Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Protein Expr Purif ; 210: 106327, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37348663

RESUMEN

Penicillin G acylase (PGA) is a strategic enzyme in the production processes of beta-lactam antibiotics. High demand for ß-lactam semisynthetic antibiotics explain the genetic and biochemical engineering strategies devoted towards novel ways for PGA production and application. This work presents a fermentation process for the heterologous production of PGA from Alcaligenes faecalis in Bacillus megaterium with optimization. The thermal stability from A. faecalis PGA is considerably higher than other described PGA and the recombinant enzyme is secreted to the culture medium by B. megaterium, which facilitates the separation and purification steps. Media optimization using fractional factorial design experiments was used to identify factors related to PGA activity detection in supernatant and cell lysates. The optimized medium resulted in almost 6-fold increased activity in the supernatant samples when compared with the basal medium. Maximum enzyme activity in optimized medium composition achieves values between 135 and 140 IU/ml. The results suggest a promising model for recombinant production of PGA in B. megaterium with possible extracellular expression of the active enzyme.


Asunto(s)
Alcaligenes faecalis , Bacillus megaterium , Penicilina Amidasa , Alcaligenes faecalis/genética , Alcaligenes faecalis/metabolismo , Penicilina Amidasa/genética , Penicilina Amidasa/metabolismo , Antibacterianos , beta-Lactamas
2.
PLoS One ; 15(11): e0241546, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33151992

RESUMEN

Here we present and analyze the complete genome of Alcaligenes faecalis strain Mc250 (Mc250), a bacterium isolated from the roots of Mimosa calodendron, an endemic plant growing in ferruginous rupestrian grasslands in Minas Gerais State, Brazil. The genome has 4,159,911 bp and 3,719 predicted protein-coding genes, in a single chromosome. Comparison of the Mc250 genome with 36 other Alcaligenes faecalis genomes revealed that there is considerable gene content variation among these strains, with the core genome representing only 39% of the protein-coding gene repertoire of Mc250. Mc250 encodes a complete denitrification pathway, a network of pathways associated with phenolic compounds degradation, and genes associated with HCN and siderophores synthesis; we also found a repertoire of genes associated with metal internalization and metabolism, sulfate/sulfonate and cysteine metabolism, oxidative stress and DNA repair. These findings reveal the genomic basis for the adaptation of this bacterium to the harsh environmental conditions from where it was isolated. Gene clusters associated with ectoine, terpene, resorcinol, and emulsan biosynthesis that can confer some competitive advantage were also found. Experimental results showed that Mc250 was able to reduce (~60%) the virulence phenotype of the plant pathogen Xanthomonas citri subsp. citri when co-inoculated in Citrus sinensis, and was able to eradicate 98% of juveniles and stabilize the hatching rate of eggs to 4% in two species of agricultural nematodes. These results reveal biotechnological potential for the Mc250 strain and warrant its further investigation as a biocontrol and plant growth-promoting bacterium.


Asunto(s)
Alcaligenes faecalis/genética , Citrus/microbiología , Genoma Bacteriano , Secuenciación Completa del Genoma , Alcaligenes faecalis/efectos de los fármacos , Animales , Antibacterianos/farmacología , Secuencia de Bases , Citrus/parasitología , ADN Circular/genética , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Islas Genómicas/genética , Hierro/metabolismo , Metales Pesados/toxicidad , Mimosa/microbiología , Nematodos/fisiología , Fenoles/metabolismo , Filogenia
3.
Biomed Res Int ; 2015: 570243, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25667924

RESUMEN

We report the isolation of a bacterium from Galleria mellonella larva and its identification using genome sequencing and phylogenomic analysis. This bacterium was named Alcaligenes faecalis strain MOR02. Microscopic analyses revealed that the bacteria are located in the esophagus and intestine of the nematodes Steinernema feltiae, S. carpocapsae, and H. bacteriophora. Using G. mellonella larvae as a model, when the larvae were injected with 24,000 CFU in their hemocoel, more than 96% mortality was achieved after 24 h. Additionally, toxicity assays determined that 1 µg of supernatant extract from A. faecalis MOR02 killed more than 70% G. mellonella larvae 96 h after injection. A correlation of experimental data with sequence genome analyses was also performed. We discovered genes that encode proteins and enzymes that are related to pathogenicity, toxicity, and host/environment interactions that may be responsible for the observed phenotypic characteristics. Our data demonstrates that the bacteria are able to use different strategies to colonize nematodes and kill insects to their own benefit. However, there remains an extensive group of unidentified microorganisms that could be participating in the infection process. Additionally, a nematode-bacterium association could be established probably as a strategy of dispersion and colonization.


Asunto(s)
Alcaligenes faecalis/genética , Alcaligenes faecalis/patogenicidad , Larva/microbiología , Mariposas Nocturnas/microbiología , Control Biológico de Vectores/métodos , Alcaligenes faecalis/aislamiento & purificación , Animales , Productos Biológicos/farmacología , Larva/efectos de los fármacos , Mariposas Nocturnas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA