Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mem Inst Oswaldo Cruz ; 113(6): e170531, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29924141

RESUMEN

BACKGROUND Eukaryotic ribonucleoprotein (RNP) granules are important for the regulation of RNA fate. RNP granules exist in trypanosomatids; however, their roles in controlling gene expression are still not understood. XRNA is a component of granules in Trypanosoma brucei but has not been investigated in Trypanosoma cruzi. OBJECTIVES This study aimed to investigate the TcXRNA dynamic assembly and its interaction with RNP components under conditions that affect the mRNA availability. METHODS We used in vitro metacyclogenesis of T. cruzi to observe changes in RNP granules during the differentiation process. TcXRNA expression was analysed by Western blot and immunofluorescence. Colocalisation assays were performed to investigate the interaction of TcXRNA with other RNP components. FINDINGS TcXRNA is constantly present during metacyclogenesis and is localised in cytoplasmic granules. TcXRNA does not colocalise with TcDHH1 and TcCAF1 granules in the cytoplasm. However, TcXRNA granules colocalise with mRNP granules at the nuclear periphery when mRNA processing is inhibited. MAIN CONCLUSIONS TcXRNA plays a role in mRNA metabolism as a component of mRNP granules whose assembly is dependent on mRNA availability. TcXRNA granules colocalise with distinct RNP granules at the nuclear periphery, suggesting that the perinuclear region is a regulatory compartment in T. cruzi mRNA metabolism.


Asunto(s)
Gránulos Citoplasmáticos/genética , Proteínas Protozoarias/genética , ARN Protozoario/genética , Ribonucleoproteínas/genética , Trypanosoma cruzi/citología , Western Blotting , Gránulos Citoplasmáticos/fisiología , Técnica del Anticuerpo Fluorescente , Membrana Nuclear/fisiología , Proteínas Protozoarias/fisiología , ARN Protozoario/fisiología , Ribonucleoproteínas/fisiología , Trypanosoma cruzi/genética
2.
Parasitol Res ; 117(3): 831-840, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29374323

RESUMEN

To counteract host immunity, Cryptosporidium parvum has evolved multiple strategies to suppress host antimicrobial defense. One such strategy is to reduce the production of the antimicrobial peptide beta-defensin 1 (DEFB1) by host epithelial cells but the underlying mechanisms remain unclear. Recent studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected host cells and may modulate host gene transcription. Using in vitro models of intestinal cryptosporidiosis, in this study, we analyzed the expression profile of host beta-defensin genes in host cells following infection. We found that C. parvum infection caused a significant downregulation of the DEFB1 gene. Interestingly, downregulation of DEFB1 gene was associated with host delivery of Cdg7_FLc_1000 RNA transcript, a C. parvum RNA that has previously demonstrated to be delivered into the nuclei of infected host cells. Knockdown of Cdg7_FLc_1000 in host cells could attenuate the trans-suppression of host DEFB1 gene and decreased the parasite burden. Therefore, our data suggest that trans-suppression of DEFB1 gene in intestinal epithelial cells following C. parvum infection involves host delivery of parasite Cdg7_FLc_1000 RNA, a process that may be relevant to the epithelial defense evasion by C. parvum at the early stage of infection.


Asunto(s)
Criptosporidiosis/genética , Cryptosporidium parvum , Mucosa Intestinal/parasitología , ARN Protozoario/fisiología , beta-Defensinas/genética , Animales , Línea Celular , Criptosporidiosis/inmunología , Criptosporidiosis/parasitología , Cryptosporidium parvum/genética , Regulación de la Expresión Génica , Humanos , Mucosa Intestinal/metabolismo , Ratones
3.
RNA ; 24(1): 18-29, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29079634

RESUMEN

Dicer-dependent small noncoding RNAs play important roles in gene regulation in a wide variety of organisms. Endogenous small interfering RNAs (siRNAs) are part of an ancient pathway of transposon control in plants and animals. The ciliate, Oxytricha trifallax, has approximately 16,000 gene-sized chromosomes in its somatic nucleus. Long noncoding RNAs establish high ploidy levels at the onset of sexual development, but the factors that regulate chromosome copy numbers during cell division and growth have been a mystery. We report a novel function of a class of Dicer (Dcl-1)- and RNA-dependent RNA polymerase (RdRP)-dependent endogenous small RNAs in regulating chromosome copy number and gene dosage in O. trifallax Asexually growing populations express an abundant class of 21-nt sRNAs that map to both coding and noncoding regions of most chromosomes. These sRNAs are bound to chromatin and their levels surprisingly do not correlate with mRNA levels. Instead, the levels of these small RNAs correlate with genomic DNA copy number. Reduced sRNA levels in dcl-1 or rdrp mutants lead to concomitant reduction in chromosome copy number. Furthermore, these cells show no signs of transposon activation, but instead display irregular nuclear architecture and signs of replication stress. In conclusion, Oxytricha Dcl-1 and RdRP-dependent small RNAs that derive from the somatic nucleus contribute to the maintenance of gene dosage, possibly via a role in DNA replication, offering a novel role for these small RNAs in eukaryotes.


Asunto(s)
ADN Protozoario/genética , Oxytricha/genética , ARN Protozoario/fisiología , ARN Pequeño no Traducido/fisiología , Cromosomas/genética , Variaciones en el Número de Copia de ADN , Replicación del ADN , Epigénesis Genética , Proteínas Protozoarias/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasa III/fisiología
4.
Nat Struct Mol Biol ; 18(12): 1371-5, 2011 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-22101935

RESUMEN

Telomerase is a ribonucleoprotein (RNP) enzyme that maintains the ends of linear eukaryotic chromosomes and whose activation is a hallmark of 90% of all cancers. This RNP minimally contains a reverse transcriptase protein subunit (TERT) that catalyzes telomeric DNA synthesis and an RNA subunit (TER) that has templating, architectural and protein-scaffolding roles. Telomerase is unique among polymerases in that it synthesizes multiple copies of the template on the 3' end of a primer following a single binding event, a process known as repeat addition processivity (RAP). Using biochemical assays and single-molecule Förster resonance energy transfer (smFRET) experiments on Tetrahymena thermophila telomerase, we now directly demonstrate that TER contributes to template positioning within the active site and to the template translocation required for RAP. We propose that the single-stranded RNA elements flanking the template act as a molecular accordion, undergoing reciprocal extension and compaction during telomerase translocation.


Asunto(s)
ADN Protozoario/biosíntesis , ARN Protozoario/química , ARN/fisiología , Telomerasa/fisiología , Telómero/química , ADN Protozoario/química , Transferencia Resonante de Energía de Fluorescencia , Conformación de Ácido Nucleico , ARN Protozoario/metabolismo , ARN Protozoario/fisiología , Telómero/genética , Telómero/metabolismo , Tetrahymena thermophila/genética
5.
Mol Biochem Parasitol ; 174(1): 1-7, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20566348

RESUMEN

In recent years it has became evident that the transcriptome of most species has little protein-coding capacity and that the abundance of non-coding RNA was previously overlooked. Non-coding RNAs were initially thought to be transcriptional noise, however, a growing number of studies is showing that many of these RNAs have important regulatory functions. Here, we review the progress done in apicomplexan parasites in this rapidly growing field.


Asunto(s)
Apicomplexa/genética , Regulación de la Expresión Génica , ARN Protozoario/genética , ARN no Traducido/genética , Apicomplexa/fisiología , ARN Protozoario/fisiología , ARN no Traducido/fisiología
6.
Wiley Interdiscip Rev RNA ; 1(2): 287-303, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21935891

RESUMEN

Malaria is caused by the unicellular apicomplexan parasites of the genus Plasmodium, some of which, including the major human parasite Plasmodium falciparum, have extreme genome compositions (A/T content > 80%). In this overview of RNA production, roles and degradation, we show that despite their unusual genome composition these parasites generally exhibit the standard eukaryotic features of these processes. Thus genes are monocistronic and transcribed by RNA polymerases that conform to the general categories of I, II, and III. Plasmodium spp. are unusual in that they possess structurally distinct rRNA genes that are expressed at different points in the complicated life cycle of the parasite. Transcription in blood stage asexual parasites follows a cascade consistent with a dependency upon plant-like apetala 2 (AP2) DNA-binding proteins. mRNA is transported to, translated and degraded in the cytoplasm and the transcription pattern is largely inflexible and responsive to temperature and glucose but not drugs. Furthermore, although Plasmodium spp. undertake controlled repression of mRNA species at a number of points in their life cycle only one mechanism, employed by female gametocytes (gamete precursor cells), is clear; it resembles that of metazoan female gametes, consisting of a complex of repression-associated proteins in an architecture formed with the mRNA 5' cap and dependent on U-rich untranslated region (UTR) elements. Extensive antisense transcription has been documented resulting in the production of both short and long transcripts of generally unknown functional significance. This review attempts to summarize what is currently known about the biology of Plasmodium RNA.


Asunto(s)
Malaria/parasitología , Plasmodium/genética , Estabilidad del ARN/fisiología , ARN Protozoario/fisiología , Transcripción Genética/fisiología , Animales , Biología , Femenino , Genes Protozoarios/fisiología , Genoma de Protozoos/genética , Humanos , Modelos Biológicos , Plasmodium/metabolismo , Estabilidad del ARN/genética , ARN Protozoario/genética , ARN Protozoario/metabolismo
7.
Hum Mol Genet ; 17(9): 1292-8, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18203752

RESUMEN

Mitochondrial dysfunction underlies a large number of acute or progressive diseases, as well as aging. However, proposed therapies for mitochondrial mutations suffer from poor transformation of mitochondria with exogenous DNA, or lack of functionality of the transferred nucleic acid within the organelle. We show that a transfer RNA import complex (RIC) from the parasitic protozoon Leishmania tropica rapidly and efficiently delivered signal-tagged antisense (STAS) RNA or DNA to mitochondria of cultured human cells. STAS-induced specific degradation of the targeted mitochondrial mRNA, with downstream effects on respiration. These results reveal the existence of a novel small RNA-mediated mRNA degradation pathway in mammalian mitochondria, and suggest that RIC-mediated delivery could be used to target therapeutic RNAs to the organelle within intact cells.


Asunto(s)
Marcación de Gen , Mitocondrias/genética , Estabilidad del ARN , ARN sin Sentido/genética , ARN de Transferencia de Tirosina/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular Tumoral , Respiración de la Célula , Humanos , Leishmania tropica/genética , Mitocondrias/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Transporte de ARN , ARN sin Sentido/química , ARN sin Sentido/fisiología , ARN Protozoario/genética , ARN Protozoario/aislamiento & purificación , ARN Protozoario/fisiología , ARN de Transferencia de Tirosina/aislamiento & purificación , ARN de Transferencia de Tirosina/fisiología
8.
Exp Parasitol ; 116(2): 163-70, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17328895

RESUMEN

Transport mechanisms involved in pH homeostasis are relevant for the survival of Leishmania parasites. The presence of chloride conductive pathways in Leishmania has been anticipated since anion channel inhibitors limit the proton extrusion mediated by the H+ATPase, which is the major regulator of intracellular pH in amastigotes. In this study, we used Xenopus laevis oocytes as a heterologous expression system in which to study the expression of ion channels upon microinjection of polyA mRNA from Leishmania amazonensis. After injection of polyA mRNA into the oocytes, we measured three different types of currents. We discuss the possible origin of each, and propose that Type 3 currents could be the result of the heterologous expression of proteins from Leishmania since they show different pharmacological and biophysical properties as compared to endogenous oocyte currents.


Asunto(s)
Leishmania mexicana/genética , Oocitos/fisiología , Poli A/genética , ARN Mensajero/administración & dosificación , Canales Aniónicos Dependientes del Voltaje/fisiología , Animales , Concentración de Iones de Hidrógeno , Leishmania mexicana/química , Macrófagos/química , Macrófagos/fisiología , Potenciales de la Membrana/efectos de los fármacos , Microinyecciones , Técnicas de Placa-Clamp , ARN Mensajero/farmacología , ARN Mensajero/fisiología , ARN Protozoario/administración & dosificación , ARN Protozoario/farmacología , ARN Protozoario/fisiología , Canales Aniónicos Dependientes del Voltaje/efectos de los fármacos , Xenopus laevis
9.
Mol Cell Biol ; 27(2): 777-87, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17101787

RESUMEN

In trypanosome RNA editing, uridylate (U) residues are inserted and deleted at numerous sites within mitochondrial pre-mRNAs by an approximately 20S protein complex that catalyzes cycles of cleavage, U addition/U removal, and ligation. We used RNA interference to deplete TbMP18 (band VII), the last unexamined major protein of our purified editing complex, showing it is essential. TbMP18 is critical for the U-deletional and U-insertional cleavages and for integrity of the approximately 20S editing complex, whose other major components, TbMP99, TbMP81, TbMP63, TbMP52, TbMP48, TbMP42 (bands I through VI), and TbMP57, instead sediment as approximately 10S associations. Additionally, TbMP18 augments editing substrate recognition by the TbMP57 terminal U transferase, possibly aiding the recognition component, TbMP81. The other editing activities and their coordination in precleaved editing remain active in the absence of TbMP18. These data are reminiscent of the data on editing subcomplexes reported by A. Schnaufer et al. (Mol. Cell 12:307-319, 2003) and suggest that these subcomplexes are held together in the approximately 20S complex by TbMP18, as was proposed previously. Our data additionally imply that the proteins are less long-lived in these subcomplexes than they are when held in the complete editing complex. The editing endonucleolytic cleavages being lost when the editing complex becomes fragmented, as upon TbMP18 depletion, should be advantageous to the trypanosome, minimizing broken mRNAs.


Asunto(s)
Proteínas Protozoarias/metabolismo , Edición de ARN , ARN Protozoario/fisiología , Ribonucleoproteínas/metabolismo , Trypanosoma brucei brucei/fisiología , Animales , Proteínas Protozoarias/genética , Interferencia de ARN , Precursores del ARN/genética , Precursores del ARN/fisiología , ARN Mensajero/genética , ARN Mensajero/fisiología , ARN Mitocondrial , ARN Protozoario/genética , Ribonucleoproteínas/genética , Trypanosoma brucei brucei/genética , Nucleótidos de Uracilo/metabolismo
10.
Genes Dev ; 20(1): 28-33, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16357212

RESUMEN

Endogenous small RNAs function in RNA interference (RNAi) pathways to guide RNA cleavage, translational repression, or methylation of DNA or chromatin. In Tetrahymena thermophila, developmentally regulated DNA elimination is governed by an RNAi mechanism involving approximately 27-30-nucleotide (nt) RNAs. Here we characterize the sequence features of the approximately 27-30-nt RNAs and a approximately 23-24-nt RNA class representing a second RNAi pathway. The approximately 23-24-nt RNAs accumulate strain-specifically manner and map to the genome in clusters that are antisense to predicted genes. These findings reveal the existence of distinct endogenous RNAi pathways in the unicellular T. thermophila, a complexity previously demonstrated only in multicellular organisms.


Asunto(s)
ARN Protozoario/genética , ARN Interferente Pequeño/genética , Tetrahymena thermophila/genética , Animales , Genoma de Protozoos , ARN Protozoario/clasificación , ARN Protozoario/fisiología , ARN Interferente Pequeño/clasificación , ARN Interferente Pequeño/fisiología , Ribonucleasa III/genética , Tetrahymena thermophila/fisiología
12.
Genetics ; 169(1): 149-60, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15466428

RESUMEN

Approximately 6000 DNA elements, totaling nearly 15 Mb, are coordinately excised from the developing somatic genome of Tetrahymena thermophila. An RNA interference (RNAi)-related mechanism has been implicated in the targeting of these germline-limited sequences for chromatin modification and subsequent DNA rearrangement. The excision of individual DNA segments can be inhibited if the homologous sequence is placed within the parental somatic nucleus, indicating that communication occurs between the parental and developing genomes. To determine how the DNA content of one nucleus is communicated to the other, we assessed DNA rearrangement occurring in wild-type cells that were mated to cells that contained the normally germline-limited M element within their somatic nuclei. M-element rearrangement was blocked in the wild-type cell even when no genetic exchange occurred between mating partners, a finding that is inconsistent with any genetic imprinting models. This inhibition by the parental somatic nucleus was rapidly established between 5 and 6 hr of conjugation, near or shortly after the time that zygotic nuclei are formed. M-element small RNAs (sRNAs) that are believed to direct its rearrangement were found to rapidly accumulate during the first few hours of conjugation before stabilizing to a low, steady-state level. The period between 5 and 6 hr during which sRNA levels stabilize correlates with the time after which the parental genome can block DNA rearrangement. These data lead us to suggest that homologous sRNAs serve as mediators to communicate sequence-specific information between the parental and developing genomes, thereby regulating genome-wide DNA rearrangement, and that these sRNAs can be effectively compared to the somatic genome of both parents.


Asunto(s)
Núcleo Celular/fisiología , Reordenamiento Génico , Genoma de Protozoos , Interferencia de ARN/fisiología , ARN Protozoario/fisiología , ARN Nuclear Pequeño/fisiología , Tetrahymena thermophila/genética , Animales , Diferenciación Celular , Cromatina/metabolismo , Conjugación Genética/fisiología , Genes Protozoarios , Impresión Genómica , Tetrahymena thermophila/metabolismo , Cigoto
13.
Curr Opin Genet Dev ; 14(2): 181-7, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15196465

RESUMEN

Small RNAs produced by an RNAi-related mechanism are involved in DNA elimination during development of the somatic macronucleus from the germline micronucleus in Tetrahymena. The properties of these small RNAs can explain how the primary sequence of the parental macronucleus epigenetically controls genome rearrangement in the new macronucleus and provide the first demonstration of an RNAi-mediated process that directly alters DNA sequence organization. Methylation of histone H3 on lysine 9 and accumulation of chromodomain proteins, hallmarks of heterochromatin, also occur specifically on sequences undergoing elimination and are dependent on the small RNAs. These findings contribute to a new paradigm of chromatin biology: regulation of heterochromatin formation by RNAi-related mechanisms in eukaryotes.


Asunto(s)
Reordenamiento Génico , Genoma de Protozoos , Interferencia de ARN/fisiología , ARN Protozoario/fisiología , ARN Nuclear Pequeño/fisiología , Tetrahymena thermophila/genética , Animales , Núcleo Celular/fisiología , Conjugación Genética/fisiología , Genes Protozoarios , Heterocromatina/fisiología , Tetrahymena thermophila/fisiología
14.
Differentiation ; 71(9-10): 549-56, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14686952

RESUMEN

Differentiation of kinetoplastid protozoa during their complex life cycles is accompanied by stepwise changes in mitochondrial functions. Recent studies have begun to reveal multilevel post-transcriptional regulatory mechanisms by which the expression of the nuclear and mitochondrially encoded components of respiratory enzymes is coordinated, as well as the identities of some general and gene-specific factors controlling mitochondrial differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Kinetoplastida/citología , Kinetoplastida/fisiología , Mitocondrias/genética , ARN Protozoario/fisiología , Animales , Eucariontes/genética , Regulación de la Expresión Génica , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Trypanosoma/citología , Trypanosoma/fisiología
16.
Cell ; 110(6): 689-99, 2002 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-12297043

RESUMEN

During development of the somatic macronucleus from the germline micronucleus in ciliates, chromosome rearrangements occur in which specific regions of DNA are eliminated and flanking regions are healed, either by religation or construction of telomeres. We identified a gene, TWI1, in Tetrahymena thermophila that is homologous to piwi and is required for DNA elimination. We also found that small RNAs were specifically expressed prior to chromosome rearrangement during conjugation. These RNAs were not observed in TWI1 knockout cells and required PDD1, another gene required for rearrangement, for expression. We propose that these small RNAs function to specify sequences to be eliminated by a mechanism similar to RNA-mediated gene silencing.


Asunto(s)
Reordenamiento Génico , Genes Protozoarios , Proteínas Protozoarias/fisiología , ARN Protozoario/fisiología , ARN Nuclear Pequeño/fisiología , Tetrahymena thermophila/genética , Animales , Proteínas Argonautas , Secuencia de Bases , Rotura Cromosómica , ADN Protozoario/genética , Proteínas de Drosophila , Genoma de Protozoos , Micronúcleo Germinal/genética , Micronúcleo Germinal/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Proteínas/genética , Proteínas Protozoarias/genética , Complejo Silenciador Inducido por ARN , Proteínas Ribosómicas/metabolismo , Tetrahymena thermophila/crecimiento & desarrollo , Transgenes
18.
EMBO J ; 21(7): 1791-9, 2002 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-11927563

RESUMEN

Most mitochondrial mRNAs are edited in Trypano soma brucei by a series of steps that are catalyzed by a multienzyme complex that is in its initial stages of characterization. RNA interference (RNAi)-mediated repression of the expression of TbMP81, a zinc finger protein component of the complex, inhibited growth of bloodstream and insect forms, and blocked in vivo RNA editing. This repression preferentially inhibited insertion editing compared with deletion editing in vitro. It resulted in reduced specific endoribonucleolytic cleavage and a greater reduction of U addition and associated RNA ligation activities than U removal and associated RNA ligation activities. The repressed cells retained 20S editing complexes with several demonstrable proteins and adenylatable TbMP52 RNA ligase, but adenlyatable TbMP48 was not detected. Elimination of TbMP48 by RNAi repression did not inhibit cell growth or in vivo editing in either bloodstream or procyclic forms. These results indicate that TbMP81 is required for RNA editing and suggest that the editing complex is functionally partitioned.


Asunto(s)
Proteínas Protozoarias , Edición de ARN , ARN Protozoario/fisiología , Ribonucleoproteínas/metabolismo , Dedos de Zinc , Animales , Endorribonucleasas/metabolismo , Mutagénesis Insercional , Ribonucleoproteínas/genética , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/metabolismo
19.
Gene Expr ; 10(1-2): 3-16, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11868986

RESUMEN

This review focuses on the spliced leader (SL) RNA and uridylic acid-rich small nuclear RNAs (U-snRNAs) involved in pre-mRNA processing in trypanosomatid protozoa, with particular emphasis on the mechanism of transcription and cap formation. The SL RNA plays a central role in mRNA biogenesis by providing the unique cap 4 structure to the 5' end of all mRNAs by trans-splicing. The trimethylguanosine capped U-snRNAs, on the other hand, represent an unusual example among eukaryotic snRNAs in that they are transcribed by RNA polymerase III. This implies the existence of a distinctive mechanism for capping enzyme selection by the transcriptional machinery. Furthermore, the transcription units of U-snRNA genes offer yet another example of the variety of choices that have been established during eukaryotic evolution, namely that an upstream tRNA gene or tRNA-like gene provides extragenic promoter elements for a downstream small RNA gene.


Asunto(s)
Caperuzas de ARN/metabolismo , Empalme del ARN , ARN Protozoario/fisiología , ARN Nuclear Pequeño/metabolismo , ARN Lider Empalmado/fisiología , Transcripción Genética , Trypanosomatina/genética , Animales , Fosfatos de Dinucleósidos/metabolismo , Evolución Molecular , Genes , Genes Sobrepuestos , Metiltransferasas/metabolismo , Regiones Promotoras Genéticas , Proteínas Protozoarias/metabolismo , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Protozoario/genética , ARN Nuclear Pequeño/genética , ARN Lider Empalmado/genética , ARN de Transferencia/genética , Secuencias Reguladoras de Ácidos Nucleicos , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Especificidad de la Especie , Empalmosomas/metabolismo , Trypanosoma brucei brucei/genética
20.
RNA ; 4(5): 594-602, 1998 May.
Artículo en Inglés | MEDLINE | ID: mdl-9582100

RESUMEN

The human malaria parasite, Plasmodium falciparum, maintains at least two distinct types, A and S, of developmentally controlled ribosomal RNAs. To investigate specific functions associated with these rRNAs, we replaced the Saccharomyces cerevisiae GTPase domain of the 25S rRNA with GTPase domains corresponding to the Plasmodium A- and S-type 28S rRNAs. The A-type rRNA differs in a single nonconserved base pair from the yeast GTPase domain. The S-type rRNA GTPase domain has three additional changes in highly conserved residues, making it unique among all known rRNA sequences. The expression of either A- or S-type chimeric rRNA in yeast increased translational accuracy. Yeast containing only A-type chimeric rRNA and no wild-type yeast rRNA grew at the wild-type level. In contrast, S-type chimeric rRNA severely inhibited growth in the presence of wild-type yeast rRNA, and caused lethality in the absence of the wild-type yeast rRNA. We show what before could only be hypothesized, that the changes in the GTPase center of ribosomes present during different developmental stages of Plasmodium species can result in fundamental changes in the biology of the organism.


Asunto(s)
GTP Fosfohidrolasas/genética , Plasmodium falciparum/genética , ARN Protozoario/genética , ARN Ribosómico 28S/genética , Animales , Secuencia de Bases , ADN Ribosómico/genética , Humanos , Datos de Secuencia Molecular , Biosíntesis de Proteínas/genética , ARN , ARN de Hongos/genética , ARN Protozoario/fisiología , ARN Ribosómico/biosíntesis , ARN Ribosómico/genética , ARN Ribosómico 28S/fisiología , Ribosomas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA