 0.1 % and 3 % lignin showed high swelling and liquid retention abilities. The 3 % lignin hydrogel exhibited effectiveness against Escherichia coli and Staphylococcus aureus. Incorporating CAB-Lig into the hydrogel structure improved its mechanical properties, making it more suitable for application as a bandage. Moreover, the extracted lignin showed low toxicity, indicating its safe use. A bandage was formulated by combining the CAB-Lig-based hydrogel with polyester, which possessed antimicrobial properties and demonstrated biocompatibility (L929 and HaCat cells). The results confirmed the potential of CAB-Lig for synthesizing hydrogels and dressings with antimicrobial properties, offering a sustainable solution for utilizing lignocellulosic biomass.


Asunto(s)
Anacardium , Antiinfecciosos , Celulosa , Lignina/farmacología , Lignina/química , Hidrogeles/farmacología , Hidrogeles/química , Anacardium/química , Antiinfecciosos/farmacología , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli , Vendajes
15.
J Nutr ; 154(3): 962-977, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38246355

RESUMEN

BACKGROUND: Increased intestinal permeability and dysbiosis are related to obesity. Nuts can provide nutrients and bioactive compounds that modulate gut microbiota and inflammation, enhancing the beneficial effects of weight loss. OBJECTIVES: To evaluate the effect of consuming cashew nuts (Anacardium occidentale L.) and Brazil nuts (Bertholletia excelsa H.B.K) on intestinal permeability and microbiota, fecal SCFAs and pH, inflammation, and weight loss in energy restriction condition. METHODS: In this 8-week randomized controlled trial, 40 women with overweight or obesity were assigned to energy-restricted groups (-500 kcal/d): control group (free of nuts) or Brazilian nuts group (BN: 30 g of cashew nuts and 15 g of Brazil nuts per day). Permeability was analyzed by the lactulose/mannitol test and the microbiota by sequencing the 16S gene in the V3-V4 regions. Plasma concentrations of inflammatory cytokines (TNF, IL-6, IL-10, IL-8, IL-17A) and C-reactive protein were analyzed. RESULTS: In total, 25 women completed the intervention. Both groups lost weight without statistical differences. Lactulose excretion increased only in the control group (P < 0.05). The BN consumption increased fecal propionic acid and potentially beneficial bacteria, such as Ruminococcus, Roseburia, strains NK4A214 and UCG-002 from the Ruminococcaceae family, but also Lachnospiraceae family, Bacteroides, and Lachnoclostridium, when compared to the control group. Changes in intestinal permeability were correlated to a greater reduction in body fat (kg), and IL-8, and increases in Ruminococcus abundance. CONCLUSION: Our findings demonstrate a positive impact of BN consumption within an energy-restricted context, linked to the augmentation of potentially beneficial bacteria and pathways associated with body fat reduction. Besides, BN consumption mitigated increased intestinal permeability, although its capacity to diminish permeability or enhance weight loss proved limited. This trial was registered at the Brazilian Registry of Clinical Trials as ReBEC (ID: RBR-3ntxrm).


Asunto(s)
Anacardium , Bertholletia , Humanos , Femenino , Nueces/química , Anacardium/química , Sobrepeso , Brasil , Interleucina-8/análisis , Lactulosa , Obesidad , Inflamación , Pérdida de Peso
16.
PeerJ ; 11: e14894, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37123007

RESUMEN

Background: Cashew (Anacardium occidentale L.) is a crop currently grown in several tropical countries because of the economic importance of cashew nuts. Despite its enormous economic worth, limited research has been conducted on the molecular diversity of cashew genetic resources. In this study, a wide comprehensive assessment of the genetic diversity of cashew trees in East Timor was performed using microsatellites (SSRs) to evaluate intraspecific diversity and population structuring. Methods: A total of 207 individual cashew trees, including trees from East Timor (11), and outgroup populations from Indonesia (one) and Mozambique (two), were analyzed with 16 cashew-specific SSRs. A comprehensive sampling of cashew trees within East Timor was performed, covering the distribution of cashew orchards in the country. Genetic diversity indices were calculated, and population structuring was determined using three different approaches: genetic distances (UPGMA and NJ), AMOVA, and individual-based clustering methods through Bayesian (STRUCTURE) and multivariate (DAPC) analyses. Results: The population structuring analysis revealed that the genetic diversity of cashew populations in East Timor was higher in this study than previously reported for cashew trees. A higher allelic richness was found within cashew populations in East Timor compared with the outgroup populations (Mozambique and Indonesia), reinforced by the presence of private alleles. Moreover, our study showed that cashew populations in East Timor are grouped into two dissimilar genetic groups, which may suggest multiple cashew introductions over time. These new cashew genetic resources could be explored for future crop improvement. Conclusions: Crop diversity underpins the productivity, resilience, and adaptive capacity of agriculture. Therefore, this study provides useful information regarding genetic diversity and population structure that can be harnessed to improve cashew production in East Timor. This data is also important to creating a country-specific genetic cashew signature to increase cashew market value.


Asunto(s)
Anacardium , Anacardium/química , Timor Oriental , Teorema de Bayes , Indonesia , Variación Genética/genética
17.
Nutrients ; 15(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37242261

RESUMEN

Cashew nuts are rich in dietary fibers, monounsaturated fatty acids, carotenoids, tocopherols, flavonoids, catechins, amino acids, and minerals that offer benefits for health. However, the knowledge of its effect on gut health is lacking. In this way, cashew nut soluble extract (CNSE) was assessed in vivo via intra-amniotic administration in intestinal brush border membrane (BBM) morphology, functionality, and gut microbiota. Four groups were evaluated: (1) no injection (control); (2) H2O injection (control); (3) 10 mg/mL CNSE (1%); and (4) 50 mg/mL CNSE (5%). Results related to CNSE on duodenal morphological parameters showed higher Paneth cell numbers, goblet cell (GC) diameter in crypt and villi, depth crypt, mixed GC per villi, and villi surface area. Further, it decreased GC number and acid and neutral GC. In the gut microbiota, treatment with CNSE showed a lower abundance of Bifidobacterium, Lactobacillus, and E. coli. Further, in intestinal functionality, CNSE upregulated aminopeptidase (AP) gene expression at 5% compared to 1% CNSE. In conclusion, CNSE had beneficial effects on gut health by improving duodenal BBM functionality, as it upregulated AP gene expression, and by modifying morphological parameters ameliorating digestive and absorptive capacity. For intestinal microbiota, higher concentrations of CNSE or long-term intervention may be necessary.


Asunto(s)
Anacardium , Pollos , Animales , Anacardium/química , Nueces/química , Escherichia coli , Extractos Vegetales/farmacología , Extractos Vegetales/análisis
18.
Int J Biol Macromol ; 242(Pt 1): 124737, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37148931

RESUMEN

Insulin is one of the most important drugs in the clinical treatment of diabetes. There is growing interest in oral insulin administration as it mimics the physiological pathway and potentially reduces side effects associated with subcutaneous injection. In this study, a nanoparticulate system was developed using acetylated cashew gum (ACG) and chitosan by the polyelectrolyte complexation method, for oral administration of insulin. The nanoparticles were characterized by size, zeta potential and encapsulation efficiency (EE%). And they had a particle size of 460 ± 11.0 nm, PDI of 0.2 ± 0.021, zeta potential of 30.6 ± 0.48 mV, and an EE% of 52.5 %. Cytotoxicity assays were performed for HT-29 cell lines. It was observed that ACG and nanoparticles did not have a significant effect on cell viability, verifying their biocompatibility. Hypoglycemic effects of the formulation were analyzed in vivo, noting that the nanoparticles reduced blood glucose by 51.0 % of baseline levels after 12 h, not inducing signs of toxicity or death. Biochemical and hematological profiles were not clinically modified. Histological study indicated no signs of toxicity. Results showed that the nanostructured system presented itself as a potential vehicle for oral insulin release.


Asunto(s)
Anacardium , Quitosano , Diabetes Mellitus , Nanopartículas , Humanos , Insulina , Quitosano/química , Anacardium/química , Diabetes Mellitus/tratamiento farmacológico , Nanopartículas/química , Portadores de Fármacos/química , Administración Oral , Tamaño de la Partícula
19.
Food Funct ; 14(4): 1962-1970, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36723115

RESUMEN

Traditional thermal processing of cashews not only results in nutrient loss and harmful by-products, but also does not significantly reduce allergenicity. Irradiation could be an important non-thermal processing method to reduce cashew allergens' allergenicity and retain their nutritional properties. This study aimed to evaluate the effects of gamma irradiation processing on the structure and potential allergenicity of Ana o 3. The Ana o 3 solutions were gamma-irradiated at 0, 1, 3, 5, and 10 kGy. The structure change was monitored by Tricine-SDS-PAGE, circular dichroism spectroscopy, and fluorescence spectroscopy. The potential allergenicity was tested by immunoblotting, indirect competitive ELISA, and the human basophil KU812 degranulation assay using serum from cashew allergy patients. The results of CD spectroscopy showed that the content of α-helices decreased from 46.8% to 30.9% after 3 to 10 kGy, while the content of random coils increased from 23.7% to 33.3%. Meanwhile, a large number of hydrophobic regions were exposed, resulting in an increase in the hydrophobic surface of the protein. In terms of allergenicity, the IC50 values obtained by the competitive inhibition ELISA after irradiation increased from 0.628 to 4.054 µg mL-1, indicating that irradiation reduced the IgE binding capacity of Ana o 3, which was consistent with the results of western blotting. In addition, the basophil degranulation analysis showed that the release of IL-6, TNF-α, and histamine was decreased. It was shown that the potential allergenicity of the irradiated Ana o 3 was remarkably decreased since irradiation could mask or destroy the allergen epitopes, providing a new approach to reduce the allergenicity of cashew products.


Asunto(s)
Anacardium , Humanos , Anacardium/química , Inmunoglobulina E , Alérgenos/química , Proteínas de Plantas/química , Antígenos de Plantas
20.
J Agric Food Chem ; 71(6): 2990-2998, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36728846

RESUMEN

Peanut and tree-nut allergies are frequently comorbid for reasons not completely understood. Vicilin-buried peptides (VBPs) are an emerging family of food allergens whose conserved structural fold could mediate peanut/tree-nut co-allergy. Peptide microarrays were used to identify immunoglobulin E (IgE) epitopes from the N-terminus of the vicilin allergens Ara h 1, Ana o 1, Jug r 2, and Pis v 3 using serum from three patient diagnosis groups: monoallergic to either peanuts or cashew/pistachio, or dual allergic. IgE binding peptides were highly prevalent in the VBP domains AH1.1, AO1.1, JR2.1, and PV3.1, but not in AO1.2, JR2.2, JR2.3, and PV3.2 nor the unstructured regions. The IgE profiles did not correlate with diagnosis group. The structure of the VBPs from cashew and pistachio was solved using solution-NMR. Comparisons of structural features suggest that the VBP scaffold from peanuts and tree-nuts can support cross-reactivity. This may help understand comorbidity and cross-reactivity despite a distant evolutionary origin.


Asunto(s)
Anacardium , Arachis , Inmunoglobulina E , Juglans , Pistacia , Humanos , Alérgenos/química , Alérgenos/inmunología , Anacardium/química , Arachis/química , Inmunoglobulina E/inmunología , Juglans/química , Hipersensibilidad a la Nuez/diagnóstico , Nueces/química , Péptidos/química , Péptidos/inmunología , Pistacia/química , Reacciones Cruzadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA