RESUMEN
Urinary tract infections (UTIs) represent a clinical and epidemiological problem of worldwide impact that affects the economy and the emotional state of the patient. Control of the condition is complicated due to multidrug resistance of pathogens associated with the disease. Considering the difficulty in carrying out effective treatment with antimicrobials, it is necessary to propose alternatives that improve the clinical status of the patients. With this purpose, in a previous study, the safety and immunostimulant capacity of a polyvalent lysate designated UNAM-HIMFG prepared with different bacteria isolated during a prospective study of chronic urinary tract infection (CUTI) was evaluated. In this work, using an animal model, results are presented on the immunostimulant and protective activity of the polyvalent UNAM-HIMFG lysate to define its potential use in the control and treatment of CUTI. Female Balb/c mice were infected through the urethra with Escherichia coli CFT073 (UPEC O6:K2:H1) strain; urine samples were collected before the infection and every week for up to 60 days. Once the animals were colonized, sublingual doses of UNAM-HIMFG lysate were administrated. The colonization of the bladder and kidneys was evaluated by culture, and their alterations were assessed using histopathological analysis. On the other hand, the immunostimulant activity of the compound was analyzed by qPCR of spleen mRNA. Uninfected animals receiving UNAM-HIMFG lysate and infected animals administered with the physiological saline solution were used as controls. During this study, the clinical status and evolution of the animals were evaluated. At ninety-six hours after infection, the presence of CFT073 was identified in the urine of infected animals, and then, sublingual administration of UNAM-HIMFG lysate was started every week for 60 days. The urine culture of mice treated with UNAM-HIMFG lysate showed the presence of bacteria for three weeks post-treatment; in contrast, in the untreated animals, positive cultures were observed until the 60th day of this study. The histological analysis of bladder samples from untreated animals showed the presence of chronic inflammation and bacteria in the submucosa, while tissues from mice treated with UNAM-HIMFG lysate did not show alterations. The same analysis of kidney samples of the two groups (treated and untreated) did not present alterations. Immunostimulant activity assays of UNAM-HIMFG lysate showed overexpression of TNF-α and IL-10. Results suggest that the lysate activates the expression of cytokines that inhibit the growth of inoculated bacteria and control the inflammation responsible for tissue damage. In conclusion, UNAM-HIMFG lysate is effective for the treatment and control of CUTIs without the use of antimicrobials.
Asunto(s)
Infecciones por Escherichia coli , Ratones Endogámicos BALB C , Vejiga Urinaria , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Infecciones Urinarias/microbiología , Infecciones Urinarias/inmunología , Femenino , Ratones , Vejiga Urinaria/microbiología , Vejiga Urinaria/inmunología , Vejiga Urinaria/patología , Vejiga Urinaria/efectos de los fármacos , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Escherichia coli Uropatógena/inmunología , Escherichia coli Uropatógena/patogenicidad , Modelos Animales de Enfermedad , Adyuvantes Inmunológicos/farmacología , Lisados BacterianosRESUMEN
Sheep farming contributes to the socioeconomic development of small and medium-scale livestock farmers. However, several factors can hinder successful animal production, as is the case for infectious diseases, such as the one caused by Corynebacterium pseudotuberculosis, known as caseous lymphadenitis (CLA). CLA has >90% prevalence in Brazilian herds and antibiotic treatment is not effective, consequently causing significant economic losses to farmers. Given the above, effective vaccines need to be developed to prevent this disease. This study aimed to evaluate the adjuvant activity of the lipid extract from the macroalgae Iridaea cordata as a candidate for developing an effective vaccine formulation. For such, four groups of six sheep each were inoculated with sterile 0.9% saline solution (G1), rCP01850 (G2), rCP01850 + I. cordata (G3), and rCP01850 + saponin (G4). Each sheep received two vaccine doses 30 days apart. Total IgG production levels significantly increased in experimental groups G3 and G4 on days 30, 60, and 90. On day 90, G3 showed higher total IgG production (p < 0.05) when compared to G4. When analyzing cytokine production, G3 was the only experimental group with significantly increased IFN-γ, IL-12, TNF-α, and IL-10 mRNA expression levels. Our results show the vaccine formulation containing rCP01850 adjuvanted with the I. cordata lipid extract elicited a Th1 immune response in sheep, indicating I. cordata lipid extract may be a promising adjuvant for developing an effective vaccine against infection caused by C. pseudotuberculosis.
Asunto(s)
Adyuvantes Inmunológicos , Vacunas Bacterianas , Corynebacterium pseudotuberculosis , Enfermedades de las Ovejas , Células TH1 , Animales , Ovinos , Enfermedades de las Ovejas/prevención & control , Enfermedades de las Ovejas/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Células TH1/inmunología , Corynebacterium pseudotuberculosis/inmunología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Citocinas/metabolismo , Citocinas/inmunología , Inmunoglobulina G/sangre , Infecciones por Corynebacterium/prevención & control , Infecciones por Corynebacterium/inmunología , Lípidos/inmunología , Brasil , Proteínas Bacterianas/inmunologíaRESUMEN
Due to its antimicrobial resistance characteristics, the World Health Organization (WHO) classifies A. baumannii as one of the critical priority pathogens for the development of new therapeutic strategies. Vaccination has been approached as an interesting strategy to overcome the lack of effective antimicrobials and the long time required to develop and approve new drugs. In this study, we aimed to evaluate as a vaccine the hypothetical adhesin protein CAM87009.1 in its recombinant format (rCAM87009.1) associated with aluminum hydroxide (Alhydrogel®) or biogenic silver nanoparticles (bio-AgNP) as adjuvant components against lethal infection by A. baumannii MDR strain. Both vaccine formulations were administered in three doses intramuscularly in BALB/c murine models and the vaccinated animals were tested in a challenge assay with A. baumannii MDR strain (DL100). rCAM87009.1 protein associated with both adjuvants was able to protect 100 % of animals challenged with the lethal strain during the challenge period. After the euthanasia of the animals, no A. baumannii colonies were detected in the lungs of animals vaccinated with the rCAM87009.1 protein in both formulations. Since the first immunization, high IgG antibody titers were observed (1:819,200), with results being statistically similar in both vaccine formulations evaluated. rCAM87009.1 associated with both adjuvants was capable of inducing at least one class of isotypes associated with the processes of neutralization (IgG2b and IgA for bio-AgNP and Alhydrogel®, respectively), opsonization (IgG1 in both vaccines) and complement activation (IgM and IgG3 for bio-AgNP and Alhydrogel®, respectively). Furthermore, reduced tissue damage was observed in animals vaccinated with rCAM87009.1 + bio-AgNP when compared to animals vaccinated with Alhydrogel®. Our results indicate that the rCAM87009.1 protein associated with both bio-AgNP and Alhydrogel® are combinations capable of promoting immunity against infections caused by A. baumannii MDR. Additionally, we demonstrate the potential of silver nanoparticles as alternative adjuvant molecules to the use of aluminum salts.
Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Adhesinas Bacterianas , Adyuvantes Inmunológicos , Anticuerpos Antibacterianos , Nanopartículas del Metal , Ratones Endogámicos BALB C , Plata , Animales , Plata/administración & dosificación , Plata/farmacología , Acinetobacter baumannii/inmunología , Acinetobacter baumannii/efectos de los fármacos , Ratones , Infecciones por Acinetobacter/prevención & control , Infecciones por Acinetobacter/inmunología , Adhesinas Bacterianas/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Farmacorresistencia Bacteriana Múltiple , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Compuestos de Alumbre/administración & dosificación , Femenino , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Modelos Animales de EnfermedadRESUMEN
Selection of adjuvant to be combined with the antigen is an extremely important point for formulating effective vaccines. The aim of this study was to evaluate reactogenicity, levels of IgM, IgG and subclasses (IgG1, IgG2b and IgG3), and protection elicited by vaccine formulations with association of chitosan coated alginate or Montanide ISA 61 with γ-irradiated Brucella ovis. The alginate/chitosan biopolymers as well as the Montanide ISA 61 emulsion elicited intense and long-lasting local response, especially when associated with the antigen. However, Montanide ISA 61 induced less intense reactogenicity when compared to alginate/chitosan. Furthermore, γ-irradiated B. ovis with Montanide ISA 61 induced higher levels of IgG2b an important marker of cellular immune response. In conclusion, Montanide ISA 61 resulted in milder reactogenicity when compared to the alginate/chitosan, while it induced a high IgG2b/IgG1 ratio compatible with a Th1 profile response.
Asunto(s)
Quitosano , Aceite Mineral , Vacunas , Animales , Ratones , Ovinos , Adyuvantes de Vacunas , Cápsulas , Adyuvantes Inmunológicos/farmacología , Inmunoglobulina G , Ratones Endogámicos BALB CRESUMEN
Damiana (Turnera diffusa Willd) was evaluated in vitro for antioxidant and antibacterial activities against Staphylococcus aureus and Streptococcus pyogenes (as a preliminary screening assessment) by high-performance thin-layer chromatography (HPTLC)-Direct bioautography. A study was performed in vivo to evaluate the effects of Damiana enriched diets at 0.5 % on immune parameters in mucus and serum and gene expression in Almaco Jack (Seriola rivoliana) intestine after two and four weeks; an infection with Aeromonas hydrophila at 1x107 colony forming units (CFU) followed and an ex vivo study was carried out using head-kidney leukocytes. Ferric reducing ability of plasma (FRAP) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays showed high antioxidant activities in Damiana leaves; even in the ABTS assay, Damiana at 300 µg/mL showed similar activity to ascorbic acid - the standard control. Damiana exhibited strong in vitro antimicrobial activity against S. aureus and S. pyogenes. In vivo studies showed a strong enhancement of myeloperoxidase, nitric oxide, superoxide dismutase, and catalase activities in mucus and serum of S. rivoliana supplemented with Damiana; their immunological response enhanced after infection with A. hydrophila. IL-1ß, TNF-α, and IL-10 gene expressions upregulated in the fish intestine challenged with the bacterium. Piscidin and macrophage (MARCO) receptor gene expression up-regulated at week 4 and down-regulated after infection. Intestinal histology results confirm that Damiana not cause inflammation or damage. Finally, the ex vivo study confirmed the immunostimulant and protective effects of Damiana through increased phagocytic, respiratory burst, myeloperoxidase activities and nitric oxide generation before and upon the bacterial encounter. These results support the idea that Damiana has the potential as an immunostimulant additive for diets in aquaculture by enhancing immune parameters and protecting Almaco Jack against A. hydrophila infections upon four weeks of supplementation.
Asunto(s)
Benzotiazoles , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Ácidos Sulfónicos , Turnera , Animales , Turnera/química , Antioxidantes/metabolismo , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/metabolismo , Óxido Nítrico/metabolismo , Staphylococcus aureus/metabolismo , Suplementos Dietéticos/análisis , Dieta , Peroxidasa/metabolismo , Aeromonas hydrophila , Infecciones por Bacterias Gramnegativas/veterinaria , Alimentación Animal/análisisRESUMEN
Poultry is commonly infected by different bacteria and parasites in the environment, resulting in increased morbidity and mortality, but immunostimulants have been enhancing non-specific defense mechanisms conferring laying hens' protection. For this purpose, the pulp of yellow (Pouteria campechiana), white (Casimiroa edulis), and black (Diospyros digyna) sapotes were nanoencapsulated (YWB-SN) and evaluated in laying hens' peripheral blood leukocytes to test their addition to the experimental diets at a concentration of 0.5% (5g/kg of dry food) for 1 month (with two samples at days 15 and 30). The YWB-SN were safe when exposed to peripheral blood leukocytes (PBLs). The in vitro experiment showed that these nanocapsules enhanced reactive oxygen species production, and B-SN stimulated phagocytosis activity. Concerning the proinflammatory cytokine (TNF-α) transcription, this gene was upregulated after W-SN stimulation, while B-SN upregulated the IgG gene expression significantly. IgM was upregulated with any YBW-SN in PBLs after 24 h of stimulation. The in vivo study showed a notable B-SN immunostimulation in serum and an upregulation of TNF-α, IgM, and IgG mRNA transcription. Therefore, this study provides a new result of the yellow, white, and black sapote nanocapsules as a functional food for the poultry industry, highlighting the black sapote Diospyros digyna immunostimulant effect.
Asunto(s)
Casimiroa , Diospyros , Manilkara , Nanocápsulas , Pouteria , Animales , Femenino , Pollos/fisiología , Adyuvantes Inmunológicos/farmacología , Factor de Necrosis Tumoral alfa , Dieta/veterinaria , Aves de Corral , Suplementos Dietéticos , Inmunoglobulina G , Inmunoglobulina M , Alimentación Animal/análisisRESUMEN
The development of vaccine adjuvants is of interest for the management of chronic diseases, cancer, and future pandemics. Therefore, the role of Toll-like receptors (TLRs) in the effects of vaccine adjuvants has been investigated. TLR4 ligand-based adjuvants are the most frequently used adjuvants for human vaccines. Among TLR family members, TLR4 has unique dual signaling capabilities due to the recruitment of two adapter proteins, myeloid differentiation marker 88 (MyD88) and interferon-ß adapter inducer containing the toll-interleukin-1 receptor (TIR) domain (TRIF). MyD88-mediated signaling triggers a proinflammatory innate immune response, while TRIF-mediated signaling leads to an adaptive immune response. Most studies have used lipopolysaccharide-based ligands as TLR4 ligand-based adjuvants; however, although protein-based ligands have been proven advantageous as adjuvants, their mechanisms of action, including their ability to undergo structural modifications to achieve optimal immunogenicity, have been explored less thoroughly. In this work, we characterized the effects of two protein-based adjuvants (PBAs) on TLR4 signaling via the recruitment of MyD88 and TRIF. As models of TLR4-PBAs, we used hemocyanin from Fissurella latimarginata (FLH) and a recombinant surface immunogenic protein (rSIP) from Streptococcus agalactiae. We determined that rSIP and FLH are partial TLR4 agonists, and depending on the protein agonist used, TLR4 has a unique bias toward the TRIF or MyD88 pathway. Furthermore, when characterizing gene products with MyD88 and TRIF pathway-dependent expression, differences in TLR4-associated signaling were observed. rSIP and FLH require MyD88 and TRIF to activate nuclear factor kappa beta (NF-κB) and interferon regulatory factor (IRF). However, rSIP and FLH have a specific pattern of interleukin 6 (IL-6) and interferon gamma-induced protein 10 (IP-10) secretion associated with MyD88 and TRIF recruitment. Functionally, rSIP and FLH promote antigen cross-presentation in a manner dependent on TLR4, MyD88 and TRIF signaling. However, FLH activates a specific TRIF-dependent signaling pathway associated with cytokine expression and a pathway dependent on MyD88 and TRIF recruitment for antigen cross-presentation. Finally, this work supports the use of these TLR4-PBAs as clinically useful vaccine adjuvants that selectively activate TRIF- and MyD88-dependent signaling to drive safe innate immune responses and vigorous Th1 adaptive immune responses.
Asunto(s)
Factor 88 de Diferenciación Mieloide , Receptor Toll-Like 4 , Humanos , Receptor Toll-Like 4/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Hemocianinas/metabolismo , Streptococcus agalactiae , Ligandos , Proteínas de la Membrana/metabolismo , Adyuvantes de Vacunas , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adyuvantes Inmunológicos/farmacología , Proteínas Adaptadoras del Transporte Vesicular/metabolismoRESUMEN
Adjuvants represent a promising strategy to improve vaccine effectiveness against infectious diseases such as leishmaniasis. Vaccination with the invariant natural killer T cell ligand α-galactosylceramide (αGalCer) has been used successfully as adjuvant, generating a Th1-biased immunomodulation. This glycolipid enhances experimental vaccination platforms against intracellular parasites including Plasmodium yoelii and Mycobacterium tuberculosis. In the present study, we assessed the protective immunity induced by a single-dose intraperitoneal injection of αGalCer (2 µg) co-administrated with a lysate antigen of amastigotes (100 µg) against Leishmania mexicana infection in BALB/c mice. The prophylactic vaccination led to 5.0-fold reduction of parasite load at the infection site, compared to non-vaccinated mice. A predominant pro-inflammatory response was observed in challenged vaccinated mice, represented by a 1.9 and 2.8-fold-increase of IL-1ß and IFN-γ producing cells, respectively, in the lesions, and by 23.7-fold-increase of IFN-γ production in supernatants of restimulated splenocytes, all compared to control groups. The co-administration of αGalCer also stimulated the maturation of splenic dendritic cells and modulated a Th1-skewed immune response, with high amounts of IFN-γ production in serum. Furthermore, peritoneal cells of αGalCer-immunized mice exhibited an elevated expression of Ly6G and MHCII. These findings indicate that αGalCer improves protection against cutaneous leishmaniasis, supporting evidence for its potential use as adjuvant in Leishmania-vaccines.
Asunto(s)
Leishmania mexicana , Leishmaniasis Cutánea , Ratones , Animales , Ratones Endogámicos BALB C , Inmunidad Celular , Adyuvantes Inmunológicos/farmacología , Antígenos de ProtozoosRESUMEN
Background: Emulsions have been widely used as immunological adjuvants. But the use of materials derived from plants such as cottonseed oil, alpha-tocopherol, or minerals such as zinc, as well as their use at the nanometric scale has been little explored. In this study, we develop a new miniemulsion and evaluated its antioxidant and phagocytic capacity, as well as parameters related to immune response stimulation by cytokine expression and antibodies production in a mice model. Methods: Formulated CN (cottonseed oil miniemulsion) and CNZ (cottonseed oil miniemulsion whit zinc oxide nanoparticles) miniemulsions were characterized by scanning electronic microscopy SEM, DLS and FT-IR. In murine macrophages, splenocytes and thymocytes primary cultures safety and cytotoxicity were determined by MTT. In macrophages the antioxidant and phagocytic capacity was evaluated. In BALB/c mice, the stimulation of the immune system was determined by the expression of cytokines and the production of antibodies. Results: The CN and CNZ presented stability for 90 days. Immediately after preparation, the CN presented a higher particle size (543.1 nm) than CNZ (320 nm). FT-IR demonstrated the correct nanoparticle synthesis by the absence of sulfate groups. CN and CNZ (1.25 to 10 µL/mL) had no toxic effect on macrophages (p = 0.108), splenocytes (p = 0.413), and thymocytes (p = 0.923). All CN and CNZ doses tested induced nitric oxide and antioxidants production in dose dependent manner when compared with control. CN-ovalbumin and CNZ-ovalbumin treatments in femoral subcutaneous tissue area showed inflammation with higher leukocyte infiltration compared with FCA. The intraperitoneal administration with CN, CNZ, and FCA showed a higher total intraperitoneal cells recruitment (CD14+) after 24 h of inoculation than control (p = 0.0001). CN and CNZ increased the phagocyte capacity with respect to untreated macrophages in the Candida albicans-phagocytosis assay. The evaluation of residual CFU indicated that only CN significantly decreased (p = 0.004) this value at 3 h. By other side, only CN increased (p = 0.002) the nitric oxide production. CNZ stimulated a major INFγ secretion compared with FCA at day 7. A major IL-2 secretion was observed at days 7 and 14, stimulated with CN and CNZ. Both miniemulsions did not affect the antibody isotypes production (IgG1, IgG2a, IgG3, IgA and IgM) at days 7, 14, 28, and 42. CN induced a significant IgG production against OVA, but lesser than FCA. Conclusions: The two new miniemulsions with adjuvant and antioxidant capacity, were capable of generating leukocyte infiltration and increased cytokines and antibodies production.
Asunto(s)
Óxido de Zinc , Animales , Ratones , Óxido de Zinc/farmacología , alfa-Tocoferol/farmacología , Aceite de Semillas de Algodón , Ovalbúmina , Antioxidantes/farmacología , Óxido Nítrico , Espectroscopía Infrarroja por Transformada de Fourier , Adyuvantes Inmunológicos/farmacología , Citocinas , Inmunoglobulina G , Adyuvantes FarmacéuticosRESUMEN
Background: Cryptococcosis is a relevant invasive fungal infection that affects immunocompromised and immunocompetent individuals when caused by Cryptococcus gattii. Host innate and adaptive immune responses can be subverted by C. gattii, that blocks the differentiation of T helper (Th) 1 and Th17 cells, which are involved in the protection against cryptococcosis. Moreover, the macrophage polarization is modulated by C. gattii infection that requires a balance in the macrophage subsets to control the C. gattii infection. Toll-like receptor (TLR) 2 agonists are important immunomodulators favoring a pro-inflammatory response with potential fungicidal activity, and TLR2 agonists have been used as adjuvants in vaccines against infections caused by bacteria or viruses. Therefore, this work aimed to evaluate the immunomodulatory effect of the tripalmitoyl lipopeptide S-glycerol cysteine (Pam3CSK4 or P3C4), a TLR2 agonist, as an adjuvant in the vaccination against C. gattii infection. Methods and Results: C57BL/6 mice were immunized with 2 × 107 inactivated yeasts of C. gattii via intranasal route on day 1, 14 and 28 (Immunized group). Immunization was associated with 1µg or 10µg of adjuvant P3C4 (Immunized+P3C4-1µg or Immunized+P3C4-10 µg), followed by C. gattii infection on day 42 after the immunization protocol. Immunized+P3C4-1 µg group had reduced levels of IgG1, IgG2a and IgA and no significant difference in the IgG and IgM anti-GXM antibody titer was detected, compared to the Immunized group. High levels of IL-17 and IL-1ß in lung tissue of mice from the Immunized+P3C4-1µg group did not promote a predominance of Th17 cells, in contrast, the frequency of TLR2+ cells was increased in immunized mice that received 1 µg of P3C4. The reduction in the relative expression of T-bet and high levels of Foxp3 detected in the lungs of the Immunized+P3C4-1µg group suggest a prevalence of regulatory T cells in the tissue, which did not contribute to the control of C. gattii infection. The immunization protocol associated with 10 µg of adjuvant P3C4 induced high levels of IL-17 in the lung tissue, whereas the levels of pro-inflammatory cytokines were downregulated. To evaluate the effect of adjuvant P3C4 in the control of C. gattii infection, quantification of the fungal burden in the lungs was performed by the CFU assay, and the groups with adjuvant P3C4 showed a pulmonary C. gattii burden that was not significantly altered when compared with the immunized group. The mice that received 1 µg of adjuvant P3C4 had a lower percentage of inflammatory infiltrate in the lungs. Conclusion: The immunomodulatory effect of P3C4, associated with the immunization protocol, plays an imbalance between pro- and anti-inflammatory response in the lungs that did not favor a protection against C. gattii infection, which is related to the immune response characterized by a suppressive/regulatory profile in the pulmonary microenvironment after C. gattii infection.
Asunto(s)
Criptococosis , Cryptococcus gattii , Animales , Ratones , Interleucina-17 , Receptor Toll-Like 2 , Ratones Endogámicos C57BL , Criptococosis/prevención & control , Inmunización , Vacunación , Adyuvantes Inmunológicos/farmacologíaRESUMEN
The development of an immunogenic, effective, and safe vaccine is essential as an alternative for disease control. The present study aimed to evaluate the immunogenicity and efficacy potential of a polyepitope T-cell antigen candidate against visceral leishmaniasis in a murine model. BALB/c mice were immunized with three doses subcutaneously with Poly-T Leish alone or adjuvanted with Saponin plus Monophosphoryl lipid A, with 15-day intervals between doses, and challenged with 107 stationary-phase Leishmania infantum promastigotes via tail vein. Immunogenicity and parasitism in spleen and liver of immunized mice were evaluated 45 days post-challenge. Our results revealed that the immunization with Poly-T Leish and Poly-T Leish/SM increases the percentage of specific T (CD4+ and CD8+) lymphocytes proliferation in vitro after antigen-specific stimulation. Also, Poly-T Leish and Poly-T Leish/SM groups showed a high percentage of IFN-γ and TNF-α-producing T cells, meanwhile, the Poly-T Leish/SM group also showed an increased percentage of multifunctional T cells producing double and triple-positive (IFN-γ+TNF-α+IL-2+) cytokines. The immunization with Poly-T Leish or Poly-T Leish/SM stimulated a decreased IL-4 and IL-10 compared to the Saline and adjuvant group. Poly-T Leish/SM immunized mice exhibit a noteworthy reduction in the parasite burden (spleen and liver) through real-time PCR (96%). Moreover, we observed higher nitrite secretion in 120-hour stimulated-culture supernatant using Griess method. We demonstrated that the Poly-T Leish/SM candidate was potentially immunogenic, providing enhancement of protective immune mechanisms, and conferred protection reducing parasitism. Our candidate was considered potential against visceral leishmaniasis, and eventually, could be tested in phase I and II clinical trials in dogs.
Asunto(s)
Leishmania infantum , Vacunas contra la Leishmaniasis , Leishmaniasis Visceral , Adyuvantes Inmunológicos/farmacología , Animales , Antígenos de Protozoos , Perros , Leishmaniasis Visceral/prevención & control , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Factor de Necrosis Tumoral alfaRESUMEN
BACKGROUND: An antigen is a small foreign substance, such as a microorganism structural protein, that may trigger an immune response once inside the body. Antigens are preferentially used rather than completely attenuated microorganisms to develop safe vaccines. Unfortunately, not all antigens are able to induce an immune response. Thus, new adjuvants to enhance the antigen's ability to stimulate immunity must be developed. OBJECTIVES: Therefore, this work aimed to evaluate the molecular-structure adjuvant activity of tannic acid (TA) coupled to a protein antigen in Balb/c mice. METHODS: Bovine serum albumin (BSA) was used as an antigen. The coupling of BSA and TA was mediated by carbodiimide crosslinking, and verified by SDS-PAGE. Forty-two Balb/c mice were divided into seven groups, including two controls without antigen, an antigen control, an adjuvant control, and two treatment groups. An additional group was used for macrophages isolation. A 30-day scheme was used to immunize the mice. The analysis of humoral immunity included immunoglobulin quantification, isotyping and antigen-antibody precipitation. The analysis of cell-mediated immunity included the quantification of nitric oxide from peritoneal macrophages and splenocytes' proliferation assay after treatment stimulation. RESULTS: No differences were found in the antibodies' concentration or isotypes induced with the conjugate or the pure BSA. However, an immunogenicity improvement (p < 0.05) was observed through the specific anti-BSA antibody titers in mice immunized with the conjugate. Besides, macrophage activation (p < 0.05) was detected when stimulated with the treatments containing TA. CONCLUSION: Tannic acid exhibited macrophages' activation properties. Moreover, when TA was incorporated into the structure of a protein antigen, such as BSA, an antibody specificity enhancement was observed. This was a consequence of antigen processing by activated antigen-presenting cells. These results showed the use of tannic acid as a novel candidate for vaccine molecular-structure adjuvant.
Asunto(s)
Taninos , Vacunas , Ratones , Animales , Especificidad de Anticuerpos , Adyuvantes Inmunológicos/farmacología , Inmunidad Humoral , Ratones Endogámicos BALB C , Albúmina Sérica Bovina/químicaRESUMEN
The serine/arginine-rich protein kinases (SRPK) specifically phosphorylate their substrates at RS-rich dipeptides, which are abundantly found in SR splicing factors. SRPK are classically known for their ability to affect the splicing and expression of gene isoforms commonly implicated in cancer and diseases associated with infectious processes. Non-splicing functions have also been attributed to SRPK, which highlight their functional plasticity and relevance as therapeutic targets for pharmacological intervention. In this sense, different SRPK inhibitors have been developed, such as the well-known SRPIN340 and its derivatives, with anticancer and antiviral activities. Here we evaluated the potential immunomodulatory activity of SRPIN340 and three trifluoromethyl arylamide derivatives. In in vitro analysis with RAW 264.7 macrophages and primary splenocytes, all the compounds modulated the expression of immune response mediators and antigen-presentation molecules related to a tendency for M2 macrophage polarization. Immunization experiments were carried out in mice to evaluate their potential as vaccine immunostimulants. When administrated alone, the compounds altered the expression of immune factors at the injection site and did not produce macroscopic or microscopic local reactions. In addition, when prepared as an adjuvant with inactivated EHV-1 antigens, all the compounds increased the anti-EHV-1 neutralizing antibody titers, a change that is consistent with an increased Th2 response. These findings demonstrate that SRPIN340 and its derivatives exhibit a noticeable capacity to modulate innate and adaptative immune cells, disclosing their potential to be used as vaccine adjuvants or in immunotherapies.
Asunto(s)
Adyuvantes de Vacunas , Vacunas , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Neutralizantes , Antivirales , Arginina , Dipéptidos , Inmunidad , Ratones , Niacinamida/análogos & derivados , Piperidinas , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas , Factores de Empalme de ARN , SerinaRESUMEN
Adjuvants are essential for vaccine development, especially subunit-based vaccines such as those containing recombinant proteins. Increasing the knowledge of the immune response mechanisms generated by adjuvants should facilitate the formulation of vaccines in the future. The present work describes the immune phenotypes induced by Poly (I:C) and Montanide ISA 720 in the context of mice immunization with a recombinant protein based on the Plasmodium vivax circumsporozoite protein (PvCSP) sequence. Mice immunized with the recombinant protein plus Montanide ISA 720 showed an overall more robust humoral response, inducing antibodies with greater avidity to the antigen. A general trend for mixed Th1/Th2 inflammatory cytokine profile was increased in Montanide-adjuvanted mice, while a balanced profile was observed in Poly (I:C)-adjuvanted mice. Montanide ISA 720 induced a gene signature in B lymphocytes characteristic of heme biosynthesis, suggesting increased differentiation to Plasma Cells. On the other hand, Poly (I:C) provoked more perturbations in T cell transcriptome. These results extend the understanding of the modulation of specific immune responses induced by different classes of adjuvants, and could support the optimization of subunit-based vaccines.
Asunto(s)
Adyuvantes Inmunológicos , Anticuerpos Antiprotozoarios , Adyuvantes Inmunológicos/farmacología , Adyuvantes Farmacéuticos , Animales , Sistema Inmunológico , Inmunidad , Ratones , Aceite Mineral , Poli I-C , Proteínas RecombinantesRESUMEN
Adjuvants are essential components of subunit, recombinant, nonreplicating and killed vaccines, as they are substances that boost, shape, and/or enhance the immune response triggered by vaccination. Saponins obtained from the Chilean Q. saponaria tree are used as vaccine adjuvants in commercial vaccines, although they are scarce and difficult to obtain. In addition, tree felling is needed during its extraction, which has ecological impact. Q. brasiliensis leaf-extracted saponins arise as a more sustainable alternative, although its use is still limited to preclinical studies. Despite the remarkable immunostimulating properties of saponins, they are toxic to mammalian cells, due to their intrinsic characteristics. For these reasons they are mostly used in veterinary vaccines, although recently the Q. saponaria purified saponin QS-21 has been included in adjuvant systems for human vaccines, such as Mosquirix and Shingrix (GSK). In order to abrogate the toxicity of the saponins fractions, they can be formulated as immunostimulating complexes (ISCOMs). ISCOM-matrices are cage-like nanoparticles of approximately 40 nm, formulated combining saponins and lipids, without antigen, and are great adjuvants able to promote Th1-biased immune responses in a safe manner. Herein we describe how to formulate ISCOM-matrices nanoparticles using Q. brasiliensis purified saponin fractions (IMXQB) by the dialysis method. In addition, we indicate how to verify the appropriate size and homogeneity of the formulated nanoparticles.
Asunto(s)
ISCOMs , Nanopartículas , Saponinas , Adyuvantes Inmunológicos/farmacología , Adyuvantes de Vacunas , Animales , Humanos , ISCOMs/farmacología , Vacunas contra la Malaria , Mamíferos , Quillaja , Saponinas de Quillaja , Saponinas/farmacologíaRESUMEN
Allergen immunotherapy (AIT) is the sole disease-modifying treatment for allergic rhinitis; it prevents rhinitis from progressing to asthma and lowers medication use. AIT against mites, insect venom, and certain kinds of pollen is effective. The mechanism of action of AIT is based on inducing immunological tolerance characterized by increased IL-10, TGF-ß, and IgG4 levels and Treg cell counts. However, AIT requires prolonged schemes of administration and is sometimes associated with adverse reactions. Over the last decade, novel forms of AIT have been developed, focused on better allergen identification, structural modifications to preserve epitopes for B or T cells, post-traductional alteration through chemical processes, and the addition of adjuvants. These modified allergens induce clinical-immunological effects similar to those mentioned above, increasing the tolerance to other related allergens but with fewer side effects. Clinical studies have shown that molecular AIT is efficient in treating grass and birch allergies. This article reviews the possibility of a new AIT to improve the treatment of allergic illness.
Asunto(s)
Desensibilización Inmunológica/tendencias , Adyuvantes Inmunológicos/farmacología , Humanos , Inmunización , Péptidos/inmunología , Proteómica , Resultado del TratamientoRESUMEN
Inactivation by hydrogen peroxide and pH manipulation are two novel methods used recently in experimental vaccines against Streptococcus agalactiae in Nile tilapia. Here we describe in detail inactivation using novel methods as well as the classical method of inactivation. These vaccines showed similar moderate efficacy when compared to the conventional formaldehyde vaccine. In addition, we describe the inclusion of adjuvants in a hydrogen peroxide vaccine.
Asunto(s)
Cíclidos , Enfermedades de los Peces , Infecciones Estreptocócicas , Vacunas Estreptocócicas , Streptococcus agalactiae , Adyuvantes Inmunológicos/farmacología , Animales , Enfermedades de los Peces/prevención & control , Peróxido de Hidrógeno , Infecciones Estreptocócicas/prevención & control , Infecciones Estreptocócicas/veterinaria , Streptococcus agalactiae/inmunologíaRESUMEN
BACKGROUND: Immunization or vaccination is the process of inducing artificial immunity against an antigen taking advantage of the mechanisms of immunological memory. Current vaccines include substances known as adjuvants, which tend to improve the immunogenicity of the antigen, reduce the antigen quantity employed, and boost the immune response in weak responders. Unfortunately, only a few vaccine adjuvants are approved for human use. OBJECTIVE: Thus, the objective of this study was to investigate the effect of Tannic acid on humoral and cell-mediated immunity against bovine serum albumin (BSA) as a protein antigen in Wistar rats. METHODS: In order to establish the Tannic acid concentration to test it as an adjuvant, the lethal dose 50 and maximum non-toxic dose were calculated through cytotoxicity and hemolytic assays with J774 A.1 cell line and rat erythrocytes by resazurin reduction method and UV/vis spectrophotometry. Thirty Wistar rats were divided into 5 groups that included two controls without antigen and three treatment groups of adjuvants plus BSA as a protein antigen. The rats were immunized in a 30-day scheme. Blood samples were collected for humoral immunity analysis by means of immunoglobulin quantification, isotyping and antigen-antibody precipitation inhibition analysis. Rat peritoneal macrophages and splenocytes were isolated for cell-mediated immunity analysis by means of nitric oxide quantification from adjuvant stimulated peritoneal macrophages and lymphocytes proliferation assay. RESULTS: Tannic acid was capable of increasing the immunogenicity of the antigen; besides, it was able to stimulate cell-mediated immunity by means of increased lymphocyte proliferation. Moreover, Tannic acid improved the humoral response by means of increased specific antibodies titers. These activities may be attributed to pattern recognition receptors stimulation. CONCLUSION: Tannic acid was considered biocompatible when tested in vivo because the concentration tested did not show cytotoxicity or hemolytic effect, and there was no detrimental effect observed on the animals' health. These results show Tannic acid as a promising candidate for vaccine adjuvant.
Asunto(s)
Albúmina Sérica Bovina , Taninos , Adyuvantes Inmunológicos/farmacología , Animales , Inmunidad Celular , Inmunidad Humoral , Ratas , Ratas Wistar , Taninos/farmacologíaRESUMEN
The overuse of antibiotics in aquaculture has led to serious concerns on microbial resistance and chemical residues. Novel sources of immunostimulants could help to solve this problem by stimulating the immune system to fight against pathogens. Therefore, this study aims to explore the immunostimulant potential of Cystobacidium benthicum-ß-glucans (Cb-ßG) using thymus cells from Totoaba (Totoaba macdonaldi), a recently farmed fish species in Mexico. The Cb-ßG was characterized and tested for its own antioxidant capacity. Then, a Cb-ßG safety experiment was carried out in thymus cells by evaluating the effects on immune parameters and immune-related genes. Cb-ßG had a molecular weight of 2.32 kDa, comprised of ß-1,3-1,6-glucan (53.4%), and showed strong antioxidant capacity compared to that of the positive antioxidant control. Cb-ßG had no toxic effects of thymus cells and enhanced phagocytic, respiratory burst, myeloperoxidase and superoxide activities. Additionally, immune-related genes implicated in recognition and effector functions of yeast glucans were up-regulated (Toll like receptor 2, C-type lectin family 17 member A, colony-stimulating factor 1 receptor 2, macrophage mannose receptor 1, and Interleukin-1ß). In conclusion, the glucan -characterized physically-chemically from the yeast C. benthicum (Cb-ßG)- was safe, had strong antioxidant capacity to scavenge free radicals, and stimulated immune parameters and immune-related gene expressions on thymus cells from Totoaba macdonaldi.
Asunto(s)
Basidiomycota , Perciformes , beta-Glucanos , Adyuvantes Inmunológicos/farmacología , Animales , Antioxidantes , Glucanos , Receptor de Manosa , Saccharomyces cerevisiaeRESUMEN
Peptides are molecules that have emerged as crucial candidates for the development of anticancer drugs. Spider venoms are a rich source of peptides (venom peptides - VPs) with biological effects. VPs have been tested as adjuvants in the activation of cells of the immune system with the aim of improving immunotherapies for the treatment of neoplasms. In the present study, the effects of SNX-482, a peptide from the African tarantula Hysterocrates gigas, on macrophages were described. The results showed that the peptide activated M0-macrophages, increasing costimulatory molecules (CD40, CD68, CD80, CD83, CD86) involved in antigen presentation, and also augmenting the checkpoint molecules PD-L1, CTLA-4 and FAS-L; these effects were not concentration-dependent. SNX-482 also increased the release of IL-23 and upregulated the expression of ccr4, ifn-g, gzmb and pdcd1, genes important for the anticancer response. The pretreatment of macrophages with the peptide did not interfere in the modulation of T cells, and macrophages previously polarized to M1 and M2 profile did not respond to SNX-482. These findings represent the expansion of knowledge about the use of VPs in drug discovery, pointing to a potential new candidate for anticancer immunotherapy. Considering that most immunotherapies target the adaptive system, the modulation of macrophages (an innate immune cell) by SNX-482 is especially relevant.