Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
1.
Food Funct ; 15(18): 9524-9540, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39223970

RESUMEN

Flaxseed lignan macromolecules (FLMs) are important polyphenols present in flaxseeds with interfacial adsorption behavior. However, FLMs are easily degraded during thermal treatment in emulsions, which further influences their interfacial properties and application. In this work, the interfacial properties of FLMs between oil and water were evaluated using compression isotherms and interfacial tension to investigate the regulation mechanism of FLMs and their heat-treated products on the stability of O/W emulsions. Furthermore, the improvement mechanism of FLM heat-treated products on the physicochemical stability of flaxseed oil emulsions was clarified. Studies showed that thermal degradation occurred on terminal phenolic acids in FLMs when treated under 100 and 150 °C (FLM-100 and FLM-150) without any decrease in antioxidant activity. FLM-100 and FLM-150 improved the physicochemical stability of sunflower lecithin (S90)-stabilized flaxseed oil emulsions and reduced the concentration of hydroperoxides and TBARS by 26.7% and 80% (p < 0.05), respectively, during storage. This was due to the high interfacial anchoring of FLM-100 and FLM-150, which further strengthened the interface of oil droplets and improved the interfacial antioxidant effect of FLMs. This implies that FLM-100 and FLM-150 could act as new efficient antioxidants for application in food emulsions.


Asunto(s)
Emulsiones , Lino , Calor , Lignanos , Ácido alfa-Linolénico , Lignanos/química , Emulsiones/química , Lino/química , Ácido alfa-Linolénico/química , Antioxidantes/química , Aceite de Linaza/química
2.
Food Chem ; 459: 140447, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-39024875

RESUMEN

Sunflower oil (SFO) and Flaxseed oil (FSO) were microencapsulated using simple and complex coacervation techniques with Opuntia (Cactaceae) mucilage (Mu) and with a combination of Mu with chitosan (Chit). The encapsulation efficiency (EE) of SFO and FSO in emulsions using Mu/Chit shells was 96.7% and 97.4%, respectively. Morphological studies indicated successful entrapment of oils in core shells with particle sizes ranging from 1396 ± 42.4 to 399.8 ± 42.3 nm. The thermogravimetric analyses demonstrated enhanced core protection with thermal stability noted for microcapsules regardless of encapsulation method. The stability of the microcapsules, during in vitro digestion was studied. The obtained results revealed that the microcapsules are intact in oral conditions and have a slow release of oil over stomach digestion and rapid release in the small intestine. The results showed that Mu and Mu/Chit coacervates can be used as effective carrier systems to encapsulate sensitive ingredients and functional oils.


Asunto(s)
Digestión , Composición de Medicamentos , Aceite de Linaza , Opuntia , Tamaño de la Partícula , Aceite de Girasol , Aceite de Girasol/química , Aceite de Linaza/química , Opuntia/química , Aceites de Plantas/química , Mucílago de Planta/química , Modelos Biológicos , Cápsulas/química , Humanos
3.
Food Chem ; 456: 139624, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38850608

RESUMEN

The limited availability of phospholipase A1 (PLA1) has posed significant challenges in enzymatic degumming. In this study, a novel PLA1 (UM2) was introduced to address this limitation, which had a unique thermo-responsive ability to switch phospholipase and lipase activities in response to temperature variations. Remarkably, UM2 displayed an unprecedented selectivity under optimized conditions, preferentially hydrolyzing phospholipids over triacylglycerols-a specificity superior to that of commercial PLA1. Moreover, UM2 demonstrated high efficiency in hydrolyzing phospholipids with a predilection for phosphatidylcholine (PC) and phosphatidylethanolamine (PE). A practical application of UM2 on crude flaxseed oil led to a dramatic reduction in phosphorus content, plummeting from an initial 384.06 mg/kg to 4.38 mg/kg. Broadening its industrial applicability, UM2 effectively performed enzymatic degumming for other distinct crude vegetable oils with a unique phospholipid composition. Collectively, these results highlighted the promising application of UM2 in the field of oil degumming.


Asunto(s)
Fosfolipasas A1 , Fosfolípidos , Fosfolipasas A1/química , Fosfolipasas A1/metabolismo , Fosfolípidos/química , Fosfolípidos/metabolismo , Hidrólisis , Aceite de Linaza/química , Lipasa/química , Lipasa/metabolismo , Calor , Estabilidad de Enzimas , Biocatálisis , Especificidad por Sustrato , Aceites de Plantas/química , Temperatura
4.
Acta Pharm ; 74(2): 301-313, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38815204

RESUMEN

The principal function of skin is to form an effective barrier between the human body and its environment. Impaired barrier function represents a precondition for the development of skin diseases such as atopic dermatitis (AD), which is the most common inflammatory skin disease characterized by skin barrier dysfunction. AD significantly affects patients' quality of life, thus, there is a growing interest in the development of novel delivery systems that would improve therapeutic outcomes. Herein, eight novel lyotropic liquid crystals (LCCs) were investigated for the first time in a double-blind, interventional, before-after, single-group trial with healthy adult subjects and a twice-daily application regimen. LCCs consisted of constituents with skin regenerative properties and exhibited lamellar micro-structure, especially suitable for dermal application. The short- and long-term effects of LCCs on TEWL, SC hydration, erythema index, melanin index, and tolerability were determined and compared with baseline. LCCs with the highest oil content and lecithin/Tween 80 mixture stood out by providing a remarkable 2-fold reduction in TEWL values and showing the most distinctive decrease in skin erythema levels in both the short- and long-term exposure. Therefore, they exhibit great potential for clinical use as novel delivery systems for AD treatment, capable of repairing skin barrier function.


Asunto(s)
Administración Cutánea , Dermatitis Atópica , Aceite de Linaza , Cristales Líquidos , Piel , Humanos , Cristales Líquidos/química , Método Doble Ciego , Adulto , Masculino , Femenino , Piel/efectos de los fármacos , Piel/metabolismo , Dermatitis Atópica/tratamiento farmacológico , Aceite de Linaza/química , Aceite de Linaza/farmacología , Adulto Joven , Eritema/tratamiento farmacológico , Cannabis/química , Persona de Mediana Edad , Sistemas de Liberación de Medicamentos/métodos , Extractos Vegetales
5.
Molecules ; 29(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38731587

RESUMEN

We aimed to obtain the optimal formula for human milk fat substitute (HMFS) through a combination of software and an evaluation model and further verify its practicability through an animal experiment. The results showed that a total of 33 fatty acid (FA) and 63 triglyceride (TAG) molecular species were detected in vegetable oils. Palmitic acid, oleic acid, linoleic acid, 18:1/16:0/18:1, 18:2/16:0/18:2, 18:1/18:1/18:1 and 18:1/18:2/18:1, were the main molecular species among the FAs and TAGs in the vegetable oils. Based on the HMFS evaluation model, the optimal mixed vegetable oil formula was blended with 21.3% palm oil, 2.8% linseed oil, 2.6% soybean oil, 29.9% rapeseed oil and 43.4% maize oil, with the highest score of 83.146. Moreover, there was no difference in the weight, blood routine indices or calcium and magnesium concentrations in the feces of the mice between the homemade mixed vegetable oil (HMVO) group and the commercial mixed vegetable oil (CMVO) group, while nervonic acid (C24:1) and octanoic acid (C8:0) were absorbed easily in the HMVO group. Therefore, these results demonstrate that the mixing of the different vegetable oils was feasible via a combination of computer software and an evaluation model and provided a new way to produce HMFS.


Asunto(s)
Sustitutos de Grasa , Ácidos Grasos , Leche Humana , Aceites de Plantas , Programas Informáticos , Triglicéridos , Humanos , Animales , Aceites de Plantas/química , Ácidos Grasos/química , Leche Humana/química , Ratones , Triglicéridos/química , Sustitutos de Grasa/química , Aceite de Palma/química , Aceite de Soja/química , Aceite de Linaza/química , Aceite de Brassica napus/química , Aceite de Maíz/química , Caprilatos/química , Ácido Palmítico/química , Ácido Oléico/química
6.
Int J Biol Macromol ; 270(Pt 1): 132154, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734331

RESUMEN

Flaxseed oil, rich in α-linolenic acid, plays a crucial role in various physiological processes. However, its stability presents certain challenges. In this study, the natural lignin-carbohydrate complex (LCC) was used to prepare the physical and oxidative stability of flaxseed oil-in-water emulsions. The LCC was characterized by HPLC, GPC, and FT-IR. The stability of emulsions was evaluated by viscosity, modulus, and micro-morphology changes. Then, the oxidation products were monitored by UV-vis spectrophotometer and HPLC. The results revealed that the high internal phase emulsion (HIPE) was successfully prepared with 2.5 wt% LCC at an oil/water ratio of 75/25 (v/v). Small droplet size (13.361 µm) and high viscosity (36,500 mPa·s) were found even after 30-day storage. Steric interactions of the LCC play a crucial role in ensuring stability, intricately linked to the interfacial properties of the emulsion. Meanwhile, the oxidative stability of α-linolenic acid in the encapsulated flaxseed oil was significantly higher than that in the bulk flaxseed oil. The results revealed that the LCC as a suitable emulsifier opens a new window for the storage of functional lipids rich in polyunsaturated fatty acids.


Asunto(s)
Emulsiones , Lignina , Aceite de Linaza , Oxidación-Reducción , Agua , Aceite de Linaza/química , Emulsiones/química , Lignina/química , Agua/química , Viscosidad , Carbohidratos/química , Ácido alfa-Linolénico/química , Tamaño de la Partícula
7.
BMC Biotechnol ; 24(1): 31, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750440

RESUMEN

Pasta assortments fortified with high quality foods are a modern nutritional trends. This study, explored the effects of fortification with linseed flour (LF) and linseed oil (LO) on durum wheat pasta characteristics. Wheat flour semolina was replaced with 5%, 10% and 15% of LF or 1%, 2.5% and 5% of LO. Control pasta CP (without LF or LO addition), LF-enriched pasta LFP 5%, LFP 10% and LFP 15% and LO-enriched pasta LOP 1%, LOP 2.5% and LOP 5% was compared for the proteins, fat and phenolic contents and fatty acids (FA) profile. Impact on lipid oxidation and sensory evaluation were also determined. Fortification of pasta with LF improved significantly (p < 0.05) the contents of protein, fat and phenolic compared to CP whereas the enrichment of pasta with LO resulted in a significant increase (p < 0.05) in the content of fat and a significant decrease in protein and phenolic contents. All the formulations decreased the saturated FA percent and increased the polyunsaturated FA percent with enhancement of omega-3 FA content. Antioxidant activity measured by FRAP and DPPH assays was improved after the fortification. For lipid oxidation, the replacement of semolina by LF or LO promoted an increase (p < 0.05) on TBARS values in level-dependent manner. Regarding sensory evaluation, the two types of fortification did not affect the taste; flavor and aroma of cooked pasta, but LOP 5% showed the highest score of the overall acceptability. The results recommended the possibility of producing pasta supplemented with LF or LO (even at a level of 15% and 5% respectively) as a functional food.


Asunto(s)
Lino , Harina , Alimentos Fortificados , Aceite de Linaza , Sensación , Alimentos Fortificados/análisis , Alimentos Fortificados/normas , Aceite de Linaza/química , Harina/análisis , Harina/normas , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Antioxidantes/análisis , Fenoles/análisis , Ácidos Grasos/análisis , Oxidación-Reducción
8.
Int J Biol Macromol ; 271(Pt 2): 132529, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777010

RESUMEN

The poor UV shielding property of PLA limit it further applications on food packaging. The rare-earth complex Eu(DBM)3phen converts absorbed ultraviolet (UV) light to red light, which inspires the development of new UV shielding materials. However, this complex has low photostability and decomposes easily under UV irradiation. Thus, we prepared a long-lasting rare-earth complex transluminant Eu(DBM)2(BP-2)phen by introducing BP-2 into Eu(DBM)3phen, and blended it with PLA to obtain PLA/Eu(DBM)2(BP-2)phen composite films. The test results showed that the complex could reduce the UV transmittance of PLA films by emitting luminescence and heat. The UV transmittance of the composite film with 0.5 % mass fraction decreased from 87.4 % to 7.7 %, compared to pure PLA films, and remained at 11.6 % after 12 days of UV aging. The film had long-lasting UV shielding performance, good transparency and mechanical properties. Finally, In the storage experiments of flaxseed oil, the P/E25 film effectively retarded the oxidation process of the oil.


Asunto(s)
Europio , Embalaje de Alimentos , Poliésteres , Rayos Ultravioleta , Poliésteres/química , Europio/química , Embalaje de Alimentos/métodos , Aceite de Linaza/química
9.
Food Chem ; 454: 139790, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805931

RESUMEN

Germination of seeds is known to affect the nutritional composition of cold-pressed oils. This study focused on the effects of germination on the antioxidants and oxidative stability of linseed and sunflower seed oil. As hypothesized, germination led to increased antioxidant activities and tocopherol, chlorophyll and carotenoid content. Analysis revealed a 37.2 ± 3.5-fold and 11.6 ± 1.5-fold increase in polyphenol content in linseed and sunflower seed oil from germinated seeds, respectively. Using LC-HRMS/MS, profiles with up to 69 polyphenolic substances were identified in germinated seed oils for the first time. Germination promoted lipid hydrolysis, as evidenced by NMR, with overall significant decreases in triacylglycerol content leading to increased diacylglycerol and free fatty acid values. Rancimat measurements predicted a 4.10 ± 0.52-fold longer shelf-life for germinated linseed oil. This study successfully demonstrated the potential of germination to develop PUFA-rich oils with enhanced antioxidant capacity and oxidative stability.


Asunto(s)
Antioxidantes , Germinación , Aceite de Linaza , Valor Nutritivo , Oxidación-Reducción , Aceites de Plantas , Semillas , Aceite de Girasol , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Aceite de Girasol/química , Aceite de Girasol/metabolismo , Aceite de Linaza/metabolismo , Aceite de Linaza/química , Aceites de Plantas/química , Aceites de Plantas/análisis , Antioxidantes/química , Antioxidantes/análisis , Antioxidantes/metabolismo , Lino/química , Lino/crecimiento & desarrollo , Lino/metabolismo , Helianthus/crecimiento & desarrollo , Helianthus/química , Helianthus/metabolismo
10.
Food Res Int ; 183: 114189, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760128

RESUMEN

Complex coacervation can be used for controlled delivery of bioactive compounds (i.e., flaxseed oil and quercetin). This study investigated the co-encapsulation of flaxseed oil and quercetin by complex coacervation using soluble pea protein (SPP) and gum arabic (GA) as shell materials, followed by innovative electrostatic spray drying (ES). The dried system was analyzed through encapsulation efficiency (EE) and yield (EY), morphological and physicochemical properties, and stability for 60 days. Small droplet size emulsions were produced by GA (in the first step of complex coacervation) due to its greater emulsifying activity than SPP. Oil EY and EE, moisture, and water activity in dried compositions ranged from 75.7 to 75.6, 76.0-73.4 %, 3.4-4.1 %, and 0.1-0.2, respectively. Spherical microcapsules were created with small and aggregated particle size but stable for 60 days. An amount of 8 % of quercetin remained in the dried coacervates after 60 days, with low hydroperoxide production. In summary, when GA is used as the emulsifier and SPP as the second biopolymer in the coacervation process, suitable coacervates for food applications are obtained, with ES being a novel alternative to obtain coacervates in powder, with improved stability for encapsulated compounds. As a result, this study helps provide a new delivery system option and sheds light on how the characteristics of biopolymers and the drying process affect coacervate formation.


Asunto(s)
Goma Arábiga , Aceite de Linaza , Tamaño de la Partícula , Quercetina , Secado por Pulverización , Electricidad Estática , Goma Arábiga/química , Quercetina/química , Aceite de Linaza/química , Cápsulas , Emulsiones/química , Desecación/métodos , Proteínas de Guisantes/química , Emulsionantes/química
11.
Food Res Int ; 187: 114307, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763624

RESUMEN

Flaxseed oil coacervates were produced by complex coacervation using soluble pea protein and gum arabic as shell materials, followed by either spray or electrostatic spray drying and their incorporation to yoghurt. Three yoghurt formulations were prepared: yoghurt with spray-dried microcapsules (Y-SD); with electrospray-dried microcapsules (Y-ES); with the encapsulation ingredients added in free form (Y). The standardised semi-dynamicin vitrodigestion method (INFOGEST) was employed to study the food digestion. The structure was analysed by confocal laser scanning microscopy and particle size distribution. Protein and lipid digestion were monitored by cumulated protein/free NH2 release and cumulated free fatty acids release, respectively. Stable microcapsules were observed during gastric digestion, but there was no significant difference in protein release/hydrolysis among samples until 55 min of gastric digestion. Formulation Y showed less protein release after 74 min (40.46 %) due to the free SPP being available and positively charged at pH 2-4, resulting in interactions with other constituents of the yoghurt, which delayed its release/hydrolysis. The total release of protein and free NH2 by the end of intestinal digestions ranged between 46.56-61.15 % and 0.83-1.57 µmol/g protein, respectively. A higher release of free fatty acids from formulation Y occurred at the end of intestinal digestion, implying that coacervates promoted the delayed release of encapsulated oil. In summary, incorporating protein-polysaccharides-based coacervates in yoghurt enabled the delay of the digestion of encapsulated lipids but accelerated the digestion of protein, suggesting a promising approach for various food applications.


Asunto(s)
Digestión , Goma Arábiga , Aceite de Linaza , Tamaño de la Partícula , Proteínas de Guisantes , Yogur , Yogur/análisis , Proteínas de Guisantes/química , Aceite de Linaza/química , Goma Arábiga/química , Composición de Medicamentos , Cápsulas , Metabolismo de los Lípidos , Secado por Pulverización
12.
Food Chem ; 448: 138988, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38522295

RESUMEN

This study prepared emulsion gels by modifying ovalbumin (OVA)-flaxseed oil (FSO) emulsions with transglutaminase (TGase) and investigated their properties, structure and oxidative stability under different enzyme reaction times. Here, we found prolonged reaction times led to the transformation of α-helix and ß-turn into ß-sheet and random coil. The elasticity, hardness and water retention of the emulsion gels increased significantly, but the water-holding capacity decreased when the reaction time exceeded 4 h. Confocal laser scanning microscope (CLSM) indicated extended enzyme reaction time fostered oil droplet aggregation with proteins. Emulsion gel reduced FSO oxidation, especially after 4 h of the enzyme reaction, the peroxide value (PV) of the emulsion gel was reduced by 29.16% compared to the control. In summary, the enzyme reaction time of 4 h resulted in the formation of a dense gel structure and enhanced oxidative stability. This study provides the potential applications in functional foods and biomedical fields.


Asunto(s)
Emulsiones , Geles , Aceite de Linaza , Ovalbúmina , Oxidación-Reducción , Transglutaminasas , Ovalbúmina/química , Transglutaminasas/química , Transglutaminasas/metabolismo , Emulsiones/química , Aceite de Linaza/química , Geles/química
13.
Food Chem ; 448: 139026, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38531298

RESUMEN

Linusorbs (LOs), significantly influence oil quality and sensory properties of flaxseed oil. Trp-containing LOs exhibit distinct oxidative behavior when γ-tocopherol (γ-T) is present. Polar fractions of crude flaxseed oil were stripped via silica absorption, and reintroduced (LO and γ-T) separately into the oil matrix to investigate their interaction during storage. Compared with crude oil, LOs account for 18.49% reduction of p-anisidine value, while LOs with γ-T contributed to most of the endogenous antioxidant effect in crude oil. γ-T was found to suppress oxidation of Trp-containing LO at early stage (Met form), while facilitate oxidation while at their mid-stage (MetO form, Methionine sulfoxide). In vitro oxidation shows that CLD more likely cleaved into peptide fragments, while few products retain intact ring structures. LC-MS/MS analysis and silicon simulation revealed proximity between MetO and Trp residues, facilitating inter- or intra-molecular reactions and ring structure rupture. Remarkably, the presence of γ-T facilitate these phenomena.


Asunto(s)
Aceite de Linaza , Triptófano , gamma-Tocoferol , Triptófano/química , Aceite de Linaza/química , gamma-Tocoferol/química , Oxidación-Reducción , Antioxidantes/química , Espectrometría de Masas en Tándem , Lino/química
14.
BMC Complement Med Ther ; 24(1): 6, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167049

RESUMEN

Flaxseed is an ancient commercial oil that historically has been used as a functional food to lower cholesterol levels. However, despite its longstanding treatment, there is currently a lack of scientific evidence to support its role in the management of cardiac remodeling. This study aimed to address this gap in knowledge by examining the molecular mechanism of standardized flaxseed oil in restoring cardiac remodeling in the heart toxicity vivo model. The oil fraction was purified, and the major components were standardized by qualitative and quantitative analysis. In vivo experimental design was conducted using isoproterenol ISO (85 mg/kg) twice subcutaneously within 24 h between each dose. The rats were treated with flaxseed oil fraction (100 mg/kg orally) and the same dose was used for omega 3 supplement as a positive control group. The GC-MS analysis revealed that α-linolenic acid (24.6%), oleic acid (10.5%), glycerol oleate (9.0%) and 2,3-dihydroxypropyl elaidate (7%) are the major components of oil fraction. Physicochemical analysis indicated that the acidity percentage, saponification, peroxide, and iodine values were 0.43, 188.57, 1.22, and 122.34 respectively. As compared with healthy control, ISO group-induced changes in functional cardiac parameters. After 28-day pretreatment with flaxseed oil, the results indicated an improvement in cardiac function, a decrease in apoptosis, and simultaneous prevention of myocardial fibrosis. The plasma levels of BNP, NT-pro-BNP, endothelin-1, Lp-PLA2, and MMP2, and cTnI and cTn were significantly diminished, while a higher plasma level of Topo 2B was observed. Additionally, miRNA - 1 and 29b were significantly downregulated. These findings provide novel insight into the mechanism of flaxseed oil in restoring cardiac remodeling and support its future application as a cardioprotective against heart diseases.


Asunto(s)
Aceite de Linaza , MicroARNs , Ratas , Animales , Aceite de Linaza/farmacología , Aceite de Linaza/química , Remodelación Ventricular , Apoptosis , Expresión Génica
15.
Eur J Med Res ; 28(1): 240, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464425

RESUMEN

Flaxseed (Linum usitatissimum L) is an ancient perennial plant species regarded as a multipurpose plant owing to its richness in omega-3 polyunsaturated fatty acids (PUFA) including α-linolenic acid (ALA). The extensive biochemical analysis of flaxseed resulted in the identification of its bioactive, i.e., lignans with potential application in the improvement of human health. Flaxseed oil, fibers, and lignans exert potential health benefits including reduction of cardiovascular disease, atherosclerosis, diabetes, cancer, arthritis, osteoporosis, and autoimmune and neurological disorders that have led to the diversification of flaxseed plant applications. This comprehensive review focuses on flaxseed oil as the major product of flaxseed with emphasis on the interrelationship between its chemical composition and biological effects. Effects reviewed include antioxidant, anti-inflammatory, antimicrobial, anticancer, antiulcer, anti-osteoporotic, cardioprotective, metabolic, and neuroprotective. This study provides an overview of flaxseed oil effects with the reported action mechanisms related to its phytochemical composition and in comparison, to other PUFA-rich oils. This study presents the most updated and comprehensive review summarizing flaxseed oil's health benefits for the treatment of various diseases.


Asunto(s)
Enfermedades Cardiovasculares , Lino , Lignanos , Humanos , Aceite de Linaza/uso terapéutico , Aceite de Linaza/química , Aceite de Linaza/metabolismo , Lino/química , Lino/metabolismo , Antioxidantes/uso terapéutico
16.
Meat Sci ; 204: 109254, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37354834

RESUMEN

This study evaluates the characteristics of n-3-enriched meat spread that is in development for consumption by elderly individuals. Herein, flaxseed oil was used as a source of n-3 fatty acid, and macro- and nano-sized flaxseed oil emulsions (FOE) were prepared for the fabrication of meat spreads. As the level of FOE was increased in the meat spreads, significant increases in the levels of omega-3 fatty acids (α-linolenic acid) were observed. Emulsion stability and cooking loss were also improved in meat spreads formulated with FOE compared with those the control. In particular, the addition of FOE generated softer and less chewy meat, owing to its lower melting point and rheological properties. However, the high content of unsaturated fatty acids in the FOE-containing meat spreads increased their susceptibility to lipid oxidation meat. These findings indicate that FOE, particularly macro-sized FOE, has the potential for use in n-3 fatty acid enriched meat products that are intended for consumption by elderly individuals but need to be evaluated for their impacts on shelf-life and sensory quality.


Asunto(s)
Ácidos Grasos Omega-3 , Productos de la Carne , Humanos , Anciano , Aceite de Linaza/química , Ácidos Grasos Omega-3/química , Carne/análisis , Ácidos Grasos Insaturados , Productos de la Carne/análisis
17.
J Sci Food Agric ; 103(14): 7117-7126, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37337854

RESUMEN

BACKGROUND: Factors such as variety, genetics, soil structure and plant diseases affect the oil amount and properties of flaxseed. By applying heat and various extraction treatments to flaxseed, the storage ability of the seed is increased by the removal of moisture, and the stability of phytochemicals in the seed against heat can be determined. RESULTS: Total carotenoid and phenol of flaxseeds changed from 0.13 (control) and 0.61 mg g-1 (120 °C) to 202.64 (control and 90 °C) and 225.69 mg 100 g-1 (120 °C), respectively. While total flavonoid of flaxseed roasted at different temperatures varied between 636.0 (90 °C) and 786.00 mg 100 g-1 (120 °C), antioxidant activity values for raw and roasted flaxseeds between 59.32% (control) and 68.64% (120 °C) were recorded. Oil content of seeds changed between 34.07 and 42.57% (P < 0.05). Viscosity of flaxseed oil extracted using different systems was between 31.95 (cold-pressed; control) and 36.00 mPa s (ultrasonic; 120 °C). The dominant phenolics of flaxseeds were identified as isorhamnetin, resveratrol, quercetin, catechin, apigenin-7-glucoside and campherol. The oils of flaxseeds contained 55.27-58.23 linolenic, 17.40-18.91 oleic, 14.03-14.84 linoleic and 4.97-5.37 palmitic acids, depending on extraction method and roasting temperature. CONCLUSION: Roasting and oil extraction methods did not have a significant effect on free acidity, but was found to affect peroxide value. The predominant phenolic constituents of flaxseed samples were isorhamnetin, resveratrol, quercetin, catechin, apigenin-7-glucoside and campherol, respectively. The major fatty acids of flaxseed oil were determined as linolenic, oleic, linoleic and palmitic. © 2023 Society of Chemical Industry.


Asunto(s)
Catequina , Lino , Lino/química , Antioxidantes/análisis , Aceite de Linaza/química , Temperatura , Resveratrol/análisis , Quercetina/análisis , Catequina/análisis , Semillas/química , Fitoquímicos/análisis
18.
J Texture Stud ; 54(5): 693-705, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37119016

RESUMEN

Pork fat (PF) is a necessary ingredient in making traditional fish cakes (TFCs), which contains saturated fatty acids with potential health concerns. While linseed oil (LO) containing α-linolenic acid is a potential nutrient-enhancing fat substitute. In this study, the effect of pork fat and linseed oil level on gel quality, sensory characteristics, microstructure, and protein conformation of TFCs were characterized. Results showed that the TFCs with 30% pork fat (wt/wt) had the highest gel strength. Additionally, sensory evaluation determined that TFCs with 30% pork fat scored the best by a sensory panel with high gel strength, water-holding capacity, and fresh and sweet taste. The gel strength, chewiness, and hardness of nutrient-enriched fish cakes with 20% linseed oil replaced for pork fat were higher than that only with pork fat (wt/wt) without changing in tenderness and elasticity. Visual results showed that the network was uniform at a moderate level of linseed oil addition (20% LO/PF replacement ratio). The results of this study provided technical guidelines for standardizing the TFC manufacture processes, and useful insight for the development of fish cakes with reduced animal fat content for additional health benefits for consumers.


Asunto(s)
Grasas de la Dieta , Ácidos Grasos , Productos Pesqueros , Aceite de Linaza , Carne de Cerdo , Animales , Ácidos Grasos/química , Ácidos Grasos/farmacología , Aceite de Linaza/química , Aceite de Linaza/farmacología , Carne Roja , Porcinos , Geles/química , Productos Pesqueros/análisis , Gusto , Grasas de la Dieta/farmacología
19.
Ultrason Sonochem ; 92: 106277, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36571883

RESUMEN

The effects of high-energy fabrication methods, namely high-pressure homogenization (HPH) and ultrasonication (US), on physicochemical properties of flaxseed oil-in-water nanoemulsions (FNEs) containing clove essential oil (CEO) and/or pomegranate peel extract (PPE) were studied during storage at 4 and 25 °C. Nanoemulsions with relatively similar average droplet size were prepared by HPH and/or US. An increase in droplet size was observed over time. Lower storage temperature and fabrication by US increased Ostwald ripening rate. Higher storage temperature and fabrication by US decreased the centrifugal stability of nanoemulsions. CEO revealed better antioxidant properties than PPE. The oxidative stability was evaluated by determining secondary oxidation products, and fatty acids profile. The absence of antioxidant, fabrication by US, and higher storage temperature decreased the oxidative stability of nanoemulsions. The results of this study might be helpful in controlling the oxidation of FNEs during long-term storage and in designing functional foods and beverages.


Asunto(s)
Antioxidantes , Aceites Volátiles , Antioxidantes/química , Aceite de Linaza/química , Agua/química , Emulsiones/química , Aceite de Clavo , Estrés Oxidativo
20.
J Agric Food Chem ; 70(50): 15776-15786, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36374563

RESUMEN

Oxidative rancidity is a major issue limiting the utilization of flaxseed oil (FSO). Peptides possess an antioxidant effect; however, the flax cyclic peptide, a unique ingredient in FSO, has an obscure influence on the oxidation of FSO. Therefore, this study is aimed to investigate the effects of [1-9-NαC]-linusorb B3 (CLA) on the accelerated oxidation of FSO and the underlying mechanism. We found that CLA increased the antioxidant stability of refined flaxseed oil (RFO), indicated by the improved parameters involved in the oxidation after the addition of CLA. After accelerated oxidation, the acid value (AV) of the RFO was increased by 24.14 times, whereas that of the RFO with CLA (CLA-RFO) increased only by 7.21 times. Similarly, the peroxide value (POV) and P-anisidine value (P-AV) of CLA-RFO were significantly decreased. Besides, CLA influenced metal ions-induced oxidation. In the Cu2+ group, the addition of CLA reduced the AV by 18% and the POV by 20%. The results of the molecular docking analysis and fluorescence quenching showed that the metal ions and propionaldehyde interacted with the cavity of CLA, and propionaldehyde had the most stable binding configuration with CLA, indicating that CLA may slow down the oxidation of FSO by chelating the metal ions and the intermediate oxidative products.


Asunto(s)
Lino , Aceite de Linaza , Aceite de Linaza/química , Lino/química , Péptidos Cíclicos/química , Simulación del Acoplamiento Molecular , Antioxidantes/química , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA