Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Talanta ; 280: 126793, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39222596

RESUMEN

Dry matter content (DMC), firmness and soluble solid content (SSC) are important indicators for assessing the quality attributes and determining the maturity of kiwifruit. However, traditional measurement methods are time-consuming, labor-intensive, and destructive to the kiwifruit, leading to resource wastage. In order to solve this problem, this study has tracked the flowering, fruiting, maturing and collecting processes of Ya'an red-heart kiwifruit, and has proposed a non-destructive method for kiwifruit quality attribute assessment and maturity identification that combines fluorescence hyperspectral imaging (FHSI) technology and chemometrics. Specifically, first of all, three different spectral data preprocessing methods were adopted, and PLSR was used to evaluate the quality attributes (DMC, firmness, and SSC) of kiwifruit. Next, the differences in accuracy of different models in discriminating kiwifruit maturity were compared, and an ensemble learning model based on LightGBM and GBDT models was constructed. The results indicate that the ensemble learning model outperforms single machine learning models. In addition, the application effects of the 'Convolutional Neural Network'-'Multilayer Perceptron' (CNN-MLP) model under different optimization algorithms were compared. To improve the robustness of the model, an improved whale optimization algorithm (IWOA) was introduced by modifying the acceleration factor. Overall, the IWOA-CNN-MLP model performs the best in discriminating the maturity of kiwifruit, with Accuracytest of 0.916 and Loss of 0.23. In addition, compared with the basic model, the accuracy of the integrated learning model SG-MSC-SEL was improved by about 12%-20 %. The research findings will provide new perspectives for the evaluation of kiwifruit quality and maturity discrimination using FHSI and chemometric methods, thereby promoting further research and applications in this field.


Asunto(s)
Actinidia , Frutas , Imágenes Hiperespectrales , Actinidia/química , Actinidia/crecimiento & desarrollo , Imágenes Hiperespectrales/métodos , Frutas/química , Frutas/crecimiento & desarrollo , Quimiometría , Redes Neurales de la Computación , Calidad de los Alimentos , Fluorescencia , Control de Calidad
2.
BMC Biol ; 22(1): 200, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256695

RESUMEN

BACKGROUND: Kiwifruit, belonging to the genus Actinidia, represents a unique fruit crop characterized by its modern cultivars being genetically diverse and exhibiting remarkable variations in morphological traits and adaptability to harsh environments. However, the genetic mechanisms underlying such morphological diversity remain largely elusive. RESULTS: We report the high-quality genomes of five Actinidia species, including Actinidia longicarpa, A. macrosperma, A. polygama, A. reticulata, and A. rufa. Through comparative genomics analyses, we identified three whole genome duplication events shared by the Actinidia genus and uncovered rapidly evolving gene families implicated in the development of characteristic kiwifruit traits, including vitamin C (VC) content and fruit hairiness. A range of structural variations were identified, potentially contributing to the phenotypic diversity in kiwifruit. Notably, phylogenomic analyses revealed 76 cis-regulatory elements within the Actinidia genus, predominantly associated with stress responses, metabolic processes, and development. Among these, five motifs did not exhibit similarity to known plant motifs, suggesting the presence of possible novel cis-regulatory elements in kiwifruit. Construction of a pan-genome encompassing the nine Actinidia species facilitated the identification of gene DTZ79_23g14810 specific to species exhibiting extraordinarily high VC content. Expression of DTZ79_23g14810 is significantly correlated with the dynamics of VC concentration, and its overexpression in the transgenic roots of kiwifruit plants resulted in increased VC content. CONCLUSIONS: Collectively, the genomes and pan-genome of diverse Actinidia species not only enhance our understanding of fruit development but also provide a valuable genomic resource for facilitating the genome-based breeding of kiwifruit.


Asunto(s)
Actinidia , Genoma de Planta , Filogenia , Actinidia/genética , Actinidia/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Genes de Plantas
3.
Food Chem ; 460(Pt 2): 140730, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39106810

RESUMEN

This study aimed to elucidate the effects of storage temperature on various fruit quality attributes, physiological disorders, and associated metabolites in the 0.5, 3, or 10 °C stored hardy kiwifruit. Peel pitting, which was highest in the 0.5 °C stored fruit, was identified as a chilling injury symptom of hardy kiwifruit. Proline and branched-chain amino acid contents showed higher values at 0.5 °C stored fruit as chilling responses. On the other hand, fruit shriveling and decay were highest in the 10 °C after 5 weeks of storage. The 10 °C storage induced fruit ripening during 3 weeks, but fruit shriveling and decay were severe after 5 weeks of storage. Therefore, storing the 'Autumn Sense' hardy kiwifruit at proper temperatures would be more beneficial, as it alters targeted metabolites and helps reduce the incidence of physiological disorders during cold storage.


Asunto(s)
Actinidia , Frío , Almacenamiento de Alimentos , Frutas , Actinidia/química , Actinidia/metabolismo , Actinidia/crecimiento & desarrollo , Frutas/química , Frutas/metabolismo , Frutas/crecimiento & desarrollo
4.
Int J Mol Sci ; 25(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39201789

RESUMEN

DNA-binding one zinc finger (DOF) transcription factors are crucial plant-specific regulators involved in growth, development, signal transduction, and abiotic stress response generation. However, the genome-wide identification and characterization of AcDOF genes and their regulatory elements in kiwifruit (Actinidia chinensis) has not been thoroughly investigated. In this study, we screened the kiwifruit genome database and identified 42 AcDOF genes (AcDOF1 to AcDOF42). Phylogenetic analysis facilitated the categorization of these genes into five subfamilies (DOF-a, DOF-b, DOF-c, DOF-d, and DOF-e). We further analyzed the motifs, conserved domains, gene structures, and collinearity of the AcDOFgene family. Gene ontology (GO) enrichment analysis indicated significant enrichment in the "flower development" term and the "response to abiotic stress" category. Promoter prediction analysis revealed numerous cis-regulatory elements related to responses to light, hormones, and low-temperature and drought stress in AcDOF promoters. RNA-seq expression profiles demonstrated the tissue-specific expression of AcDOF genes. Quantitative real-time PCR results showed that six selected genes (AcDOF04, AcDOF09, AcDOF11, AcDOF13, AcDOF21, and AcDOF22) were differentially induced by abscisic acid (ABA), methyl jasmonate (MeJA), and cold, salt, and drought stresses, with AcDOF22 specifically expressed at high levels in drought-tolerant cultivars. Further experiments indicated that transient AcDOF22 overexpression in kiwifruit leaf disks reduced water loss and chlorophyll degradation. Additionally, AcDOF22 was localized to the nucleus and exhibited transcriptional activation, enhancing drought resistance by activating the downstream drought marker gene AcDREB2A. These findings lay the foundation for elucidating the molecular mechanisms of drought resistance in kiwifruit and offer new insights into drought-resistant breeding.


Asunto(s)
Actinidia , Sequías , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Factores de Transcripción , Actinidia/genética , Actinidia/crecimiento & desarrollo , Actinidia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas , Genoma de Planta
5.
BMC Plant Biol ; 24(1): 795, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39174967

RESUMEN

BACKGROUND: The changes in the physical structures of the products are the first things that consumers pay attention to. Therefore, it is essential and significant importance to take measures to improve the storage conditions of products and to minimize quality losses. The main objective of the study was to evaluate the effects of agro-ecological conditions on bioactive compounds and fruit quality of kiwifruit during cold storage. The 'Hayward' kiwifruit cultivar grown in Ordu, Giresun, Samsun, Rize, and Yalova provinces of Türkiye were kept at 0 ± 0.5 °C and relative humidity of 90 ± 5% for 150 d. RESULTS: The kiwifruit obtained from the provinces of Yalova, Ordu, and Giresun experienced the least weight loss during cold storage. Kiwifruit from Samsun and Yalova provinces had the lowest fruit firmness, while those from Giresun had the highest on 150th d. The changes were observed in the skin and flesh colors of the kiwifruit belonging to all cultivation areas. The amount of vitamin C increased throughout the study in all ecological conditions, but the Yalova province's kiwifruit was found to have the highest levels. Additionally, in all ecologies, kiwifruit showed an increase in antioxidant activity, total phenolics, and total flavonoids, all known to have beneficial effects on human health. The total antioxidant activity and total phenolics were highest in the kiwifruit of Yalova province, but the total flavonoids were found in the kiwifruit of Rize and Ordu provinces. CONCLUSION: The study's results revealed that kiwifruit's bioactive compounds and quality parameters may vary depending on the cultivation area. Additionally, it can be stated that Yalova province kiwifruit experiences the least amount of postharvest quality losses.


Asunto(s)
Actinidia , Frío , Almacenamiento de Alimentos , Frutas , Actinidia/crecimiento & desarrollo , Actinidia/química , Actinidia/fisiología , Frutas/crecimiento & desarrollo , Frutas/química , Almacenamiento de Alimentos/métodos , Ácido Ascórbico/análisis , Ácido Ascórbico/metabolismo , Fitoquímicos , Antioxidantes/metabolismo , Agricultura/métodos
6.
Arch Insect Biochem Physiol ; 116(4): e22139, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39106355

RESUMEN

Pollination is essential for achieving high yields and enhancing the quality of kiwifruit cultivation, both of which significantly influence growers' interests and consumers' preferences. However, compared to studies on yield, there are fewer studies exploring the impact of pollination methods on the flavor of kiwifruit Actinidia chinensis Planchon. This study examined the effects of bee (Apis mellifera L.) pollination and artificial pollination on the yield and flavor of kiwifruit in the main producing areas of China. Compared with those pollinated artificially, bee-pollinated kiwifruit exhibited a greater fruit set rate, heavier fruit weight, and greater number of seeds. Notably, the number of seeds was positively correlated with fruit weight in bee-pollinated kiwifruit, whereas no such correlation was detected in artificially pollinated fruit. Bee pollination not only enhanced the yield but also improved the flavor of kiwifruit. Specifically, bee-pollinated kiwifruit contained higher levels of sucrose and lower concentrations of glucose and fructose, while the acid content was less affected by pollination methods. Furthermore, significant differences were observed in the volatile organic compound (VOC) levels in kiwifruit subjected to different pollination treatments, with bee-pollinated fruit exhibiting a superior flavor. Our findings provide new insights into the beneficial role of bee pollination in enhancing kiwifruit yield and quality, underscoring the crucial importance of bees in kiwifruit pollination.


Asunto(s)
Actinidia , Frutas , Polinización , Abejas/fisiología , Animales , Actinidia/fisiología , Actinidia/crecimiento & desarrollo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Gusto , China
7.
New Phytol ; 243(6): 2265-2278, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39056285

RESUMEN

Kiwifruit ripening is a complex and highly coordinated process that occurs in conjunction with the formation of fruit edible quality. The significance of epigenetic changes, particularly the impact of N6-methyladenosine (m6A) RNA modification on fruit ripening and quality formation, has been largely overlooked. We monitored m6A levels and gene expression changes in kiwifruit at four different stages using LC-MS/MS, MeRIP, RNA-seq, and validated the function of AcALKBH10 through heterologous transgenic expression in tomato. Notable m6A modifications occurred predominantly at the stop codons and the 3' UTRs and exhibited a gradual reduction in m6A levels during the fruit ripening process. Moreover, these m6A modifications in the aforementioned sites demonstrated a discernible inverse relationship with the levels of mRNA abundance throughout the ripening process, suggesting a repression effect of m6A modification in the modulation of kiwifruit ripening. We further demonstrated that AcALKBH10 rather than AcECT9 predominantly regulates m6A levels in ripening-related genes, thereby exerting the regulatory control over the ripening process and the accumulation of soluble sugars and organic acids, ultimately influencing fruit ripening and quality formation. In conclusion, our findings illuminate the epi-regulatory mechanism involving m6A in kiwifruit ripening, offering a fresh perspective for cultivating high-quality kiwifruit with enhanced nutritional attributes.


Asunto(s)
Actinidia , Adenosina , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , ARN Mensajero , Actinidia/genética , Actinidia/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Metilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Genes de Plantas
8.
Sci Rep ; 14(1): 16546, 2024 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019951

RESUMEN

Intercropping systems have garnered attention as a sustainable agricultural approach for efficient land use, increased ecological diversity in farmland, and enhanced crop yields. This study examined the effect of intercropping on the kiwifruit rhizosphere to gain a deeper understanding of the relationships between cover plants and kiwifruit in this sustainable agricultural system. Soil physicochemical properties and bacterial communities were analyzed using the Kiwifruit-Agaricus blazei intercropping System. Moreover, a combined analysis of 16S rRNA gene sequencing and metabolomic sequencing was used to identify differential microbes and metabolites in the rhizosphere. Intercropping led to an increase in soil physicochemical and enzyme activity, as well as re-shaping the bacterial community and increasing microbial diversity. Proteobacteria, Bacteroidota, Myxococcota, and Patescibacteria were the most abundant and diverse phyla in the intercropping system. Expression analysis further revealed that the bacterial genera BIrii41, Acidibacter, and Altererythrobacter were significantly upregulated in the intercropping system. Moreover, 358 differential metabolites (DMs) were identified between the monocropping and intercropping cultivation patterns, with fatty acyls, carboxylic acids and derivatives, and organooxygen compounds being significantly upregulated in the intercropping system. The KEGG metabolic pathways further revealed considerable enrichment of DMs in ABC transporters, histidine metabolism, and pyrimidine metabolism. This study identified a significant correlation between 95 bacterial genera and 79 soil metabolites, and an interactive network was constructed to explore the relationships between these differential microbes and metabolites in the rhizosphere. This study demonstrated that Kiwifruit-Agaricus blazei intercropping can be an effective, labor-saving, economic, and sustainable practice for reshaping bacterial communities and promoting the accumulation and metabolism of beneficial microorganisms in the rhizosphere.


Asunto(s)
Actinidia , Agaricus , Bacterias , Rizosfera , Microbiología del Suelo , Actinidia/microbiología , Actinidia/crecimiento & desarrollo , Agaricus/crecimiento & desarrollo , Agaricus/metabolismo , Agaricus/genética , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Agricultura/métodos , Suelo/química , Microbiota , Nutrientes/metabolismo , Producción de Cultivos/métodos
9.
J Sci Food Agric ; 104(12): 7367-7374, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38661291

RESUMEN

BACKGROUND: Ethylene plays a vital role in the ripening process of kiwifruit. A terrific amount of transcription factors (TFs) have been shown to regulate ethylene synthesis in various fruits. RESULTS: In this research, two new NAC TFs, named AcNAC3 and AcNAC4, were isolated from kiwifruit, which belonged to NAM subfamily. Bioinformatics analysis showed that both AcNAC3 and AcNAC4 were hydrophilic proteins with similar three-dimensional structures. The expression levels of AcNAC3, AcNAC4 and AcACO1 increased during kiwifruit ripening, as well as were induced by ethylene and repressed by 1-methylcyclopropene (1-MCP). Correlation analysis exhibited that ethylene production was positively correlated with the expression levels of AcNAC3, AcNAC4 and AcACO1. Moreover, both AcNAC3 and AcNAC4 acted as transcriptional activators and could bind to and activate AcACO1 promoter. CONCLUSION: All results unveiled that the ethylene-induced AcNAC3 and AcNAC4 were transcriptional activators, and might participate in kiwifruit ripening and ethylene biosynthesis through activating AcACO1, providing a new insight of ethylene synthetic regulation during kiwifruit ripening. © 2024 Society of Chemical Industry.


Asunto(s)
Actinidia , Etilenos , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Actinidia/metabolismo , Actinidia/genética , Actinidia/crecimiento & desarrollo , Actinidia/química , Etilenos/metabolismo , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Frutas/efectos de los fármacos , Frutas/genética , Frutas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Ciclopropanos/farmacología , Ciclopropanos/metabolismo
10.
J Sci Food Agric ; 104(11): 6821-6830, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38572801

RESUMEN

BACKGROUND: Currently, organic farming has become a feasible approach for the production of high-quality fruits. To evaluate the response of fruit quality and mineral nutrition contents of Hayward Kiwifruit affected by different organic and inorganic fertilizers, the present study was conducted in Citrus and Subtropical Fruits Research Center, Iran, in 2017-2021, as a randomized block design with three replications. The studied treatments were organic fertilizers (cow, vermicompost and Azolla) and chemical fertilizers. After 4 years of fertilization, the fruit's nutritional elements content and some fruit bioactive compounds were evaluated after 3 months of cold storage and then analyzed by the principal component analysis (PCA) method. RESULTS: The use of organic amendments boosted the calcium, phosphorus, potassium and iron content of the kiwifruits compared to chemical fertilizers. The highest fruit potassium and phosphorus content were recorded in the cow manure treatment. The lowest amount of nitrate and the highest calcium, zinc, copper and manganese accumulation were recorded in the fruits treated with vermicompost. In addition to mineral nutrients, the dry matter, total soluble solids, total phenolic and antioxidant capacity of kiwifruit were improved by the application of vermicompost amendment compared to the other fertilizer sources. However, the highest fruit vitamin C and total soluble carbohydrates were measured in the cow manure treatment. The PCA results of the fruit quality indices indicated that fertilization treatments were ranked as vermicompost (1.88) > cow manure (1.63) = chemical (1.60) > Azolla (1.54). CONCLUSION: It is concluded that the application of 40 kg of vermicompost or 40 kg of cow manure in the next rank in Hayward kiwifruit orchards in March (growth stage beginning of bud swelling) may be a more suitable approach for improving the nutritional quality of the fruit. © 2024 Society of Chemical Industry.


Asunto(s)
Actinidia , Fertilizantes , Frutas , Valor Nutritivo , Fertilizantes/análisis , Actinidia/química , Actinidia/crecimiento & desarrollo , Frutas/química , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Irán , Fósforo/análisis , Agricultura Orgánica/métodos , Bovinos , Animales , Estiércol/análisis , Potasio/análisis , Potasio/metabolismo
11.
BMC Plant Biol ; 22(1): 108, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264115

RESUMEN

BACKGROUND: Potassium (K) is important in the regulation of plant growth and development. It is the most abundant mineral element in kiwifruit, and its content increases during fruit ripening. However, how K+ transporter works in kiwifruit postharvest maturation is not yet clear. RESULTS: Here, 12 K+ transporter KT/HAK/KUP genes, AcKUP1 ~ AcKUP12, were isolated from kiwifruit, and their phylogeny, genomic structure, chromosomal location, protein properties, conserved motifs and cis-acting elements were analysed. Transcription analysis revealed that AcKUP2 expression increased rapidly and was maintained at a high level during postharvest maturation, consistent with the trend of K content; AcKUP2 expression was induced by ethylene, suggesting that AcKUP2 might play a role in ripening. Fluorescence microscopy showed that AcKUP2 is localised in the plasma membrane. Cis-elements, including DER or ethylene response element (ERE) responsive to ethylene, were found in the AcKUP2 promoter sequence, and ethylene significantly enhanced the AcKUP2 promoter activity. Furthermore, we verified that AcERF15, an ethylene response factor, directly binds to the AcKUP2 promoter to promote its expression. Thus, AcKUP2 may be an important potassium transporter gene which involved in ethylene-regulated kiwifruit postharvest ripening. CONCLUSIONS: Therefore, our study establishes the first genome-wide analysis of the kiwifruit KT/HAK/KUP gene family and provides valuable information for understanding the function of the KT/HAK/KUP genes in kiwifruit postharvest ripening.


Asunto(s)
Actinidia/crecimiento & desarrollo , Actinidia/genética , Etilenos/metabolismo , Frutas/crecimiento & desarrollo , Frutas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Antiportadores de Potasio-Hidrógeno/metabolismo , China , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Genes de Plantas , Desarrollo de la Planta/efectos de los fármacos , Desarrollo de la Planta/genética , Antiportadores de Potasio-Hidrógeno/genética
12.
BMC Plant Biol ; 22(1): 23, 2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-34998386

RESUMEN

BACKGROUND: Our previous study has demonstrated that the transcription of AchnKCS involved in suberin biosynthesis was up-regulated by exogenous abscisic acid (ABA) during the wound suberization of kiwifruit, but the regulatory mechanism has not been fully elucidated. RESULTS: Through subcellular localization analysis in this work, AchnbZIP29 and AchnMYB70 transcription factors were observed to be localized in the nucleus. Yeast one-hybrid and dual-luciferase assay proved the transcriptional activation of AchnMYB70 and transcriptional suppression of AchnbZIP29 on AchnKCS promoter. Furthermore, the transcription level of AchnMYB70 was enhanced by ABA during wound suberization of kiwifruit, but AchnbZIP29 transcription was reduced by ABA. CONCLUSIONS: Therefore, it was believed that ABA enhanced the transcriptional activation of AchnMYB70 on AchnKCS by increasing AchnMYB70 expression. On the contrary, ABA relieved the inhibitory effect of AchnbZIP29 on transcription of AchnKCS by inhibiting AchnbZIP29 expression. These results gave further insight into the molecular regulatory network of ABA in wound suberization of kiwifruit.


Asunto(s)
Ácido Abscísico/metabolismo , Actinidia/crecimiento & desarrollo , Actinidia/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metabolismo de los Lípidos/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/efectos de los fármacos , Actinidia/efectos de los fármacos , Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Frutas/efectos de los fármacos , Frutas/genética , Frutas/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/genética
13.
Plant Sci ; 314: 111115, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34895544

RESUMEN

Kiwifruit plants have a fleshy, shallow root system which is sensitive to waterlogging stress, which results in a decrease in crop yield or even plants death. Although the waterlogging stress responses in kiwifruit have attracted much attention, the underlying molecular mechanism remains unclear. In this study, waterlogging led to drastic inhibition of root growth of 'Donghong' kiwifruit (Actinidia chinensis) plants grown in vitro, which was accompanied by significant elevation of endogenous acetaldehyde and ethanol contents. RNA-seq of roots of plants waterlogged for 0, 1 and 2 days revealed that a total of 149 genes were up- or down-regulated, including seven biosynthetic genes related to the glycolysis/gluconeogenesis pathway and 10 transcription factors. Analyses with real-time PCR, dual-luciferase assays and EMSA demonstrated that AcERF74 and AcERF75, two members of the ERF-VII subfamily, directly upregulated AcADH1 (alcohol dehydrogenase). Moreover, the overexpression of AcERF74/75 in transgenic calli resulted in dramatic increase of endogenous ethanol contents through the triggering of AcADH1 and AcADH2 expression. Although the AcPDC2 (pyruvate decarboxylase) expression was also enhanced in transgenic lines, the endogenous acetaldehyde contents showed no significant changes. These results illustrated that AcERF74/75 are two transcriptional activators on alcoholic fermentation related genes and are responsive to waterlogging stress in kiwifruit.


Asunto(s)
Actinidia/crecimiento & desarrollo , Actinidia/genética , Actinidia/metabolismo , Fermentación/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Factores de Transcripción/metabolismo , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Deshidratación/fisiopatología , Fermentación/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Factores de Transcripción/genética
14.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884527

RESUMEN

Sulfur has been previously reported to modulate plant growth and exhibit significant anti-microbial activities. However, the mechanism underlying its diverse effects on plant pathogens has not been elucidated completely. The present study conducted the two-year field experiment of sulfur application to control kiwifruit canker from 2017 to 2018. For the first time, our study uncovered activation of plant disease resistance by salicylic acid after sulfur application in kiwifruit. The results indicated that when the sulfur concentration was 1.5-2.0 kg m-3, the induced effect of kiwifruit canker reached more than 70%. Meanwhile, a salicylic acid high lever was accompanied by the decline of jasmonic acid. Further analysis revealed the high expression of the defense gene, especially AcPR-1, which is a marker of the salicylic acid signaling pathway. Additionally, AcICS1, another critical gene of salicylic acid synthesis, was also highly expressed. All contributed to the synthesis of increasing salicylic acid content in kiwifruit leaves. Moreover, the first key lignin biosynthetic AcPAL gene was marked up-regulated. Thereafter, accumulation of lignin content in the kiwifruit stem and the higher deposition of lignin were visible in histochemical analysis. Moreover, the activity of the endochitinase activity of kiwifruit leaves increased significantly. We suggest that the sulfur-induced resistance against Pseudomonas syringae pv. actinidiae via salicylic activates systemic acquired resistance to enhance plant immune response in kiwifruit.


Asunto(s)
Actinidia/inmunología , Resistencia a la Enfermedad/inmunología , Frutas/inmunología , Enfermedades de las Plantas/inmunología , Pseudomonas syringae/fisiología , Ácido Salicílico/metabolismo , Azufre/farmacología , Actinidia/efectos de los fármacos , Actinidia/crecimiento & desarrollo , Actinidia/metabolismo , Resistencia a la Enfermedad/efectos de los fármacos , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Enfermedades de las Plantas/microbiología , Transducción de Señal
15.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34884699

RESUMEN

Actinidia (kiwifruit) is known as 'the king of vitamin C' due to its rich ascorbic acid (AsA) concentration, which makes it an important model for studying the regulation of AsA metabolism. Herein, transcriptomic analysis was employed to identify candidate genes that regulate AsA synthesis in Actinidia species with 100-fold variations in fruit AsA content (A. latifolia and A. rufa). Approximately 1.16 billion high-quality reads were generated, and an average of 66.68% of the data was uniquely aligned against the reference genome. AsA-associated DEGs that predominately respond to abiotic signals, and secondary metabolic pathways were identified. The key candidate genes, for instance, GDP-L-galactose phosphorylase-3 (GGP3), were explored according to integrated analysis of the weighted gene co-expression network and L-galactose pathway. Transgenic kiwifruit plants were generated, and the leaves of GGP3 (OE-GGP3) overexpressing lines had AsA contents 2.0- to 6.4-fold higher than those of the wild type. Transcriptomic analysis of transgenic kiwifruit lines was further implemented to identify 20 potential downstream target genes and understand GGP3-regulated cellular processes. As a result, two transcription factors (AcESE3 and AcMYBR) were selected to carry out yeast two-hybrid and BiFC assays, which verified that there were obvious AcESE3-AcMYBR and AcESE3-AcGGP3 protein-protein interactions. This study provides insight into the mechanism of AsA synthesis and provides candidate factors and genes involved in AsA accumulation in kiwifruit.


Asunto(s)
Actinidia/genética , Actinidia/metabolismo , Ácido Ascórbico/biosíntesis , Actinidia/crecimiento & desarrollo , Ácido Ascórbico/genética , Ácido Ascórbico/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
16.
Biomolecules ; 11(9)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34572470

RESUMEN

In this study, the co-application of chitosan and tetramycin against kiwifruit soft rot and its effects on the disease resistance, growth, quality and aroma of kiwifruit were investigated. The results show that chitosan could effectively enhance tetramycin against soft rot of kiwifruit with the field control efficacy of 85.33% for spraying chitosan 100 time + 0.3% tetramycin AS 5000-time dilution liquid, which was higher than 80.99% for 0.3% tetramycin AS 5000-time dilution liquid and significantly (p < 0.01) higher than 40.66% for chitosan 100-time dilution liquid. Chitosan could significantly (p < 0.05) improve the promoting effects of tetramycin on total phenolics, total flavonoids, SOD activity of kiwifruit compared to tetramycin during storage for 0-28 days and enhance the disease resistance of kiwifruit. Moreover, the co-application of chitosan and tetramycin was more effective than tetramycin or chitosan alone in enhancing fruit growth, improving fruit quality and increasing fruit aroma. This study highlights that chitosan can be used as an adjuvant to enhance tetramycin against soft rot of kiwifruit and promote tetramycin's improvement for the single fruit volume and weight, vitamin C, soluble sugar, soluble solid, dry matter, soluble protein, titratable acidity and aroma of kiwifruit.


Asunto(s)
Actinidia/microbiología , Quitosano/farmacología , Frutas/microbiología , Macrólidos/farmacología , Odorantes , Enfermedades de las Plantas/microbiología , Actinidia/efectos de los fármacos , Actinidia/enzimología , Actinidia/crecimiento & desarrollo , Catecol Oxidasa/metabolismo , Quitosano/toxicidad , Flavonoides/análisis , Frutas/efectos de los fármacos , Frutas/enzimología , Macrólidos/toxicidad , Fenoles/análisis , Superóxido Dismutasa/metabolismo
17.
Molecules ; 26(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202843

RESUMEN

The aim of this study was to assess the enzymatic and non-enzymatic antioxidant status of kiwiberry (Actinidia arguta) leaf under different N regimes tested three times in field conditions during the 2015 growing season in two cultivars ('Weiki' and 'Geneva'). Leaf total antioxidant capacity using ABTS, DPPH and FRAP tests was evaluated in the years 2015 to 2017, which experienced different weather conditions. Both cultivars exhibited a significant fall in leaf L-ascorbic acid (L-AA) and reduced glutathione (GSH) as well as global content of these compounds during the growing season, while total phenolic contents slightly ('Weiki') or significantly ('Geneva') increased. There was a large fluctuation in antioxidative enzyme activity during the season. The correlation between individual antioxidants and trolox equivalent antioxidant capacity (TEAC) depended on the plant development phase. The study revealed two peaks of an increase in TEAC at the start and end of the growing season. Leaf L-AA, global phenolics, APX, CAT and TEAC depended on the N level, but thiol compounds were not affected. Over the three years, TEAC decreased as soil N fertility increased, and the strength of the N effect was year dependent. The relationship between leaf N content and ABTS and FRAP tests was highly negative. The antioxidant properties of kiwiberry leaves were found to be closely related to the plant development phase and affected by soil N fertility.


Asunto(s)
Actinidia/química , Nitrógeno/química , Fitoquímicos/química , Hojas de la Planta/química , Suelo/química , Actinidia/crecimiento & desarrollo , Nitrógeno/metabolismo , Fitoquímicos/biosíntesis , Hojas de la Planta/crecimiento & desarrollo , Especificidad de la Especie
18.
BMC Plant Biol ; 21(1): 334, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34261431

RESUMEN

BACKGROUND: The skin (exocarp) of fleshy fruit is hugely diverse across species. Most fruit types have a live epidermal skin covered by a layer of cuticle made up of cutin while a few create an outermost layer of dead cells (peridermal layer). RESULTS: In this study we undertook crosses between epidermal and peridermal skinned kiwifruit, and showed that epidermal skin is a semi-dominant trait. Furthermore, backcrossing these epidermal skinned hybrids to a peridermal skinned fruit created a diverse range of phenotypes ranging from epidermal skinned fruit, through fruit with varying degrees of patches of periderm (russeting), to fruit with a complete periderm. Quantitative trait locus (QTL) analysis of this population suggested that periderm formation was associated with four loci. These QTLs were aligned either to ones associated with russet formation on chromosome 19 and 24, or cuticle integrity and coverage located on chromosomes 3, 11 and 24. CONCLUSION: From the segregation of skin type and QTL analysis, it appears that skin development in kiwifruit is controlled by two competing factors, cuticle strength and propensity to russet. A strong cuticle will inhibit russeting while a strong propensity to russet can create a continuous dead skinned periderm.


Asunto(s)
Actinidia/genética , Frutas/genética , Genes de Plantas , Sitios Genéticos , Desarrollo de la Planta/genética , Actinidia/crecimiento & desarrollo , Cruzamientos Genéticos , Frutas/crecimiento & desarrollo , Genotipo , Fenotipo , Sitios de Carácter Cuantitativo
19.
Sci Rep ; 11(1): 12749, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140584

RESUMEN

Kiwifruit has not been studied as much as other well-known fruits especially when it comes to studies about plant vigour and training systems. The aim of the study was to determine the importance of cane vigour of Actinidia chinensis var. deliciosa 'Hayward' and Actinidia arguta 'Issai' in order to develop the proper pruning technique that results in the best fruit quality. In addition, the effect of storage parameters such as weight, firmness and quality of the fruit was also studied. The study showed that the fruit size and weight are lower in low vigour canes in A. arguta, in contrast to A. chinensis, where the fruit size and weight are smaller on high-vigorous canes. For A. arguta, it is recommended to choose high-vigour canes as the optimal fruit wood during pruning. In this way, the fruits will ripen more evenly. The other possibility is to perform the harvest two to three times per season to achieve a more uniform fruit quality. In the case of A. chinensis the fruit are less variable between different cane vigour, so harvesting can be done in a single picking. In A. chinensis the less vigorous canes tend to show a slightly better fruit quality.


Asunto(s)
Actinidia/fisiología , Ácidos/análisis , Actinidia/química , Actinidia/crecimiento & desarrollo , Productos Agrícolas , Fenoles/análisis , Especificidad de la Especie , Azúcares/análisis
20.
J Food Sci ; 86(7): 2872-2885, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34146411

RESUMEN

Enzyme-based time-temperature integrators (TTIs) were applied to indicate the ripeness of plastic-container-packaged kiwifruit. The hypothesis was that the ethylene gas production, an indication of kiwifruit ripeness, depends on the time-temperature history. The market-purchased, unripe kiwifruit was assumed to be stored in a plastic container to ripen at home, as common practice in Korea. The kinetics of ethylene gas production and TTI color change was found to be suitable for the indication. The Arrhenius activation energy (Ea ) of the ethylene gas production and color changes of lipase-, amylase-, and laccase-based TTIs were 41.60 ± 10.87 kJ/mol, and 42.76 ± 9.57, 100.28 ± 6.84, and 30.49 ± 4.41 kJ/mol, respectively. Kiwifruit firmness was also tested as a practical, major quality factor. The Ea of the firmness changes was 39.66 ± 4.64 kJ/mol. In scenarios tests, the firmness could be most accurately predicted from the lipase-based TTI color. Overall, the lipase-based TTI was found to be the best in terms of the similarity of the Ea and the prediction accuracy. PRACTICAL APPLICATION: Currently, there is no commercially available indicator that can determine the ripeness of packaged kiwifruit. Although an ethylene gas indicator is possible, it has been difficult to commercialize because the gas may leak in the package. An indicator on plastic containers with kiwifruit, as is common in Korea, has been developed using a conventional time-temperature integrator (TTI). The hypothesis was that the production of ethylene gas, indicating kiwi ripening, is also dependent on the time-temperature history. It was found that the TTI color change over time was suitable for judging suitable kiwifruit hardness, a major kiwifruit ripeness index.


Asunto(s)
Actinidia/crecimiento & desarrollo , Etilenos/análisis , Frutas/crecimiento & desarrollo , Plásticos/química , Actinidia/química , Frutas/química , Cinética , República de Corea , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA