RESUMEN
The two-component system GacS/A and the posttranscriptional control system Rsm constitute a genetic regulation pathway in Gammaproteobacteria; in some species of Pseudomonas, this pathway is part of a multikinase network (MKN) that regulates the activity of the Rsm system. In this network, the activity of GacS is controlled by other kinases. One of the most studied MKNs is the MKN-GacS of Pseudomonas aeruginosa, where GacS is controlled by the kinases RetS and LadS; RetS decreases the kinase activity of GacS, whereas LadS stimulates the activity of the central kinase GacS. Outside of the Pseudomonas genus, the network has been studied only in Azotobacter vinelandii. In this work, we report the study of the RetS kinase of A. vinelandii; as expected, the phenotypes affected in gacS mutants, such as production of alginates, polyhydroxybutyrate, and alkylresorcinols and swimming motility, were also affected in retS mutants. Interestingly, our data indicated that RetS in A. vinelandii acts as a positive regulator of GacA activity. Consistent with this finding, mutation in retS also negatively affected the expression of small regulatory RNAs belonging to the Rsm family. We also confirmed the interaction of RetS with GacS, as well as with the phosphotransfer protein HptB.
Asunto(s)
Alginatos , Azotobacter vinelandii , Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Azotobacter vinelandii/genética , Azotobacter vinelandii/enzimología , Azotobacter vinelandii/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Alginatos/metabolismo , Resorcinoles/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Poliésteres/metabolismo , Hidroxibutiratos/metabolismoRESUMEN
Alginate is a major extra polymeric substance in the biofilm formed by mucoid Pseudomonas aeruginosa. It is the main proven perpetrator of lung infections in patients suffering from cystic fibrosis. Alginate lyases are very important in the treatment of cystic fibrosis. This study evaluated the role of standalone and in conjugation, effect of alginate lyase of SG4 + isolated from Paenibacillus lautus in enhancing in vitro bactericidal activity of gentamicin and amikacin on mucoid P. aeruginosa. Using Response Surface Methodology (RSM) alginate lyase SG4 + production was optimized in shake flask and there 8.49-fold enhancement in enzyme production. In fermenter, maximum growth (10.15 mg/ml) and alginate lyase (1.46 International Units) production, 1.71-fold was increased using Central Composite Design (CCD). Further, fermentation time was reduced from 48 to 20 h. To the best of our knowledge this is the first report in which CCD was used for fermenter studies to optimize alginate lyase production. The Km and Vmax of purified enzyme were found to be 2.7 mg/ml and 0.84 mol/ml-min, respectively. The half-life (t 1/2) of purified alginate lyase SG4 + at 37 °C was 180 min. Alginate lyase SG4 + in combination with gentamicin and amikacin eradiated 48.4- 52.3% and 58- 64.6%, alginate biofilm formed by P. aeruginosa strains, respectively. The study proves that alginate lyase SG4 + has excellent exopolysaccharide disintegrating ability and may be useful in development of potent therapeutic agent to treat P. aeruginosa biofilms.
Asunto(s)
Antibacterianos , Biopelículas , Paenibacillus , Polisacárido Liasas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Polisacárido Liasas/metabolismo , Polisacárido Liasas/genética , Antibacterianos/farmacología , Paenibacillus/genética , Paenibacillus/enzimología , Paenibacillus/efectos de los fármacos , Gentamicinas/farmacología , Amicacina/farmacología , Fermentación , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Alginatos/metabolismoRESUMEN
We conducted two experiments. The first aimed to obtain and characterize microparticles of slow-release urea (SRU) using calcium alginate as the encapsulating agent. The second experiment evaluated their inclusion in sheep diets. In the first experiment, four treatments from a completely randomized design were employed to develop an SRU through the ionic gelification technique testing two drying methods (oven and lyophilizer) and addition or no of sulfur (S): SRU oven-dried with sulfur (MUSO) and without sulfur (MUO), SRU freeze-dried/lyophilized with (MUSL), and without sulfur (MUL). MUO exhibited better yield and encapsulation efficiency among these formulations than the others. Therefore, the second experiment was conducted to compare free urea (U) as control and three proportions (1%, 1.5%, and 2% of total dry matter) of MUO in the diet of sheep. Twenty-four non-castrated male Santa Ines lambs, with an average body weight of 22 ± 3.0 kg, were used and distributed in a completely randomized design with four treatments and six replications. The inclusion of 1% alginate-encapsulated urea (MUO1%) resulted in higher dry matter (DM) intake than free urea (p ≤ 0.05). MUO2% inclusion promoted higher NDF digestibility than U and MUO1%. MUO1% showed higher DM than MUO2% and higher NFC digestibility than U and MUO2% (p ≤ 0.05). Sheep fed MUO1.5% and MUO2% exhibited similar nutrient intake and digestibility. Sheep receiving MUO1% had higher N-intake, N-urinary, N-excretion total, N-digested, and N-retained compared to U. Sheep fed MUO1% showed greater N-retained (as % ingested and digested), microbial protein production, and efficiency when compared to other treatments (p ≤ 0.05). MUO2% addition (SRU) promoted the lowest microbial protein production and efficiency in sheep. MUO dietary inclusion increased feeding time and reduced idleness time compared to U, regardless of the MUO level (p ≤ 0.05). Adding MUO1% improved the intake efficiency of DM and NDF and resulted in more feed boli than the other MUO levels (p ≤ 0.05). Sheep receiving U had (4 h after fending) higher NH3-N, pH, and blood urea nitrogen (BUN) and lower TGL serum compared to sheep fed MUO (p ≤ 0.05), without significant difference among MUO levels (p > 0.05), except NH3-N was higher in MUO1.5% and MUO2% compared to MUO1.0%. The external ionic gelation technique proved suitable for urea microencapsulation in calcium alginate (3%), demonstrating high quality, efficiency, and yield. MUO represents a promising slow-release urea for ruminants and is recommended for sheep diets at an inclusion level of 1.0%. This inclusion level improves intake efficiency and nutrient digestibility, increases rumen nitrogen retention, and reduces BUN without compromising sheep health.
Asunto(s)
Digestión , Urea , Animales , Masculino , Alginatos/metabolismo , Alginatos/farmacología , Alimentación Animal/análisis , Dieta/veterinaria , Nitrógeno/metabolismo , Rumen/metabolismo , Ovinos , Azufre , Urea/metabolismoRESUMEN
Pseudomonas aeruginosa is an extremely versatile microorganism that survives in a wide variety of niches. It is capable to respond rapidly to changes in the environment by producing secondary metabolites and virulence factors, including alginate. Alginate is an extracellular polysaccharide that protects the bacteria from antibiotics and oxidative agents, and enhances cell adhesion to solid surfaces in the process of biofilm formation. In the present study, we analyzed the role of alginate in the response of P. aeruginosa to lethal doses of ultraviolet-A (UVA) radiation, the major fraction of solar UV radiation reaching the Earth's surface. We also studied the role of alginate in the context of the adaptive responses generated when P. aeruginosa is exposed to sublethal doses of UVA radiation. The survival studies demonstrated that alginate has a key role in the resistance of P. aeruginosa to the oxidative stress generated by lethal UVA doses, both in planktonic cells and in static biofilms. In addition, the presence of alginate proved to be essential in the occurrence of adaptive responses such as induction of biofilm formation and cross-protection against hydrogen peroxide and sodium hypochlorite, both generated by exposure to low UVA doses. Finally, we demonstrated that the increase of biofilm formation is accompanied by an increase in alginate concentration in the biofilm matrix, possibly through the ppGpp-dependent induction of genes related to alginate regulation (algR and algU) and biosynthesis (algD operon). Given the importance of alginate in biofilm formation and its protective roles, better understanding of the mechanisms associated to its functions and synthesis is relevant, given the normal exposure of P. aeruginosa to UVA radiation and other types of oxidative stresses.
Asunto(s)
Plancton , Pseudomonas aeruginosa , Alginatos/metabolismo , Alginatos/farmacología , Biopelículas , Peróxido de Hidrógeno/farmacología , Pseudomonas aeruginosa/fisiologíaRESUMEN
BACKGROUND: Alginates are polysaccharides used in a wide range of industrial applications, with their functional properties depending on their molecular weight. In this study, alginate production and the expression of genes involved in polymerization and depolymerization in batch cultures of Azotobacter vinelandii were evaluated under controlled and noncontrolled oxygen transfer rate (OTR) conditions. RESULTS: Using an oxygen transfer rate (OTR) control system, a constant OTR (20.3 ± 1.3 mmol L 1 h 1 ) was maintained during cell growth and stationary phases. In cultures subjected to a controlled OTR, alginate concentrations were higher (5.5 ± 0.2 g L 1 ) than in cultures under noncontrolled OTR. The molecular weight of alginate decreased from 475 to 325 kDa at the beginning of the growth phase and remained constant until the end of the cultivation period. The expression level of alyA1, which encodes an alginate lyase, was more affected by OTR control than those of other genes involved in alginate biosynthesis. The decrease in alginate molecular weight can be explained by a higher relative expression level of alyA1 under the controlled OTR condition. CONCLUSIONS: This report describes the first time that alginate production and alginate lyase (alyA1) expression levels have been evaluated in A. vinelandii cultures subjected to a controlled OTR. The results show that automatic control of OTR may be a suitable strategy for improving alginate production while maintaining a constant molecular weight.
Asunto(s)
Polisacárido Liasas/metabolismo , Transferencia de Oxígeno , Azotobacter vinelandii/metabolismo , Oxígeno/metabolismo , Expresión Génica , Reacción en Cadena de la Polimerasa , Azotobacter vinelandii/genética , Alginatos/metabolismo , Fermentación , Peso MolecularRESUMEN
Alginates can be used to elaborate hydrogels, and their properties depend on the molecular weight (MW) and the guluronic (G) and mannuronic (M) composition. In this study, the MW and G/M ratio were evaluated in cultures of Azotobacter vinelandii to 3 and 30 L scales at different oxygen transfer rates (OTRs) under diazotrophic conditions. An increase in the maximum OTR (OTRmax) improved the alginate production, reaching 3.3 ± 0.2 g L-1. In the cultures conducted to an OTR of 10.4 mmol L-1 h-1 (500 rpm), the G/M increased during the cell growth phase and decreased during the stationary phase; whereas, in the cultures at 19.2 mmol L-1 h-1 was constant throughout the cultivation. A higher alginate MW (520 ± 43 kDa) and G/M ratio (0.86 ± 0.01) were obtained in the cultures conducted at 10.4 mmol L-1 h-1. The OTR as a criterion to scale up alginate production allowed to replicate the concentration and the alginate production rate; however, it was not possible reproduce the MW and G/M ratio. Under a similar specific oxygen uptake rate (qO2) (approximately 65 mmol g-1 h-1) the alginate MW was similar (approximately 365 kDa) in both scales. The evidences revealed that the qO2 can be a parameter adequate to produce alginate MW similar in two bioreactor scales. Overall, the results have shown that the alginate composition could be affected by cellular respiration, and from a technological perspective the evidences contribute to the design process based on oxygen consumption to produce alginates defined.
Asunto(s)
Alginatos , Azotobacter vinelandii/crecimiento & desarrollo , Reactores Biológicos , Ácidos Hexurónicos , Alginatos/análisis , Alginatos/química , Alginatos/metabolismo , Ácidos Hexurónicos/análisis , Ácidos Hexurónicos/química , Ácidos Hexurónicos/metabolismo , Peso MolecularRESUMEN
The engineering and microbiological aspects involved in the production of alginate-like exopolysaccharides (ALE) and tryptophan (TRY) in aerobic granular sludge systems were evaluated. The inclusion of short anoxic phase (A/O/A cycle-anaerobic, oxic, and anoxic phase) and the control of sludge retention time (SRT ≈ 10 days) proved to be an important strategy to increase the content of these bioproducts in granules. The substrate concentration also has a relevant impact on the production of ALE and TRY. The results of the microbiological analysis showed that slow-growing heterotrophic microbial groups (i.e., PAOs and GAOs) might be associated with the production of ALE, and the EPS-producing fermentative bacteria might be associated with the TRY production. The preliminary economic evaluation indicated the potential of ALE recovery in AGS systems in decreasing the OPEX (operational expenditure) of the treatment, especially for larger sewage treatment plants or industrial wastewaters with a high organic load.
Asunto(s)
Alginatos/metabolismo , Reactores Biológicos , Aguas del Alcantarillado/microbiología , Triptófano/biosíntesis , AerobiosisRESUMEN
Nanotechnology is a very promising technological tool to combat health problems associated with the loss of effectiveness of currently used antibiotics. Previously, we developed a formulation consisting of a chitosan and tween 80-decorated alginate nanocarrier that encapsulates rifampicin and the antioxidant ascorbic acid (RIF/ASC), intended for the treatment of respiratory intracellular infections. Here, we investigated the effects of RIF/ASC-loaded NPs on the respiratory mucus and the pulmonary surfactant. In addition, we evaluated their cytotoxicity for lung cells in vitro, and their biodistribution on rat lungs in vivo after their intratracheal administration. Findings herein demonstrated that RIF/ASC-loaded NPs display a favorable lung biocompatibility profile and a uniform distribution throughout lung lobules. RIF/ASC-loaded NPs were mainly uptaken by lung macrophages, their primary target. In summary, findings show that our novel designed RIF/ASC NPs could be a suitable system for antibiotic lung administration with promising perspectives for the treatment of pulmonary intracellular infections.
Asunto(s)
Alginatos/química , Ácido Ascórbico/química , Enfermedades Pulmonares/tratamiento farmacológico , Enfermedades Pulmonares/metabolismo , Nanopartículas/química , Rifampin/metabolismo , Rifampin/toxicidad , Células A549 , Alginatos/metabolismo , Alginatos/toxicidad , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/toxicidad , Ácido Ascórbico/metabolismo , Ácido Ascórbico/toxicidad , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Línea Celular , Línea Celular Tumoral , Quitosano/metabolismo , Quitosano/toxicidad , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidad , Sistemas de Liberación de Medicamentos/métodos , Femenino , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Masculino , Nanopartículas/metabolismo , Nanopartículas/toxicidad , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/toxicidad , Polímeros/metabolismo , Polímeros/toxicidad , Ratas , Ratas Wistar , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Rifampin/farmacología , Porcinos , Distribución TisularRESUMEN
Azotobacter vinelandii produces the linear exopolysaccharide alginate, a compound of significant biotechnological importance. The biosynthesis of alginate in A. vinelandii and Pseudomonas aeruginosa has several similarities but is regulated somewhat differently in the two microbes. Here, we show that the second messenger cyclic dimeric GMP (c-di-GMP) regulates the production and the molecular mass of alginate in A. vinelandii The hybrid protein MucG, containing conserved GGDEF and EAL domains and N-terminal HAMP and PAS domains, behaved as a c-di-GMP phosphodiesterase (PDE). This activity was found to negatively affect the amount and molecular mass of the polysaccharide formed. On the other hand, among the diguanylate cyclases (DGCs) present in A. vinelandii, AvGReg, a globin-coupled sensor (GCS) DGC that directly binds to oxygen, was identified as the main c-di-GMP-synthesizing contributor to alginate production. Overproduction of AvGReg in the parental strain phenocopied a ΔmucG strain with regard to alginate production and the molecular mass of the polymer. MucG was previously shown to prevent the synthesis of high-molecular-mass alginates in response to reduced oxygen transfer rates (OTRs). In this work, we show that cultures exposed to reduced OTRs accumulated higher levels of c-di-GMP; this finding strongly suggests that at least one of the molecular mechanisms involved in modulation of alginate production and molecular mass by oxygen depends on a c-di-GMP signaling module that includes the PAS domain-containing PDE MucG and the GCS DGC AvGReg.IMPORTANCE c-di-GMP has been widely recognized for its essential role in the production of exopolysaccharides in bacteria, such as alginate produced by Pseudomonas and Azotobacter spp. This study reveals that the levels of c-di-GMP also affect the physical properties of alginate, favoring the production of high-molecular-mass alginates in response to lower OTRs. This finding opens up new alternatives for the design of tailor-made alginates for biotechnological applications.
Asunto(s)
Alginatos/metabolismo , Azotobacter vinelandii/metabolismo , GMP Cíclico/análogos & derivados , Polisacáridos Bacterianos/biosíntesis , Alginatos/química , Azotobacter vinelandii/enzimología , Azotobacter vinelandii/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Peso Molecular , Oxígeno/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Polisacáridos Bacterianos/químicaRESUMEN
The genus Azotobacter, belonging to the Pseudomonadaceae family, is characterized by the formation of cysts, which are metabolically dormant cells produced under adverse conditions and able to resist desiccation. Although this developmental process has served as a model for the study of cell differentiation in Gram-negative bacteria, the molecular basis of its regulation is still poorly understood. Here, we report that the ubiquitous second messenger cyclic dimeric GMP (c-di-GMP) is critical for the formation of cysts in Azotobacter vinelandii Upon encystment induction, the levels of c-di-GMP increased, reaching a peak within the first 6 h. In the absence of the diguanylate cyclase MucR, however, the levels of this second messenger remained low throughout the developmental process. A. vinelandii cysts are surrounded by two alginate layers with variable proportions of guluronic residues, which are introduced into the final alginate chain by extracellular mannuronic C-5 epimerases of the AlgE1 to AlgE7 family. Unlike in Pseudomonas aeruginosa, MucR was not required for alginate polymerization in A. vinelandii Conversely, MucR was necessary for the expression of extracellular alginate C-5 epimerases; therefore, the MucR-deficient strain produced cyst-like structures devoid of the alginate capsule and unable to resist desiccation. Expression of mucR was partially dependent on the response regulator AlgR, which binds to two sites in the mucR promoter, enhancing mucR transcription. Together, these results indicate that the developmental process of A. vinelandii is controlled through a signaling module that involves activation by the response regulator AlgR and c-di-GMP accumulation that depends on MucR.IMPORTANCEA. vinelandii has served as an experimental model for the study of the differentiation processes to form metabolically dormant cells in Gram-negative bacteria. This work identifies c-di-GMP as a critical regulator for the production of alginates with specific contents of guluronic residues that are able to structure the rigid laminated layers of the cyst envelope. Although allosteric activation of the alginate polymerase complex Alg8-Alg44 by c-di-GMP has long been recognized, our results show a previously unidentified role during the polymer modification step, controlling the expression of extracellular alginate epimerases. Our results also highlight the importance of c-di-GMP in the control of the physical properties of alginate, which ultimately determine the desiccation resistance of the differentiated cell.
Asunto(s)
Azotobacter vinelandii/enzimología , Proteínas Bacterianas/metabolismo , Carbohidrato Epimerasas/metabolismo , GMP Cíclico/análogos & derivados , Alginatos/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/crecimiento & desarrollo , Azotobacter vinelandii/metabolismo , Proteínas Bacterianas/genética , Carbohidrato Epimerasas/genética , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismoRESUMEN
The aim of the present paper was to unravel the effect of a standardized in vitro European protocol of digestion-fermentation over Ca(II)-alginate beads synthesized with sugars and biopolymers. Special emphasis on the antioxidant capacity using methods that simulate physiological conditions, short-chain fatty acids (SCFAs) production, and a detailed study of the microstructure of the gel network by SAXS at several scales (1-100 nm) were considered. Beads released high antioxidant capacity during digestion assessed by several methods, comparable to some common foods; antioxidant capacity was improved with sucrose and arabic gum inclusion in the formulation. After fermentation by gut microbiota, a ten-fold increase in the antioxidant values and an important SCFAs production were obtained, revealing the enhanced ability to produce these functional biomolecules. The microstructural analysis of Ca(II)-alginate showed an advantageous behavior: they slightly changed in oral and gastric fluids and partially dissolved their structure in intestinal fluid, where absorption occurs.
Asunto(s)
Alginatos/metabolismo , Antioxidantes/metabolismo , Ácidos Grasos Volátiles/biosíntesis , Fermentación , Goma Arábiga/química , Microesferas , Sacarosa/química , Alginatos/química , Biomimética , Microbioma GastrointestinalRESUMEN
Azotobacter vineladii is a Gram-negative bacterium that produces alginate and poly-hydroxybutyrate (PHB), two polymers of biotechnological interest. This bacterium has the ability to form desiccation-resistant cysts. In the cyst the membrane phospholipids are replaced with a family of phenolic lipids called alkylresorcinols (ARs). The alginate, PHB, and ARs are controlled by the GacS/A two-component system and the small regulatory RNA (sRNA) RsmZ1, belonging to the Rsm (Csr) regulatory system. The Rsm (Csr) systems usually possess two or more sRNAs, in this regard A. vinelandii is the bacterium with the highest number of rsm-sRNAs. Originally, the presence of two sRNAs of the RsmY family (RsmY1 and RsmY2) was reported, but in a subsequent work it was suggested that they conformed to a single sRNA. In this work we provide genetic evidence confirming that rsmY1 and rsmY2 constitute a single gene. Also, it was established that rsmY mutation decreased alginate and ARs production, but did not affect the PHB synthesis. Transcriptional studies showed that rsmY has its higher expression during the stationary growth phase, and in the absence of RsmZ1, rsmY increases its transcription. Interestingly, rsmY expression was influenced by the carbon source, but its expression did not correlate with alginate production.
Asunto(s)
Alginatos/metabolismo , Azotobacter vinelandii/metabolismo , ARN Bacteriano/metabolismo , Resorcinoles/metabolismo , Azotobacter vinelandii/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Hidroxibutiratos/metabolismo , Mutación , ARN Bacteriano/genéticaRESUMEN
Alginate lyases (endo and exo-lyases) are required for the degradation of alginate into its constituting monomers. Efficient bioethanol production and extraction of bioactives from brown algae requires intensive use of these enzymes. Nonetheless, there are few commercial alginate lyase preparations, and their costs make them unsuitable for large scale experiments. A recombinant expression protocol has been developed in this study for producing seven endo-lyases and three exo-lyases as soluble and highly active preparations. Saccharification of alginate using 21 different endo/exo-lyase combinations shows that there is complementary enzymatic activity between some of the endo/exo pairs. This is probably due to favorable matching of their substrate biases for the different glycosidic bonds in the alginate molecule. Therefore, selection of enzymes for the best saccharification results for a given biomass should be based on screens comprising both types of lyases. Additionally, different incubation temperatures, enzyme load ratios, and enzyme loading strategies were assessed using the best four enzyme combinations for treating Macrocystis pyrifera biomass. It was shown that 30°C with a 1:3 endo/exo loading ratio was suitable for all four combinations. Moreover, simultaneous loading of endo-and exo-lyases at the beginning of the reaction allowed maximum alginate saccharification in half the time than when the exo-lyases were added sequentially.
Asunto(s)
Alginatos/metabolismo , Microbiología Industrial/métodos , Polisacárido Liasas/biosíntesis , Polisacárido Liasas/metabolismo , Algas Marinas/química , Biocombustibles , Clonación Molecular , Escherichia coli/enzimología , Escherichia coli/genética , Expresión Génica , Polisacárido Liasas/clasificación , Polisacárido Liasas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Algas Marinas/metabolismo , TemperaturaRESUMEN
BACKGROUND: Azotobacter vinelandii is a bacterium that produces alginate and polyhydroxybutyrate (P3HB); however, the role of NAD(P)H/NAD(P)+ ratios on the metabolic fluxes through biosynthesis pathways of these biopolymers remains unknown. The aim of this study was to evaluate the NAD(P)H/NAD(P) + ratios and the metabolic fluxes involved in alginate and P3HB biosynthesis, under oxygen-limiting and non-limiting oxygen conditions. RESULTS: The results reveal that changes in the oxygen availability have an important effect on the metabolic fluxes and intracellular NADPH/NADP+ ratio, showing that at the lowest OTR (2.4 mmol L-1 h-1), the flux through the tricarboxylic acid (TCA) cycle decreased 27.6-fold, but the flux through the P3HB biosynthesis increased 6.6-fold in contrast to the cultures without oxygen limitation (OTR = 14.6 mmol L-1 h-1). This was consistent with the increase in the level of transcription of phbB and the P3HB biosynthesis. In addition, under conditions without oxygen limitation, there was an increase in the carbon uptake rate (twofold), as well as in the flux through the pentose phosphate (PP) pathway (4.8-fold), compared to the condition of 2.4 mmol L-1 h-1. At the highest OTR condition, a decrease in the NADPH/NADP+ ratio of threefold was observed, probably as a response to the high respiration rate induced by the respiratory protection of the nitrogenase under diazotrophic conditions, correlating with a high expression of the uncoupled respiratory chain genes (ndhII and cydA) and induction of the expression of the genes encoding the nitrogenase complex (nifH). CONCLUSIONS: We have demonstrated that changes in oxygen availability affect the internal redox state of the cell and carbon metabolic fluxes. This also has a strong impact on the TCA cycle and PP pathway as well as on alginate and P3HB biosynthetic fluxes.
Asunto(s)
Azotobacter vinelandii/metabolismo , Análisis de Flujos Metabólicos , NADP/análisis , NAD/análisis , Oxígeno/metabolismo , Alginatos/metabolismo , Biomasa , Vías Biosintéticas/efectos de los fármacos , Carbono/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Medios de Cultivo/química , NAD/efectos de los fármacos , NAD/metabolismo , NADP/efectos de los fármacos , NADP/metabolismo , Oxidación-Reducción , Oxígeno/farmacología , Vía de Pentosa Fosfato/efectos de los fármacosRESUMEN
Alginate is a linear polysaccharide that can be used for different applications in the food and pharmaceutical industries. These polysaccharides have a chemical structure composed of subunits of (1-4)-ß-D-mannuronic acid (M) and its C-5 epimer α-L-guluronic acid (G). The monomer composition and molecular weight of alginates are known to have effects on their properties. Currently, these polysaccharides are commercially extracted from seaweed but can also be produced by Azotobacter vinelandii and Pseudomonas spp. as an extracellular polymer. One strategy to produce alginates with different molecular weights and with reproducible physicochemical characteristics is through the manipulation of the culture conditions during fermentation. This mini-review provides a comparative analysis of the metabolic pathways and molecular mechanisms involved in alginate polymerization from A. vinelandii and Pseudomonas spp. Different fermentation strategies used to produce alginates at a bioreactor laboratory scale are described.
Asunto(s)
Alginatos/metabolismo , Azotobacter vinelandii/crecimiento & desarrollo , Pseudomonas/crecimiento & desarrollo , Alginatos/química , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Reactores Biológicos , Fermentación , Ácido Glucurónico/química , Ácido Glucurónico/metabolismo , Ácidos Hexurónicos/química , Ácidos Hexurónicos/metabolismo , Redes y Vías Metabólicas , Peso Molecular , Pseudomonas/genética , Pseudomonas/metabolismoRESUMEN
Background: In recent years, Antarctica has become a key source of biotechnological resources. Native microorganisms have developed a wide range of survival strategies to adapt to the harsh Antarctic environment, including the formation of biofilms. Alginate is the principal component of the exopolysaccharide matrix in biofilms produced by Pseudomonas, and this component is highly demanded for the production of a wide variety of commercial products. There is a constant search for efficient alginate-producing organisms. Results: In this study, a novel strain of Pseudomonas mandelii isolated from Antarctica was characterized and found to overproduce alginate compared with other good alginate producers such as Pseudomonas aeruginosa and Pseudomonas fluorescens. Alginate production and expression levels of the alginate operon were highest at 4°C. It is probable that this alginate-overproducing phenotype was the result of downregulated MucA, an anti-sigma factor of AlgU. Conclusion: Because biofilm formation is an efficient bacterial strategy to overcome stressful conditions, alginate overproduction might represent the best solution for the successful adaptation of P. mandelii to the extreme temperatures of the Antarctic. Through additional research, it is possible that this novel P. mandelii strain could become an additional source for biotechnological alginate production.
Asunto(s)
Pseudomonas/metabolismo , Alginatos/metabolismo , Polisacáridos Bacterianos/metabolismo , Pseudomonas/crecimiento & desarrollo , Pseudomonas/genética , Adaptación Biológica , Frío , Microscopía Confocal , Biopelículas , Phaeophyceae , Tipificación de Secuencias Multilocus , Reacción en Cadena en Tiempo Real de la Polimerasa , Regiones AntárticasRESUMEN
Abstract The aim of this study was to evaluate the effects of alginate entrapment on fermentation metabolites of Kluyveromyces marxianus grown in agrowastes that served as the liquid culture media. K. marxianus cells entrapped in Na-alginate were prepared using the traditional liquid-droplet-forming method. Whey and pomaces from processed tomatoes, peppers, and grapes were used as the culture media. The changes in the concentrations of sugar, alcohol, organic acids, and flavor compounds were analyzed using gas chromatography-mass spectrometry (GC-MS) and high pressure liquid chromatography (HPLC). Both free and entrapped, K. marxianus were used individually to metabolize sugars, organic acids, alcohols, and flavor compounds in the tomato, pepper, grape, and acid whey based media. Marked changes in the fermentation behaviors of entrapped and free K. marxianus were observed in each culture. A 1.45-log increase was observed in the cell numbers of free K. marxianus during fermentation. On the contrary, the cell numbers of entrapped K. marxianus remained the same. Both free and entrapped K. marxianus brought about the fermentation of sugars such as glucose, fructose, and lactose in the agrowaste cultures. The highest volume of ethanol was produced by K. marxianus in the whey based media. The concentrations of flavor compounds such as ethyl acetate, isoamyl alcohol, isoamyl acetate, 2-phenylethyl isobutyrate, phenylethyl acetate, and phenylethyl alcohol were higher in fermented agrowaste based media compared to the control.
Asunto(s)
Residuos , Kluyveromyces/metabolismo , Alginatos/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Fermentación , Biodegradación Ambiental , Ácido Glucurónico/metabolismo , Ácidos Hexurónicos/metabolismo , Residuos IndustrialesRESUMEN
The aim of this study was to evaluate the effects of alginate entrapment on fermentation metabolites of Kluyveromyces marxianus grown in agrowastes that served as the liquid culture media. K. marxianus cells entrapped in Na-alginate were prepared using the traditional liquid-droplet-forming method. Whey and pomaces from processed tomatoes, peppers, and grapes were used as the culture media. The changes in the concentrations of sugar, alcohol, organic acids, and flavor compounds were analyzed using gas chromatography-mass spectrometry (GC-MS) and high pressure liquid chromatography (HPLC). Both free and entrapped, K. marxianus were used individually to metabolize sugars, organic acids, alcohols, and flavor compounds in the tomato, pepper, grape, and acid whey based media. Marked changes in the fermentation behaviors of entrapped and free K. marxianus were observed in each culture. A 1.45-log increase was observed in the cell numbers of free K. marxianus during fermentation. On the contrary, the cell numbers of entrapped K. marxianus remained the same. Both free and entrapped K. marxianus brought about the fermentation of sugars such as glucose, fructose, and lactose in the agrowaste cultures. The highest volume of ethanol was produced by K. marxianus in the whey based media. The concentrations of flavor compounds such as ethyl acetate, isoamyl alcohol, isoamyl acetate, 2-phenylethyl isobutyrate, phenylethyl acetate, and phenylethyl alcohol were higher in fermented agrowaste based media compared to the control.(AU)
Asunto(s)
Kluyveromyces/enzimología , Kluyveromyces/crecimiento & desarrollo , Alginatos/análisis , Alginatos/metabolismoRESUMEN
The aim of this study was to evaluate the effects of alginate entrapment on fermentation metabolites of Kluyveromyces marxianus grown in agrowastes that served as the liquid culture media. K. marxianus cells entrapped in Na-alginate were prepared using the traditional liquid-droplet-forming method. Whey and pomaces from processed tomatoes, peppers, and grapes were used as the culture media. The changes in the concentrations of sugar, alcohol, organic acids, and flavor compounds were analyzed using gas chromatography-mass spectrometry (GC-MS) and high pressure liquid chromatography (HPLC). Both free and entrapped, K. marxianus were used individually to metabolize sugars, organic acids, alcohols, and flavor compounds in the tomato, pepper, grape, and acid whey based media. Marked changes in the fermentation behaviors of entrapped and free K. marxianus were observed in each culture. A 1.45-log increase was observed in the cell numbers of free K. marxianus during fermentation. On the contrary, the cell numbers of entrapped K. marxianus remained the same. Both free and entrapped K. marxianus brought about the fermentation of sugars such as glucose, fructose, and lactose in the agrowaste cultures. The highest volume of ethanol was produced by K. marxianus in the whey based media. The concentrations of flavor compounds such as ethyl acetate, isoamyl alcohol, isoamyl acetate, 2-phenylethyl isobutyrate, phenylethyl acetate, and phenylethyl alcohol were higher in fermented agrowaste based media compared to the control.
Asunto(s)
Alginatos/metabolismo , Fermentación , Kluyveromyces/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Residuos , Biodegradación Ambiental , Ácido Glucurónico/metabolismo , Ácidos Hexurónicos/metabolismo , Residuos IndustrialesRESUMEN
Alginates are abundant polysaccharides in brown algae that constitute an important energy source for marine heterotrophic bacteria. Despite the key role of alginate degradation processes in the marine carbon cycle, little information is available on the bacterial populations involved in these processes. The aim of this work was to gain a better understanding of alginate utilization capabilities in cold coastal environments. Sediment metagenomes from four high-latitude regions of both Hemispheres were interrogated for alginate lyase gene homologue sequences and their genomic context. Sediments contained highly abundant and diverse bacterial assemblages with alginolytic potential, including members of Bacteroidetes and Proteobacteria, as well as several poorly characterized taxa. The microbial communities in Arctic and Antarctic sediments exhibited the most similar alginolytic profiles, whereas brackish sediments showed distinct structures with a higher proportion of novel genes. Examination of the gene neighbourhood of the alginate lyase homologues revealed distinct patterns depending on the potential lineage of the scaffolds, with evidence of evolutionary relationships among alginolytic gene clusters from Bacteroidetes and Proteobacteria. This information is relevant for understanding carbon fluxes in cold coastal environments and provides valuable information for the development of biotechnological applications from brown algae biomass.