RESUMEN
The importance of the DNA structure for the expression of the osmotic response (osmotolerance) was investigated in Bacillus subtilis 168. Plasmid pUB110 DNA was used as a reporter of the chromosomal DNA topology, and analyses were performed in chloroquine agarose gels. Plasmidic DNA obtained from cultures in Schaeffer medium (D) taken in those periods in which B. subtilis is able to express osmotolerance (early stationary phase or from germinating spores) or from adapted cultures to hyperosmotic medium (DN) presented a higher level of negative supercoiling than DNA samples from vegetative cultures, normally refractory to induction of osmotolerance. The involvement of the DNA gyrase was investigated through the sensitivity to novobiocin, an antibiotic inhibitor of its activity and the behavior of a gyrB1 mutant strain (RG1). In the wild-type strain, the addition of a sublethal concentration of novobiocin (0.5 microg/ml) to the hyperosmotic medium relaxed DNA and inhibited growth. Moreover, already growing cultures in DN medium and later submitted to the same antibiotic presented a relaxed DNA and stopped growing. The RG1 mutant strain submitted to similar novobiocin treatments displayed normal growth in DN novobiocin medium. These results pointed to the requirement of a highly negative supercoiled DNA structure involving the gyrase activity in osmotic response.