Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 672
Filtrar
1.
Ecotoxicol Environ Saf ; 283: 116799, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39094450

RESUMEN

Acrolein is a ubiquitous gaseous air pollutant and endogenous toxicant, which poses strong risk for oxidative stress-related diseases such as cardiovascular disease. Adenosine has been identified as potential therapeutic agent for age-related cardiovascular disease, while the molecular mechanisms underlying its cardioprotection remain elusive. In the present study, we investigated the myocardial protective effects and the mechanism of adenosine on acrolein-induced toxicity in H9c2 cells and primary neonatal rat cardiomyocytes. We found that acrolein caused apoptosis of cardiomyocytes resulting from oxidative damage, autophagy defect, and mitochondrial dysfunction, as evidenced by loss of mitochondrial membrane potential, impairment of mitochondrial biogenesis, dynamics, and oxidative phosphorylation, decrease of mitochondrial deoxyribonucleic acid (mtDNA) copy number and adenosine 5'-triphosphate (ATP) production. Adenosine pretreatment protected against acrolein-induced cardiotoxicity by maintaining mitochondrial homeostasis, activating the phase II detoxifying enzyme system, promoting autophagic flux, and alleviating mitochondrial-dependent apoptosis. We further demonstrated that the up-regulation of forkhead box protein O1 (FoxO1) mediated by extracellular regulated protein kinases (ERK) activation contributes to the cardioprotection of adenosine. These results expand the application of adenosine in cardioprotection to preventing myocardial damages induced by environmental pollutant acrolein exposure, and uncover the adenosine-ERK-FoxO1 axis as the underlying mechanism mediating the protection of mitochondrial homeostasis, Nrf2-mediated antioxidant defense and autophagic flux, shedding light on the better understanding about the pathological mechanism of cardiovascular disease caused by environmental pollutants and applications of adenosine in cardioprotection.


Asunto(s)
Acroleína , Adenosina , Antioxidantes , Autofagia , Homeostasis , Mitocondrias , Miocitos Cardíacos , Regulación hacia Arriba , Acroleína/toxicidad , Animales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Autofagia/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Homeostasis/efectos de los fármacos , Cardiotoxicidad , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteína Forkhead Box O1/metabolismo , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo
2.
Chemosphere ; 363: 142812, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39004150

RESUMEN

Patients with impaired immune systems are particularly vulnerable to infections. With the increasing number of immunocompromised patients, it becomes necessary to design studies that evaluate the effects of toxic contaminants that are a part of our daily lives. Simultaneously, the management of these toxic components also becomes essential. Therefore, the present study evaluated the possible protective role of cinnamaldehyde (Cin) against tenuazonic acid-induced mycotoxicosis in the immunosuppressed murine model. Tenuazonic acid (TeA), a toxin usually produced by Alternaria species, is a common contaminant in tomato and tomato-based products. Evaluating the potential toxicity of a hazardous chemical necessitates the use of in vitro, in vivo, and in silico methods. Here, the immunomodulatory effect of TeA was assessed in vitro using mouse splenocytes. In silico docking was carried out for the tumour markers of eight organs and TeA. The haematological, histopathological, and biochemical aspects were analysed in vivo. The sub-chronic intoxication of mice with TeA showed elevated malondialdehyde, reduced catalase, and superoxide dismutase production, along with abnormal levels of aspartate aminotransferase and alanine transaminase. The treatment with Cin prevented TeA-induced alterations of antioxidant defense enzyme activities and significantly forbade TeA-induced organ damage, showing therapeutic effects and toxicity reduction in TeA-induced mycotoxicosis.


Asunto(s)
Acroleína , Micotoxicosis , Ácido Tenuazónico , Animales , Acroleína/análogos & derivados , Acroleína/toxicidad , Acroleína/farmacología , Acroleína/química , Ratones , Ácido Tenuazónico/farmacología , Micotoxicosis/prevención & control , Micotoxicosis/tratamiento farmacológico , Modelos Animales de Enfermedad , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo , Masculino , Huésped Inmunocomprometido , Malondialdehído/metabolismo , Simulación del Acoplamiento Molecular , Alternaria , Antioxidantes/farmacología , Antioxidantes/metabolismo
3.
Toxicology ; 506: 153861, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38866128

RESUMEN

Acrolein (ACR), an unsaturated, highly reactive aldehyde, is a widespread environmental toxin. ACR exerts permanent and irreversible side effects on ovarian functions. Granulosa cells play a crucial role in supporting ovarian function. Thus, in this study, we investigated the toxicity effects of granulosa cells induced by ACR. Following treatment with varying ACR concentrations (0, 12.5, 25, 50, and 100 µM), we observed that ACR exposure induced reactive oxygen species accumulation, mitochondrial energy metabolism disorder, and apoptosis in KGN cells (a human ovarian granulosa cell line) in a dose-dependent manner. In addition, mitochondrial biogenesis in KGN cells displayed biphasic changes after ACR exposure, with activation at a low ACR dose (12.5 µM), but inhibition at higher ACR doses (≥50 µM). SIRT1/PGC-1α-mediated mitochondrial biogenesis is crucial for maintaining intracellular mitochondrial homeostasis and cellular function. The inhibition/activation of the SIRT1/PGC-1α pathway in KGN cells validated its role in ACR-induced damage. The results indicated that the inhibition of the SIRT1/PGC-1α pathway aggravated ACR-induced cell damage, whereas its activation partially counteracted ACR-induced cell damage. This study attempted to uncover a novel mechanism of ACR-induced ovarian toxicity so as to provide an effective treatment option for safeguarding female reproductive health from the adverse effects of ACR.


Asunto(s)
Acroleína , Apoptosis , Metabolismo Energético , Células de la Granulosa , Mitocondrias , Especies Reactivas de Oxígeno , Sirtuina 1 , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Femenino , Humanos , Apoptosis/efectos de los fármacos , Acroleína/toxicidad , Metabolismo Energético/efectos de los fármacos , Sirtuina 1/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Relación Dosis-Respuesta a Droga
4.
Molecules ; 29(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38893395

RESUMEN

High concentrations of acrolein (2-propenal) are found in polluted air and cigarette smoke, and may also be generated endogenously. Acrolein is also associated with the induction and progression of many diseases. The high reactivity of acrolein towards the thiol and amino groups of amino acids may cause damage to cell proteins. Acrolein may be responsible for the induction of oxidative stress in cells. We hypothesized that acrolein may contribute to the protein damage in erythrocytes, leading to the disruption of the structure of cell membranes. The lipid membrane fluidity, membrane cytoskeleton, and osmotic fragility were measured for erythrocytes incubated with acrolein for 24 h. The levels of thiol, amino, and carbonyl groups were determined in cell membrane and cytosol proteins. The level of non-enzymatic antioxidant potential (NEAC) and TBARS was also measured. The obtained research results showed that the exposure of erythrocytes to acrolein causes changes in the cell membrane and cytosol proteins. Acrolein stiffens the cell membrane of erythrocytes and increases their osmotic sensitivity. Moreover, it has been shown that erythrocytes treated with acrolein significantly reduce the non-enzymatic antioxidant potential of the cytosol compared to the control.


Asunto(s)
Acroleína , Citosol , Membrana Eritrocítica , Eritrocitos , Acroleína/farmacología , Acroleína/toxicidad , Acroleína/metabolismo , Citosol/metabolismo , Citosol/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Humanos , Membrana Eritrocítica/efectos de los fármacos , Membrana Eritrocítica/metabolismo , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteínas de la Membrana/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Fluidez de la Membrana/efectos de los fármacos , Fragilidad Osmótica/efectos de los fármacos
5.
Biomed Pharmacother ; 175: 116666, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677246

RESUMEN

Flavored e-liquid use has become popular among e-cigarette users recently, but the effects of such products outside the lung are not well characterized. In this work, acute exposure to the popular flavoring cinnamaldehyde (CIN) was performed on human proximal tubule (HK-2) kidney cells. Cells were exposed to 0-100 µM CIN for 24-48 h and cellular stress responses were assessed. Mitochondrial viability via MTT assay was significantly decreased at 20 µM for 24 and 48 h exposure. Seahorse XFp analysis showed significantly decreased mitochondrial energy output at 20 µM by 24 h exposure, in addition to significantly reduced ATP Synthase expression. Seahorse analysis also revealed significantly decreased glycolytic function at 20 µM by 24 h exposure, suggesting inability of glycolytic processes to compensate for reduced mitochondrial energy output. Cleaved caspase-3 expression, a mediator of apoptosis, was significantly increased at the 24 h mark. C/EBP homologous protein (CHOP) expression, a mediator of ER-induced apoptosis, was induced by 48 h and subsequently lost at the highest concentration of 100 µM. This decrease was accompanied by a simultaneous decrease in its downstream target cleaved caspase-3 at the 48 h mark. The autophagy marker microtubule-associated protein 1 A/1B light chain 3 (LC3B-I and LC3B-II) expression was significantly increased at 100 µM by 24 h. Autophagy-related 7 (ATG7) protein and mitophagy-related proteins PTEN-induced putative kinase 1 (PINK1) and PARKIN expression were significantly reduced at 24 and 48 h exposure. These results indicate acute exposure to CIN in the kidney HK-2 model induces mitochondrial dysfunction and cellular stress responses.


Asunto(s)
Acroleína , Apoptosis , Aromatizantes , Túbulos Renales Proximales , Mitocondrias , Humanos , Acroleína/farmacología , Acroleína/análogos & derivados , Acroleína/toxicidad , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Aromatizantes/toxicidad , Aromatizantes/farmacología , Línea Celular , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Glucólisis/efectos de los fármacos , Caspasa 3/metabolismo
6.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1737-1748, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37728621

RESUMEN

Acrolein, a common environmental pollutant, is linked to the development of cardiovascular inflammatory diseases. Pelargonidin is a natural compound with anti-inflammation activity. In this study, we aimed to explore the effects of pelargonidin on inflammation induced by acrolein in human umbilical vein endothelial cells (HUVECs). MTT assay was utilized for assessing cell viability in HUVECs. LDH release in HUVECs was measured using the LDH kit. Western blot was used to detect the protein expression of p-p65, p65 and COX-2. Inflammation was evaluated through determining the levels of PGE2, IL-1ß, IL-6, IL-8 and TNF-α in HUVECs after treatment. COX-2 mRNA expression and COX-2 content were examined using RT-qPCR and a human COX-2 ELISA kit, respectively. Acrolein treatment at 50 µM resulted in a 45% decrease in the viability and an increase in LDH release (2.2-fold) in HUVECs. Pelargonidin at 5, 10, 20, and 40 µM alleviated acrolein-caused inhibitory effect on cell viability (increased to 1.3-, 1.5-, 1.8-, and 1.9-fold, respectively, compared to acrolein treatment group) and promoting effect on LDH release (decreased to 82%, 75%, 62%, and 58%, respectively, compared to acrolein treatment group) in HUVECs. Moreover, pelargonidin or pyrrolidine dithiocarbamate (PDTC; an NF-κB pathway inhibitor) inhibited acrolein-induced activation of the NF-κB pathway. Acrolein elevated the levels of PGE2, IL-1ß, IL-6, IL-8 and TNF-α (from 40.2, 27.3, 67.2, 29.0, 24.8 pg/mL in control group to 224.0, 167.3, 618.3, 104.6, and 275.1 pg/mL in acrolein treatment group, respectively), which were retarded after pelargonidin (decreased to 134.8, 82.3, 246.2, 70.2, and 120.8 pg/mL in acrolein + pelargonidin treatment group) or PDTC (decreased to 107.9, 80.1, 214.6, 64.0, and 96.6 pg/mL in acrolein + PDTC treatment group) treatment in HUVECs. Pelargonidin inactivated the NF-κB pathway to reduce acrolein-induced COX-2 expression. Furthermore, pelargonidin relieved acrolein-triggered inflammation through decreasing COX-2 expression by inactivating the NF-κB pathway in HUVECs. In conclusion, pelargonidin could protect against acrolein-triggered inflammation in HUVECs through attenuating COX-2 expression by inactivating the NF-κB pathway.


Asunto(s)
Acroleína , Antocianinas , FN-kappa B , Prolina/análogos & derivados , Tiocarbamatos , Humanos , FN-kappa B/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Ciclooxigenasa 2/metabolismo , Acroleína/toxicidad , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-8 , Dinoprostona/metabolismo , Transducción de Señal , Células Cultivadas , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
7.
Toxicol Lett ; 392: 46-55, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142011

RESUMEN

Tobacco smoke contains various carcinogenic ingredients such as nicotine, acrolein, and benzopyrene; however, their effects on cancer treatment are not fully understood. Claudin-1 (CLDN1), a component of tight junctions, is involved in the increased resistance to anticancer drugs. In this study, we found that acrolein increases the mRNA and protein levels of CLDN1 in RERF-LC-AI cells derived from human lung squamous cell carcinoma (SCC). Acrolein increased the p-extracellular signal-regulated kinase (ERK) 1/2 levels without affecting the p-Akt level. The acrolein-induced elevation of CLDN1 expression was attenuated by U0126, a mitogen-activated protein kinase kinas (MEK) inhibitor. These results indicate that the activation of MEK/ERK pathway is involved in the acrolein-induced elevation of CLDN1 expression. In a spheroid model, acrolein suppressed the accumulation and toxicity of doxorubicin (DXR), which were rescued by CLDN1 silencing. The acrolein-induced effects were also observed in lung SCC-derived EBC-1 and LK-2 cells. Acrolein also increased the expression level of nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that regulates antioxidant and detoxifying genes, which were inhibited by CLDN1 silencing. In spheroid cells, the levels of reactive oxygen species were enhanced by acrolein, which was inhibited by CLDN1 silencing. Taken together, acrolein may reduce the anticancer drug-induced toxicity in human lung SCC cells mediated by high CLDN1 expression followed by the upregulation of Nrf2 signaling pathway.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Claudina-1/genética , Claudina-1/metabolismo , Factor 2 Relacionado con NF-E2/genética , Acroleína/toxicidad , Carcinoma de Pulmón de Células no Pequeñas/genética , Antineoplásicos/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias Pulmonares/patología , Pulmón/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos
8.
Sci Rep ; 13(1): 21179, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040807

RESUMEN

Acrolein, a respiratory irritant, induces systemic neuroendocrine stress. However, peripheral metabolic effects have not been examined. Male and female WKY rats were exposed to air (0 ppm) or acrolein (3.16 ppm) for 4 h, followed by immediate serum and liver tissue collection. Serum metabolomics in both sexes and liver transcriptomics in males were evaluated to characterize the systemic metabolic response. Of 887 identified metabolites, > 400 differed between sexes at baseline. An acrolein biomarker, 3-hydroxypropyl mercapturic acid, increased 18-fold in males and 33-fold in females, indicating greater metabolic detoxification in females than males. Acrolein exposure changed 174 metabolites in males but only 50 in females. Metabolic process assessment identified higher circulating free-fatty acids, glycerols, and other lipids in male but not female rats exposed to acrolein. In males, acrolein also increased branched-chain amino acids, which was linked with metabolites of nitrogen imbalance within the gut microbiome. The contribution of neuroendocrine stress was evident by increased corticosterone in males but not females. Male liver transcriptomics revealed acrolein-induced over-representation of lipid and protein metabolic processes, and pathway alterations including Sirtuin, insulin-receptor, acute-phase, and glucocorticoid signaling. In sum, acute acrolein inhalation resulted in sex-specific serum metabolomic and liver transcriptomic derangement, which may have connections to chronic metabolic-related diseases.


Asunto(s)
Acroleína , Transcriptoma , Ratas , Masculino , Femenino , Animales , Acroleína/toxicidad , Ratas Endogámicas WKY , Hígado , Metaboloma
9.
Chem Biol Interact ; 385: 110744, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37806080

RESUMEN

Acrolein (AC) is a highly toxic volatile substance in the environment, and studies have found that excessive AC had a toxic effect on the immune system. Neutrophils are the first line of defense against pathogen invasion. The release of neutrophil extracellular traps (NETs) is a protective mechanism for neutrophils, and its release is affected by environmental pollutants. However, the effect of AC on NETs release and its mechanism remains unclear. In this study, chicken peripheral blood neutrophils were pretreated with 20 µM AC and treated with 5 µM Phorbol 12-myristate 13-acetate (PMA) to stimulate the release of NETs. The results showed that AC exposure significantly inhibited the release of NETs induced by PMA, respiratory burst, and the expression levels of phospho-rapidly accelerated fibrosarcoma (p-Raf), phospho-mitogen-activated extracellular signal-regulated kinase (p-MEK) and phospho-extracellular regulated protein kinases (p-ERK). In addition, AC exposure significantly inhibited the expression of B-cell lymphoma-2 (Bcl-2) and promoted the expression of apoptotic factors Bcl2-Associated X (Bax), cytochrome c (Cyt C), cysteinyl aspartate specific proteinase 9 (Casp 9) and cysteinyl aspartate specific proteinase 3 (Casp 3). Further inhibition of neutrophil apoptosis significantly improved the release of NETs. The above results indicated that AC exposure led to a decrease in the formation of NETs, which is caused by excessive AC-induced neutrophil apoptosis. Our study clarified the immune toxicity mechanism of AC on chickens, which is of great significance and reference value for protecting the ecological environment and poultry health.


Asunto(s)
Trampas Extracelulares , Animales , Trampas Extracelulares/metabolismo , Sistema de Señalización de MAP Quinasas , Acroleína/toxicidad , Acroleína/metabolismo , Estallido Respiratorio , Ácido Aspártico/metabolismo , Pollos/metabolismo , Neutrófilos , Apoptosis , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
10.
Int J Mol Sci ; 24(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37686379

RESUMEN

It is reported that retinal abnormities are related to Alzheimer's disease (AD) in patients and animal models. However, it is unclear whether the retinal abnormities appear in the mouse model of sporadic Alzheimer's disease (sAD) induced by acrolein. We investigated the alterations of retinal function and structure, the levels of ß-amyloid (Aß) and phosphorylated Tau (p-Tau) in the retina, and the changes in the retinal vascular system in this mouse model. We demonstrated that the levels of Aß and p-Tau were increased in the retinas of mice from the acrolein groups. Subsequently, a decreased amplitudes of b-waves in the scotopic and photopic electroretinogram (ERG), decreased thicknesses of the retinal nerve fiber layer (RNFL) in the retina, and slight retinal venous beading were found in the mice induced by acrolein. We propose that sAD mice induced by acrolein showed abnormalities in the retina, which may provide a valuable reference for the study of the retina in sAD.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/inducido químicamente , Acroleína/toxicidad , Retina , Péptidos beta-Amiloides , Modelos Animales de Enfermedad
11.
Toxicol Ind Health ; 39(11): 630-637, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37644888

RESUMEN

Smoking or occupational exposure leads to low concentrations of acrolein on the surface of the airways. Acrolein is involved in the pathophysiological processes of various respiratory diseases. Reports showed that acrolein induced an increase in mitochondrial reactive oxygen species (mROS). Furthermore, exogenous H2O2 was found to increase intracellular Zn2⁺ concentration ([Zn2⁺]ᵢ). However, the specific impact of acrolein on changes in intracellular Zn2⁺ levels has not been fully investigated. Therefore, this study aimed to investigate the effects of acrolein on mROS and [Zn2⁺]ᵢ in A549 cells. We used Mito Tracker Red CM-H2Xros (MitoROS) and Fluozin-3 fluorescent probes to observe changes in mROS and intracellular Zn2⁺. The results revealed that acrolein increased [Zn2⁺]ᵢ in a time- and dose-dependent manner. Additionally, the production of mROS was observed in response to acrolein treatment. Subsequent experiments showed that the intracellular Zn2⁺ chelator TPEN could inhibit the acrolein-induced elevation of [Zn2⁺]ᵢ but did not affect the acrolein-induced mROS production. Conversely, the acrolein-induced elevation of mROS and [Zn2⁺]ᵢ were significantly decreased by the inhibitors of ROS formation (NaHSO3, NAC). Furthermore, external oxygen free radicals increased both [Zn2⁺]ᵢ levels and mROS production. These results demonstrated that acrolein-induced elevation of [Zn2⁺]ᵢ in A549 cells was mediated by mROS generation, rather than through a pathway where [Zn2⁺]ᵢ elevation leads to mROS production.


Asunto(s)
Acroleína , Estrés Oxidativo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Acroleína/toxicidad , Células A549 , Peróxido de Hidrógeno , Zinc/farmacología
12.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37511605

RESUMEN

Transient receptor potential ankyrin 1 (TRPA1) is a nonselective ion channel implicated in thermosensation and inflammatory pain. It has been reported that expression of the TRPA1 channel is induced by cigarette smoke extract. Acrolein found in cigarette smoke is highly toxic and known as an agonist of the TRPA1 channel. However, the role of TRPA1 in the cytotoxicity of acrolein remains unclear. Here, we investigated whether the TRPA1 channel is involved in the cytotoxicity of acrolein in human lung cancer A549 cells. The IC50 of acrolein in A549 cells was 25 µM, and acrolein toxicity increased in a concentration- and time-dependent manner. When the effect of acrolein on TRPA1 expression was examined, the expression of TRPA1 in A549 cells was increased by treatment with 50 µM acrolein for 24 h or 500 µM acrolein for 30 min. AP-1, a transcription factor, was activated in the cells treated with 50 µM acrolein for 24 h, while induction of NF-κB and HIF-1α was observed in the cells treated with 500 µM acrolein for 30 min. These results suggest that acrolein induces TRPA1 expression by activating these transcription factors. Overexpression of TRPA1 in A549 cells increased acrolein sensitivity and the level of protein-conjugated acrolein (PC-Acro), while knockdown of TRPA1 in A549 cells or treatment with a TRPA1 antagonist caused tolerance to acrolein. These findings suggest that acrolein induces the TRPA1 channel and that an increase in TRPA1 expression promotes the cytotoxicity of acrolein.


Asunto(s)
Neoplasias Pulmonares , Canales de Potencial de Receptor Transitorio , Humanos , Canales de Potencial de Receptor Transitorio/genética , Acroleína/toxicidad , Canal Catiónico TRPA1/genética , Canal Catiónico TRPA1/metabolismo , Ancirinas/metabolismo , Proteínas del Citoesqueleto/metabolismo
13.
Exp Eye Res ; 234: 109575, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37451567

RESUMEN

Acrolein is a highly reactive volatile toxic chemical that injures the eyes and many organs. It has been used in wars and terrorism for wounding masses on multiple occasions and is readily accessible commercially. Our earlier studies revealed acrolein's toxicity to the cornea and witnessed damage to other ocular tissues. Eyelids play a vital role in keeping eyes mobile, moist, lubricated, and functional utilizing a range of diverse lipids produced by the Meibomian glands located in the upper and lower eyelids. This study sought to investigate acrolein's toxicity to eyelid tissues by studying the expression of inflammatory and lipid markers in rabbit eyes in vivo utilizing our reported vapor-cap model. The study was approved by the institutional animal care and use committees and followed ARVO guidelines. Twelve New Zealand White Rabbits were divided into 3 groups: Naïve (group 1), 1-min acrolein exposure (group 2), or 3-min acrolein exposure (group 3). The toxicological effects of acrolein on ocular health in live animals were monitored with regular clinical eye exams and intraocular pressure measurements and eyelid tissues post-euthanasia were subjected to H&E and Masson's trichrome histology and qRT-PCR analysis. Clinical eye examinations witnessed severely swollen eyelids, abnormal ocular discharge, chemosis, and elevated intraocular pressure (p < 0.001) in acrolein-exposed eyes. Histological studies supported clinical findings and exhibited noticeable changes in eyelid tissue morphology. Gene expression studies exhibited significantly increased expression of inflammatory and lipid mediators (LOX, PAF, Cox-2, and LTB4; p < 0.001) in acrolein-exposed eyelid tissues compared to naïve eyelid tissues. The results suggest that acrolein exposure to the eyes causes acute damage to eyelids by altering inflammatory and lipid mediators in vivo.


Asunto(s)
Acroleína , Glándulas Tarsales , Conejos , Animales , Acroleína/toxicidad , Acroleína/metabolismo , Córnea/metabolismo , Lípidos
14.
Pflugers Arch ; 475(7): 807-821, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37285062

RESUMEN

Electronic cigarettes (E-cigarettes) have recently become a popular alternative to traditional tobacco cigarettes. Despite being marketed as a healthier alternative, increasing evidence shows that E-cigarette vapour could cause adverse health effects. It has been postulated that degradation products of E-cigarette liquid, mainly reactive aldehydes, are responsible for those effects. Previously, we have demonstrated that E-cigarette vapour exposure causes oxidative stress, inflammation, apoptosis, endothelial dysfunction and hypertension by activating NADPH oxidase in a mouse model. To better understand oxidative stress mechanisms, we have exposed cultured endothelial cells and macrophages to condensed E-cigarette vapour (E-cigarette condensate) and acrolein. In both endothelial cells (EA.hy 926) and macrophages (RAW 264.7), we have observed that E-cigarette condensate incubation causes cell death. Since recent studies have shown that among toxic aldehydes found in E-cigarette vapour, acrolein plays a prominent role, we have incubated the same cell lines with increasing concentrations of acrolein. Upon incubation with acrolein, a translocation of Rac1 to the plasma membrane has been observed, accompanied by an increase in oxidative stress. Whereas reactive oxygen species (ROS) formation by acrolein in cultured endothelial cells was mainly intracellular, the release of ROS in cultured macrophages was both intra- and extracellular. Our data also demonstrate that acrolein activates the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway and, in general, could mediate E-cigarette vapour-induced oxidative stress and cell death. More mechanistic insight is needed to clarify the toxicity associated with E-cigarette consumption and the possible adverse effects on human health.


Asunto(s)
Cigarrillo Electrónico a Vapor , Sistemas Electrónicos de Liberación de Nicotina , Animales , Ratones , Humanos , Células Endoteliales/metabolismo , Acroleína/toxicidad , Acroleína/metabolismo , Cigarrillo Electrónico a Vapor/metabolismo , Cigarrillo Electrónico a Vapor/farmacología , Especies Reactivas de Oxígeno/metabolismo , NADPH Oxidasas/metabolismo , Macrófagos/metabolismo , Estrés Oxidativo , Aldehídos/metabolismo , Aldehídos/farmacología
15.
Biochem Biophys Res Commun ; 666: 137-145, 2023 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-37187091

RESUMEN

Acute kidney injury is an important global health concern as it is associated with high morbidity and mortality. Polyamines, essential for cell growth and proliferation, are known to inhibit cardiovascular disease. However, under conditions of cellular damage, toxic acrolein is produced from polyamines by the enzyme spermine oxidase (SMOX). We used a mouse renal ischemia-reperfusion model and human proximal tubule cells (HK-2) to investigate whether acrolein exacerbates acute kidney injury by renal tubular cell death. Acrolein visualized by acroleinRED was increased in ischemia-reperfusion kidneys, particularly in tubular cells. When HK-2 cells were cultured under 1% oxygen for 24 h, then switched to 21% oxygen for 24 h (hypoxia-reoxygenation), acrolein accumulated and SMOX mRNA and protein levels were increased. Acrolein induced cell death and fibrosis-related TGFB1 mRNA in HK-2 cells. Administration of the acrolein scavenger cysteamine suppressed the acrolein-induced upregulation of TGFB1 mRNA. Cysteamine also inhibited a decrease in the mitochondrial membrane potential observed by MitoTrackerCMXRos, and cell death induced by hypoxia-reoxygenation. The siRNA-mediated knockdown of SMOX also suppressed hypoxia-reoxygenation-induced acrolein accumulation and cell death. Our study suggests that acrolein exacerbates acute kidney injury by promoting tubular cell death during ischemia-reperfusion injury. Treatment to control the accumulation of acrolein might be an effective therapeutic option for renal ischemia-reperfusion injury.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Ratones , Animales , Humanos , Acroleína/toxicidad , Cisteamina , Riñón/metabolismo , Lesión Renal Aguda/inducido químicamente , Muerte Celular , Daño por Reperfusión/metabolismo , Isquemia , Poliaminas , Oxígeno , Modelos Animales de Enfermedad , Hipoxia , ARN Mensajero
16.
Toxicol Lett ; 382: 22-32, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37201588

RESUMEN

Acrolein and trichloroethylene (TCE) are priority hazardous air pollutants due to environmental prevalence and adverse health effects; however, neuroendocrine stress-related systemic effects are not characterized. Comparing acrolein, an airway irritant, and TCE with low irritancy, we hypothesized that airway injury would be linked to neuroendocrine-mediated systemic alterations. Male and female Wistar-Kyoto rats were exposed nose-only to air, acrolein or TCE in incremental concentrations over 30 min, followed by 3.5-hr exposure to the highest concentration (acrolein - 0.0, 0.1, 0.316, 1, 3.16 ppm; TCE - 0.0, 3.16, 10, 31.6, 100 ppm). Real-time head-out plethysmography revealed acrolein decreased minute volume and increased inspiratory-time (males>females), while TCE reduced tidal-volume. Acrolein, but not TCE, inhalation increased nasal-lavage-fluid protein, lactate-dehydrogenase activity, and inflammatory cell influx (males>females). Neither acrolein nor TCE increased bronchoalveolar-lavage-fluid injury markers, although macrophages and neutrophils increased in acrolein-exposed males and females. Systemic neuroendocrine stress response assessment indicated acrolein, but not TCE, increased circulating adrenocorticotrophic hormone, and consequently corticosterone, and caused lymphopenia, but only in males. Acrolein also reduced circulating thyroid-stimulating hormone, prolactin, and testosterone in males. In conclusion, acute acrolein inhalation resulted in sex-specific upper respiratory irritation/inflammation and systemic neuroendocrine alterations linked to hypothalamic-pituitary-adrenal axes activation, which is critical in mediating extra-respiratory effects.


Asunto(s)
Tricloroetileno , Ratas , Animales , Masculino , Femenino , Tricloroetileno/toxicidad , Acroleína/toxicidad , Ratas Endogámicas WKY , Sistema Respiratorio , Administración por Inhalación , Inflamación
17.
Food Chem Toxicol ; 176: 113784, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37059385

RESUMEN

Acrolein (ACR), a highly toxic α,ß-unsaturated aldehyde, is considered to be a common mediator behind the reproductive injury induced by various factors. However, the understanding of its reproductive toxicity and prevention in reproductive system is limited. Given that Sertoli cells provide the first-line defense against various toxicants and that dysfunction of Sertoli cell causes impaired spermatogenesis, we, therefore, examined ACR cytotoxicity in Sertoli cells and tested whether hydrogen sulfide (H2S), a gaseous mediator with potent antioxidative actions, could have a protective effect. Exposure of Sertoli cells to ACR led to cell injury, as indicated by reactive oxygen species (ROS) generation, protein oxidation, P38 activation and ultimately cell death that was prevented by antioxidant N-acetylcysteine (NAC). Further studies revealed that ACR cytotoxicity on Sertoli cells was significantly exacerbated by the inhibition of H2S-synthesizing enzyme cystathionine γ-lyase (CSE), while significantly suppressed by H2S donor Sodium hydrosulfide (NaHS). It was also attenuated by Tanshinone IIA (Tan IIA), an active ingredient of Danshen that stimulated H2S production in Sertoli cells. Apart from Sertoli cells, H2S also protected the cultured germ cells from ACR-initiated cell death. Collectively, our study characterized H2S as endogenous defensive mechanism against ACR in Sertoli cells and germ cells. This property of H2S could be used to prevent and treat ACR-related reproductive injury.


Asunto(s)
Sulfuro de Hidrógeno , Masculino , Humanos , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Células de Sertoli/metabolismo , Acroleína/toxicidad , Sulfuros/farmacología , Antioxidantes/farmacología
18.
Mar Drugs ; 21(3)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36976187

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly. The progression of AMD is closely related to oxidative stress in the retinal pigment epithelium (RPE). Here, a series of chitosan oligosaccharides (COSs) and N-acetylated derivatives (NACOSs) were prepared, and their protective effects on an acrolein-induced oxidative stress model of ARPE-19 were explored using the MTT assay. The results showed that COSs and NACOs alleviated APRE-19 cell damage induced by acrolein in a concentration-dependent manner. Among these, chitopentaose (COS-5) and its N-acetylated derivative (N-5) showed the best protective activity. Pretreatment with COS-5 or N-5 could reduce intracellular and mitochondrial reactive oxygen species (ROS) production induced by acrolein, increase mitochondrial membrane potential, GSH level, and the enzymatic activity of SOD and GSH-Px. Further study indicated that N-5 increased the level of nuclear Nrf2 and the expression of downstream antioxidant enzymes. This study revealed that COSs and NACOSs reduced the degeneration and apoptosis of retinal pigment epithelial cells by enhancing antioxidant capacity, suggesting that they have the potential to be developed into novel protective agents for AMD treatment and prevention.


Asunto(s)
Antioxidantes , Degeneración Macular , Humanos , Anciano , Antioxidantes/farmacología , Antioxidantes/metabolismo , Acroleína/toxicidad , Supervivencia Celular , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Degeneración Macular/inducido químicamente , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/prevención & control
19.
Cells ; 12(6)2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36980220

RESUMEN

Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant that seriously threatens human health and life. Due to its high reactivity, cytotoxicity and genotoxicity, acrolein is involved in the development of several diseases, including multiple sclerosis, neurodegenerative diseases such as Alzheimer's disease, cardiovascular and respiratory diseases, diabetes mellitus and even the development of cancer. Traditional tobacco smokers and e-cigarette users are particularly exposed to the harmful effects of acrolein. High concentrations of acrolein have been found in both mainstream and side-stream tobacco smoke. Acrolein is considered one of cigarette smoke's most toxic and harmful components. Chronic exposure to acrolein through cigarette smoke has been linked to the development of asthma, acute lung injury, chronic obstructive pulmonary disease (COPD) and even respiratory cancers. This review addresses the current state of knowledge on the pathological molecular mechanisms of acrolein in the induction, course and development of lung diseases and cancers in smokers.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Neoplasias , Enfermedad Pulmonar Obstructiva Crónica , Contaminación por Humo de Tabaco , Humanos , Acroleína/toxicidad , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/etiología , Neoplasias/inducido químicamente
20.
Amino Acids ; 55(4): 509-518, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36752871

RESUMEN

Brain stroke is a major cause of being bedridden for elderly people, and preventing stroke is important for maintaining quality of life (QOL). Acrolein is a highly reactive aldehyde and causes tissue damage during stroke. Decreasing acrolein toxicity ameliorates tissue injury during brain stroke. In this study, we tried to identify food components which decrease acrolein toxicity. We found that 2-furanmethanethiol, cysteine methyl and ethyl esters, alliin, lysine and taurine decreased acrolein toxicity. These compounds neutralized acrolein by direct interaction. However, the interaction between acrolein and taurine was not so strong. Approximately 30 mM taurine was necessary to interact with 10 µM acrolein, and 2 g/kg taurine was necessary to decrease the size of mouse brain infarction. Taurine also slightly increased polyamine contents, which are involved in decrease in the acrolein toxicity. Mitochondrial potential damage by acrolein was also protected by taurine. Our results indicate that daily intake of foods containing 2-furanmethanethiol, cysteine methyl and ethyl esters, alliin, lysine and taurine may prevent severe injury in brain stroke and improve the quality of life for elderly people.


Asunto(s)
Acroleína , Accidente Cerebrovascular , Ratones , Animales , Acroleína/toxicidad , Cisteína , Calidad de Vida , Lisina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA