RESUMEN
Canopy shade enhances the activity of PHYTOCHROME INTERACTING FACTORs (PIFs) to boost auxin synthesis in the cotyledons. Auxin, together with local PIFs and their positive regulator CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), promotes hypocotyl growth to facilitate access to light. Whether shade alters the cellular redox status thereby affecting growth responses, remains unexplored. Here, we show that, under shade, high auxin levels increased reactive oxygen species and nitric oxide accumulation in the hypocotyl of Arabidopsis. This nitroxidative environment favored the promotion of hypocotyl growth by COP1 under shade. We demonstrate that COP1 is S-nitrosylated, particularly under shade. Impairing this redox regulation enhanced COP1 degradation by the proteasome and diminished the capacity of COP1 to interact with target proteins and to promote hypocotyl growth. Disabling this regulation also generated transversal asymmetries in hypocotyl growth, indicating poor coordination among different cells, which resulted in random hypocotyl bending and predictably low ability to compete with neighbors. These findings highlight the significance of redox signaling in the control of diffuse growth during shade avoidance.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hipocótilo , Especies Reactivas de Oxígeno , Ubiquitina-Proteína Ligasas , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Especies Reactivas de Oxígeno/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Óxido Nítrico/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Oxidación-Reducción , Transducción de SeñalRESUMEN
Methylobacterium sp. 2A, a plant growth-promoting rhizobacteria (PGPR) able to produce indole-3-acetic acid (IAA), significantly promoted the growth of Arabidopsis thaliana plants in vitro. We aimed to understand the determinants of Methylobacterium sp. 2A-A. thaliana interaction, the factors underlying plant growth-promotion and the host range. Methylobacterium sp. 2A displayed chemotaxis to methanol and formaldehyde and was able to utilise 1-aminocyclopropane carboxylate as a nitrogen source. Confocal microscopy confirmed that fluorescent protein-labelled Methylobacterium sp. 2A colonises the apoplast of A. thaliana primary root cells and its inoculation increased jasmonic and salicylic acid in A. thaliana, while IAA levels remained constant. However, inoculation increased DR5 promoter activity in root tips of A. thaliana and tomato plants. Inoculation of this PGPR partially restored the agravitropic response in yucQ mutants and lateral root density was enhanced in iaa19, arf7, and arf19 mutant seedlings. Furthermore, Methylobacterium sp. 2A volatile organic compounds (VOCs) had a dose-dependent effect on the growth of A. thaliana. This PGPR is also able to interact with monocots eliciting positive responses upon inoculation. Methylobacterium sp. 2A plant growth-promoting effects can be achieved through the regulation of plant hormone levels and the emission of VOCs that act either locally or at a distance.
Asunto(s)
Arabidopsis , Ácidos Indolacéticos , Methylobacterium , Raíces de Plantas , Methylobacterium/fisiología , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Arabidopsis/microbiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Compuestos Orgánicos Volátiles/metabolismo , Solanum lycopersicum/microbiología , Solanum lycopersicum/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , QuimiotaxisRESUMEN
Metabolic factors are essential for developmental biology of an organism. In plants, roots fulfill important functions, in part due to the development of specific epidermal cells, called hair cells that form root hairs (RHs) responsible for water and mineral uptake. RH development consists in (a) patterning processes involved in formation of hair and non-hair cells developed from trichoblasts and atrichoblasts; (b) RH initiation; and (c) apical (tip) growth of the RH. Here we review how these processes depend on pools of different amino acids and what is known about RH phenotypes of mutants disrupted in amino acid biosynthesis. This analysis shows that some amino acids, particularly aromatic ones, are required for RH apical (tip) growth, and that not much is known about the role of amino acids at earlier stages of RH formation. We also address the role of amino acids in rhizosphere, inhibitory and stimulating effects of amino acids on RH growth, amino acids as N source in plant nutrition, and amino acid transporters and their expression in the RHs. Amino acids form conjugates with auxin, a hormone essential for RH growth, and respective genes are overviewed. Finally, we outline missing links and envision some perspectives in the field.
Asunto(s)
Aminoácidos , Raíces de Plantas , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Aminoácidos/metabolismo , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Desarrollo de la PlantaRESUMEN
Despite being one of the most abundant elements in soil, phosphorus (P) often becomes a limiting macronutrient for plants due to its low bioavailability, primarily locked away in insoluble organic and inorganic forms. Phosphate solubilizing and mineralizing bacteria, also called phosphobacteria, isolated from P-deficient soils have emerged as a promising biofertilizer alternative, capable of converting these recalcitrant P forms into plant-available phosphates. Three such phosphobacteria strains-Serratia sp. RJAL6, Klebsiella sp. RCJ4, and Enterobacter sp. 198-previously demonstrated their particular strength as plant growth promoters for wheat, ryegrass, or avocado under abiotic stresses and P deficiency. Comparative genomic analysis of their draft genomes revealed several genes encoding key functionalities, including alkaline phosphatases, isonitrile secondary metabolites, enterobactin biosynthesis and genes associated to the production of indole-3-acetic acid (IAA) and gluconic acid. Moreover, overall genome relatedness indexes (OGRIs) revealed substantial divergence between Serratia sp. RJAL6 and its closest phylogenetic neighbours, Serratia nematodiphila and Serratia bockelmanii. This compelling evidence suggests that RJAL6 merits classification as a novel species. This in silico genomic analysis provides vital insights into the plant growth-promoting capabilities and provenance of these promising PSRB strains. Notably, it paves the way for further characterization and potential application of the newly identified Serratia species as a powerful bioinoculant in future agricultural settings.
Asunto(s)
Enterobacter , Genoma Bacteriano , Genómica , Ácidos Indolacéticos , Filogenia , Serratia , Microbiología del Suelo , Ácidos Indolacéticos/metabolismo , Serratia/genética , Serratia/aislamiento & purificación , Serratia/metabolismo , Serratia/clasificación , Enterobacter/genética , Enterobacter/aislamiento & purificación , Enterobacter/clasificación , Enterobacter/metabolismo , Klebsiella/genética , Klebsiella/metabolismo , Klebsiella/aislamiento & purificación , Klebsiella/clasificación , Desarrollo de la Planta , Suelo/química , Reguladores del Crecimiento de las Plantas/metabolismoRESUMEN
Management of the plant microbiome may help support food needs for the human population. Bacteria influence plants through enhancing nutrient uptake, metabolism, photosynthesis, biomass production and/or reinforcing immunity. However, information into how these microbes behave under different growth conditions is missing. In this work, we tested how carbon supplements modulate the interaction of Pseudomonas chlororaphis with Arabidopsis thaliana. P. chlororaphis streaks strongly repressed primary root growth, lateral root formation and ultimately, biomass production. Noteworthy, increasing sucrose availability into the media from 0 to 2.4% restored plant growth and promoted lateral root formation in bacterized seedlings. This effect could not be observed by supplementing sucrose to leaves only, indicating that the interaction was strongly modulated by bacterial access to sugar. Total phenazine content decreased in the bacteria grown in high (2.4%) sucrose medium, and conversely, the expression of phzH and pslA genes were diminished by sugar supply. Pyocyanin antagonized the promoting effects of sucrose in lateral root formation and biomass production in inoculated seedlings, indicating that this virulence factor accounts for growth repression during the plant-bacterial interaction. Defence reporter transgenes PR-1::GUS and LOX2::GUS were induced in leaves, while the expression of the auxin-inducible, synthetic reporter gene DR5::GUS was enhanced in the roots of bacterized seedlings at low and high sucrose treatments, which suggests that growth/defence trade-offs in plants are critically modulated by P. chlororaphis. Collectively, our data suggest that bacterial carbon nutrition controls the outcome of the relation with plants.
Asunto(s)
Arabidopsis , Ácidos Indolacéticos , Fenazinas , Raíces de Plantas , Pseudomonas chlororaphis , Sacarosa , Sacarosa/metabolismo , Arabidopsis/microbiología , Arabidopsis/metabolismo , Arabidopsis/genética , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Pseudomonas chlororaphis/metabolismo , Fenazinas/metabolismo , Ácidos Indolacéticos/metabolismoRESUMEN
The flooding pampa is one of the most important cattle-raising regions in Argentina. In this region, natural pastures are dominated by low-productivity native grass species, which are the main feed for livestock. In this context, previous studies in the region with the subtropical exotic grass Panicum coloratum highlight it as a promising species to improve pasture productivity. Cultivable phosphate solubilizing bacteria (PSB) communities associated to native (Sporobolus indicus) and exotic (Panicum coloratum) forage grasses adapted to alkaline-sodic soils of the flooding pampa were analyzed. PSB represented 2-14% of cultivable rhizobacteria and Box-PCR fingerprinting revealed a high genetic diversity in both rhizospheres. Taxonomic identification by MALDI-TOF showed that PSB populations of P. coloratum and S. indicus rhizospheres are dominated by the phylum Proteobacteria (92,51% and 96,60% respectively) and to a lesser extent (< 10%), by the phyla Actinobacteria and Firmicutes. At the genus level, both PSB populations were dominated by Enterobacter and Pseudomonas. Siderophore production, nitrogen fixation, and indoleacetic acid production were detected in a variety of PSB genera of both plant species. A higher proportion of siderophore and IAA producers were associated to P. coloratum than S. indicus, probably reflecting a greater dependence of the exotic species on rhizospheric microorganisms to satisfy its nutritional requirements in the soils of the flooding pampa. This work provides a novel knowledge about functional groups of bacteria associated to plants given that there are no previous reports dedicated to the characterization of PSB rhizosphere communities of S indicus and P coloratum. Finally, it should be noted that the collection obtained in this study can be useful for the development of bioinputs that allow reducing the use of chemical fertilizers, providing sustainability to pasture production systems for livestock.
Asunto(s)
Bacterias , Fosfatos , Poaceae , Rizosfera , Microbiología del Suelo , Suelo , Poaceae/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Suelo/química , Fosfatos/metabolismo , Argentina , Animales , Filogenia , Sideróforos/metabolismo , Fijación del Nitrógeno , Ácidos Indolacéticos/metabolismo , Inundaciones , ARN Ribosómico 16S/genéticaRESUMEN
Legume plants develop two types of root postembryonic organs, lateral roots and symbiotic nodules, using shared regulatory components. The module composed by the microRNA390, the Trans-Acting SIRNA3 (TAS3) RNA and the Auxin Response Factors (ARF)2, ARF3, and ARF4 (miR390/TAS3/ARFs) mediates the control of both lateral roots and symbiotic nodules in legumes. Here, a transcriptomic approach identified a member of the Lateral Organ Boundaries Domain (LBD) family of transcription factors in Medicago truncatula, designated MtLBD17/29a, which is regulated by the miR390/TAS3/ARFs module. ChIP-PCR experiments evidenced that MtARF2 binds to an Auxin Response Element present in the MtLBD17/29a promoter. MtLBD17/29a is expressed in root meristems, lateral root primordia, and noninfected cells of symbiotic nodules. Knockdown of MtLBD17/29a reduced the length of primary and lateral roots and enhanced lateral root formation, whereas overexpression of MtLBD17/29a produced the opposite phenotype. Interestingly, both knockdown and overexpression of MtLBD17/29a reduced nodule number and infection events and impaired the induction of the symbiotic genes Nodulation Signaling Pathway (NSP) 1 and 2. Our results demonstrate that MtLBD17/29a is regulated by the miR390/TAS3/ARFs module and a direct target of MtARF2, revealing a new lateral root regulatory hub recruited by legumes to act in the root nodule symbiotic program.
Asunto(s)
Medicago truncatula , Proteínas de Plantas , Nodulación de la Raíz de la Planta , Raíces de Plantas , Factores de Transcripción , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Ácidos Indolacéticos/metabolismo , Medicago truncatula/genética , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/microbiología , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Simbiosis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genéticaRESUMEN
Shade avoidance syndrome is an important adaptive strategy. Under shade, major transcriptional rearrangements underlie the reallocation of resources to elongate vegetative structures and redefine the plant architecture to compete for photosynthesis. BBX28 is a B-box transcription factor involved in seedling de-etiolation and flowering in Arabidopsis (Arabidopsis thaliana), but its function in shade-avoidance response is completely unknown. Here, we studied the function of BBX28 using two mutant and two transgenic lines of Arabidopsis exposed to white light and simulated shade conditions. We found that BBX28 promotes hypocotyl growth under shade through the phytochrome system by perceiving the reduction of red photons but not the reduction of photosynthetically active radiation or blue photons. We demonstrated that hypocotyl growth under shade is sustained by the protein accumulation of BBX28 in the nuclei in a CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1)-dependent manner at the end of the photoperiod. BBX28 up-regulates the expression of transcription factor- and auxin-related genes, thereby promoting hypocotyl growth under prolonged shade. Overall, our results suggest the role of BBX28 in COP1 signaling to sustain the shade-avoidance response and extend the well-known participation of other members of BBX transcription factors for fine-tuning plant growth under shade.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Hipocótilo , Luz , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Plantas Modificadas Genéticamente , Mutación/genética , Ácidos Indolacéticos/metabolismo , Fotoperiodo , Transducción de Señal/genéticaRESUMEN
Azospirillum sp. is a plant growth-promoting rhizobacteria largely recognized for its potential to increase the yield of different important crops. In this work, we present a thorough genomic and phenotypic analysis of A. argentinense Az39T to provide new insights into the beneficial mechanisms of this microorganism. Phenotypic analyses revealed the following in vitro abilities: growth at 20-38 °C (optimum, 28 °C), pH 6.0-8.0 (optimum, pH 6.8), and in the presence of 1% (w/v) NaCl; production of variable amounts of PHB as intracellular granules; nitrogen fixation under microaerophilic conditions; IAA synthesis in the presence of L-tryptophan. Through biochemical (API 20NE) and carbon utilization profiling (Biolog) assays, we proved that A. argentinense Az39T is able to use 15 substrates and metabolize 19 different carbon substrates. Lipid composition indicated a predominance of medium and long-chain saturated fatty acids. A total of 6 replicons classified as one main chromosome, three chromids, and two plasmids, according to their tRNA and core essential genes contents, were identified. Az39T genome includes genes associated with multiple plant growth-promoting (PGP) traits such as nitrogen fixation and production of auxins, cytokinin, abscisic acid, ethylene, and polyamines. In addition, Az39T genome harbor genetic elements associated with physiological features that facilitate its survival in the soil and competence for rhizospheric colonization; this includes motility, secretion system, and quorum sensing genetic determinants. A metadata analysis of Az39T agronomic performance in the pampas region, Argentina, demonstrated significant grain yield increases in wheat and maize, proving its potential to provide better growth conditions for dryland cereals. In conclusion, our data provide a detailed insight into the metabolic profile of A. argentinense Az39T, the strain most widely used to formulate non-legume inoculants in Argentina, and allow a better understanding of the mechanisms behind its field performance.
Asunto(s)
Azospirillum , Azospirillum/fisiología , Ácidos Indolacéticos/metabolismo , Desarrollo de la Planta , Carbono , América del SurRESUMEN
Using microalgal growth-promoting bacteria (MGPB) to improve the cultured microalga metabolism during biotechnological processes is one of the most promising strategies to enhance their benefits. Nonetheless, the culture condition effect used during the biotechnological process on MGPB growth and metabolism is key to ensure the expected positive bacterium growth and metabolism of microalgae. In this sense, the present research study investigated the effect of the synthetic biogas atmosphere (75% CH4-25% CO2) on metabolic and physiological adaptations of the MGPB Azospirillum brasilense by a microarray-based transcriptome approach. A total of 394 A. brasilense differentially expressed genes (DEGs) were found: 201 DEGs (34 upregulated and 167 downregulated) at 24 h and 193 DEGs (140 upregulated and 53 downregulated) under the same conditions at 72 h. The results showed a series of A. brasilense genes regulating processes that could be essential for its adaptation to the early stressful condition generated by biogas. Evidence of energy production is shown by nitrate/nitrite reduction and activation of the hypothetical first steps of hydrogenotrophic methanogenesis; signal molecule modulation is observed: indole-3-acetic acid (IAA), riboflavin, and vitamin B6, activation of Type VI secretion system responding to IAA exposure, as well as polyhydroxybutyrate (PHB) biosynthesis and accumulation. Moreover, an overexpression of ipdC, ribB, and phaC genes, encoding the key enzymes for the production of the signal molecule IAA, vitamin riboflavin, and PHB production of 2, 1.5 and 11 folds, respectively, was observed at the first 24 h of incubation under biogas atmosphere Overall, the ability of A. brasilense to metabolically adapt to a biogas atmosphere is demonstrated, which allows its implementation for generating biogas with high calorific values and the use of renewable energies through microalga biotechnologies.
Asunto(s)
Azospirillum brasilense , Microalgas , Microalgas/genética , Biocombustibles , Transcriptoma , Ácidos Indolacéticos/metabolismo , Perfilación de la Expresión Génica , Adaptación Fisiológica/genética , Riboflavina/genética , Riboflavina/metabolismoRESUMEN
Soil alkalinity is a critical environmental factor for plant growth and distribution in ecosystems. An alkaline condition (pH > 7) is imposed by the rising concentration of hydroxides and cations, and prevails in semiarid and arid environments, which represent more than 25% of the total arable land of the world. Despite the great pressure exerted by alkalinity for root viability and plant survival, scarce information is available to understand how root microbes contribute to alkaline pH adaptation. Here, we assessed the effects of alkalinity on shoot and root biomass production, chlorophyll content, root growth and branching, lateral root primordia formation, and the expression of CYCB1, TOR kinase, and auxin and cytokinin-inducible trangenes in shoots and roots of Arabidopsis seedlings grown in Petri plates with agar-nutrient medium at pH values of 7.0, 7.5, 8.0, 8.5, and 9.0. The results showed an inverse correlation between the rise of pH and most growth, hormonal and genetic traits analyzed. Noteworthy, root inoculation with Achromobacter sp. 5B1, a beneficial rhizospheric bacterium, with plant growth promoting and salt tolerance features, increased biomass production, restored root growth and branching and enhanced auxin responses in WT seedlings and auxin-related mutants aux1-7 and eir1, indicating that stress adaptation operates independently of canonical auxin transporter proteins. Sequencing of the Achromobacter sp. 5B1 genome unveiled 5244 protein-coding genes, including genes possibly involved in auxin biosynthesis, quorum-sensing regulation and stress adaptation, which may account for its plant growth promotion attributes. These data highlight the critical role of rhizobacteria to increase plant resilience under high soil pH conditions potentially through genes for adaptation to an extreme environment and bacteria-plant communication.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Plantones , Proteínas de Arabidopsis/genética , Ecosistema , Raíces de Plantas , Ácidos Indolacéticos/metabolismo , Suelo , Regulación de la Expresión Génica de las PlantasRESUMEN
MicroRNA (miRNA) is a class of non-coding RNAs. They play essential roles in plants' physiology, as in the regulation of plant development, response to biotic and abiotic stresses, and symbiotic processes. This work aimed to better understand the importance of maize's miRNA during Azospirillum-plant interaction when the plant indole-3-acetic acid (IAA) production was inhibited with yucasin, an inhibitor of the TAM/YUC pathway. Twelve cDNA libraries from a previous Dual RNA-Seq experiment were used to analyze gene expression using a combined analysis approach. miRNA coding genes (miR) and their predicted mRNA targets were identified among the differentially expressed genes. Statistical differences among the groups indicate that Azospirillum brasilense, yucasin, IAA concentration, or all together could influence the expression of several maize's miRNAs. The miRNA's probable targets were identified, and some of them were observed to be differentially expressed. Dcl4, myb122, myb22, and morf3 mRNAs were probably regulated by their respective miRNAs. Other probable targets were observed responding to the IAA level, the bacterium, or all of them. A. brasilense was able to influence the expression of some maize's miRNA, for example, miR159f, miR164a, miR169j, miR396c, and miR399c. The results allow us to conclude that the bacterium can influence directly or indirectly the expression of some of the identified mRNA targets, probably due to an IAA-independent pathway, and that they are somehow involved in the previously observed physiological effects.
Asunto(s)
Azospirillum brasilense , MicroARNs , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Zea mays/metabolismo , Ácidos Indolacéticos/metabolismo , Plantas/metabolismo , MicroARNs/genética , ARN Mensajero/metabolismoRESUMEN
The long noncoding RNA (lncRNA) AUXIN-REGULATED PROMOTER LOOP (APOLO) recognizes a subset of target loci across the Arabidopsis thaliana genome by forming RNA-DNA hybrids (R-loops) and modulating local three-dimensional chromatin conformation. Here, we show that APOLO regulates shade avoidance syndrome by dynamically modulating expression of key factors. In response to far-red (FR) light, expression of APOLO anti-correlates with that of its target BRANCHED1 (BRC1), a master regulator of shoot branching in Arabidopsis thaliana. APOLO deregulation results in BRC1 transcriptional repression and an increase in the number of branches. Accumulation of APOLO transcription fine-tunes the formation of a repressive chromatin loop encompassing the BRC1 promoter, which normally occurs only in leaves and in a late response to far-red light treatment in axillary buds. In addition, our data reveal that APOLO participates in leaf hyponasty, in agreement with its previously reported role in the control of auxin homeostasis through direct modulation of auxin synthesis gene YUCCA2, and auxin efflux genes PID and WAG2. We show that direct application of APOLO RNA to leaves results in a rapid increase in auxin signaling that is associated with changes in the plant response to far-red light. Collectively, our data support the view that lncRNAs coordinate shade avoidance syndrome in A. thaliana, and reveal their potential as exogenous bioactive molecules. Deploying exogenous RNAs that modulate plant-environment interactions may therefore become a new tool for sustainable agriculture.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ARN Largo no Codificante , Arabidopsis/genética , Arabidopsis/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Epigénesis Genética , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Factores de Transcripción/metabolismoRESUMEN
Anther development and pollen fertility of cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) restorer lines are susceptible to continuous high-temperature (HT) stress in summer, which seriously hinders the large-scale application of "three-line" hybrids in production. Here, integrated small RNA, transcriptome, degradome, and hormone profiling was performed to explore the roles of microRNAs (miRNAs) in regulating fertility stability in mature pollens of isonuclear alloplasmic near-isogenic restorer lines NH and SH under HT stress at two environments. A total of 211 known and 248 novel miRNAs were identified, of which 159 were differentially expressed miRNAs (DEMs). Additionally, 45 DEMs in 39 miRNA clusters (PmCs) were also identified, and most highly expressed miRNAs were significantly induced in SH under extreme HT, especially four MIR482 and six MIR6300 family miRNAs. PmC28 was located in the fine-mapped interval of the Rf1 gene and contained two DEMs, gra-miR482_L-2R + 2 and gma-miR2118a-3p_R + 1_1ss18TG. Transcriptome sequencing identified 6281 differentially expressed genes, of which heat shock protein (HSP)-related genes, such as HSP70, HSP22, HSP18.5-C, HSP18.2 and HSP17.3-B, presented significantly reduced expression levels in SH under HT stress. Through integrating multi-omics data, we constructed a comprehensive molecular network of miRNA-mRNA-gene-KEGG containing 35 pairs of miRNA/target genes involved in regulating the pollen development in response to HT, among which the mtr-miR167a_R + 1, tcc-miR167c and ghr-miR390a, tcc-miR396c_L-1 and ghr-MIR169b-p3_1ss6AG regulated the pollen fertility by influencing ARF8 responsible for the auxin signal transduction, ascorbate and aldarate metabolism, and the sugar and lipid metabolism and transport pathways, respectively. Further combination with hormone analysis revealed that HT-induced jasmonic acid signaling could activate the expression of downstream auxin synthesis-related genes and cause excessive auxin accumulation, followed by a cascade of auxin signal transduction, ultimately resulting in pollen abortion. The results provide a new understanding of how heat-responsive miRNAs regulate the stability of fertility restoration for CMS-D2 cotton under heat stress.
Asunto(s)
Fertilidad , MicroARNs , Temperatura , Citoplasma/genética , Fertilidad/genética , Ácidos Indolacéticos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Hormonas/metabolismo , Polen/genética , Polen/metabolismo , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión GénicaRESUMEN
Twenty-five years ago, a seminal paper demonstrated that warm temperatures increase auxin levels to promote hypocotyl growth in Arabidopsis thaliana. Here we highlight recent advances in auxin-mediated thermomorphogenesis and identify unanswered questions. In the warmth, PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF7 bind the YUCCA8 gene promoter and, in concert with histone modifications, enhance its expression to increase auxin synthesis in the cotyledons. Once transported to the hypocotyl, auxin promotes cell elongation. The meta-analysis of expression of auxin-related genes in seedlings exposed to temperatures ranging from cold to hot shows complex patterns of response. Changes in auxin only partially account for these responses. The expression of many SMALL AUXIN UP RNA (SAUR) genes reaches a maximum in the warmth, decreasing towards both temperature extremes in correlation with the rate of hypocotyl growth. Warm temperatures enhance primary root growth, the response requires auxin, and the hormone levels increase in the root tip but the impacts on cell division and cell expansion are not clear. A deeper understanding of auxin-mediated temperature control of plant architecture is necessary to face the challenge of global warming.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Temperatura , Arabidopsis/metabolismo , Hipocótilo , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/genéticaRESUMEN
Indirect somatic embryogenesis (ISE) is a morphogenetic pathway in which somatic cells form callus and, later, somatic embryos (SE). 2,4-dichlorophenoxyacetic acid (2,4-D) is a synthetic auxin that promotes the proliferation and dedifferentiation of somatic cells, inducing the ISE. However, 2,4-D can cause genetic, epigenetic, physiological and morphological disorders, preventing the regeneration and/or resulting abnormal somatic embryos (ASE). We aimed to evaluate the toxic 2,4-D effect during the Coffea arabica and C. canephora ISE, assessing the SE morphology, global 5-methylcytosine levels (5-mC%) and DNA damage. Leaf explants were inoculated in media with different 2,4-D concentrations. After 90 days, the friable calli were transferred to the regeneration medium, and the number of normal and abnormal SE was monthly counted. The increase of the 2,4-D concentration increased the number of responsive explants in both Coffea. At 9.06, 18.08 and 36.24 µM 2,4-D, C. arabica presented the highest values of responsive explants, differing from C. canephora. Normal and abnormal SE regeneration increased in relation to the time and 2,4-D concentration. Global 5-mC% varied at different stages of the ISE in both Coffea. Furthermore, the 2,4-D concentration positively correlated with global 5-mC%, and with the mean number of ASE. All ASE of C. arabica and C. canephora exhibited DNA damage and showed higher global 5-mC%. The allotetraploid C. arabica exhibited greater tolerance to the toxic effect of 2,4-D than the diploid C. canephora. We conclude that synthetic 2,4-D auxin promotes genotoxic and phytotoxic disorders and promotes epigenetic changes during Coffea ISE.
Asunto(s)
Coffea , Coffea/genética , Café/metabolismo , Desarrollo Embrionario , Ácidos Indolacéticos/metabolismo , Ácido 2,4-Diclorofenoxiacético/toxicidad , Ácido 2,4-Diclorofenoxiacético/metabolismoRESUMEN
Lysinibacillus is a bacterial genus that has generated recent interest for its biotechnological potential in agriculture. Strains belonging to this group are recognized for their mosquitocidal and bioremediation activity. However, in recent years some reports indicate its importance as plant growth promoting rhizobacteria (PGPR). This research sought to provide evidence of the PGP activity of Lysinibacillus spp. and the role of the indole-3-acetic acid (IAA) production associated with this activity. Twelve Lysinibacillus spp. strains were evaluated under greenhouse conditions, six of which increased the biomass and root architecture of corn plants. In most cases, growth stimulation was evident at 108 CFU/mL inoculum concentration. All strains produced IAA with high variation between them (20-70 µg/mL). The bioinformatic identification of predicted genes associated with IAA production allowed the detection of the indole pyruvic acid pathway to synthesize IAA in all strains; additionally, genes for a tryptamine pathway were detected in two strains. Extracellular filtrates from all strain's cultures increased the corn coleoptile length in an IAA-similar concentration pattern, which demonstrates the filtrates had an auxin-like effect on plant tissue. Five of the six strains that previously showed PGPR activity in corn also promoted the growth of Arabidopsis thaliana (col 0). These strains induced changes in root architecture of Arabidopsis mutant plants (aux1-7/axr4-2), the partial reversion of mutant phenotype indicated the role of IAA on plant growth. This work provided solid evidence of the association of Lysinibacillus spp. IAA production with their PGP activity, which constitutes a new approach for this genus. These elements contribute to the biotechnological exploration of this bacterial genus for agricultural biotechnology.
Asunto(s)
Arabidopsis , Bacillaceae , Ácidos Indolacéticos/metabolismo , Desarrollo de la Planta , Bacterias/metabolismo , Bacillaceae/genética , Bacillaceae/metabolismo , Arabidopsis/metabolismo , Plantas/metabolismo , Raíces de Plantas/microbiologíaRESUMEN
S-Nitrosoglutathione plays a central role in nitric oxide (NO) homeostasis, and S-nitrosoglutathione reductase (GSNOR) regulates the cellular levels of S-nitrosoglutathione across kingdoms. Here, we investigated the role of endogenous NO in shaping shoot architecture and controlling fruit set and growth in tomato (Solanum lycopersicum). SlGSNOR silencing promoted shoot side branching and led to reduced fruit size, negatively impacting fruit yield. Greatly intensified in slgsnor knockout plants, these phenotypical changes were virtually unaffected by SlGSNOR overexpression. Silencing or knocking out of SlGSNOR intensified protein tyrosine nitration and S-nitrosation and led to aberrant auxin production and signaling in leaf primordia and fruit-setting ovaries, besides restricting the shoot basipetal polar auxin transport stream. SlGSNOR deficiency triggered extensive transcriptional reprogramming at early fruit development, reducing pericarp cell proliferation due to restrictions on auxin, gibberellin, and cytokinin production and signaling. Abnormal chloroplast development and carbon metabolism were also detected in early-developing NO-overaccumulating fruits, possibly limiting energy supply and building blocks for fruit growth. These findings provide new insights into the mechanisms by which endogenous NO fine-tunes the delicate hormonal network controlling shoot architecture, fruit set, and post-anthesis fruit development, emphasizing the relevance of NO-auxin interaction for plant development and productivity.
Asunto(s)
Reguladores del Crecimiento de las Plantas , Solanum lycopersicum , Reguladores del Crecimiento de las Plantas/metabolismo , Oxidorreductasas/metabolismo , Solanum lycopersicum/genética , Frutas/metabolismo , S-Nitrosoglutatión/metabolismo , Ácidos Indolacéticos/metabolismo , Homeostasis , Óxido Nítrico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
Endophytic fungi inhabit plant tissues internally and asymptomatically, and many of them are involved in the synthesis of bioactive metabolites of antifungal and therapeutic nature, as well as other compounds of biotechnological importance including indole derivatives, among many others. Ecologically, they provide some benefits to plants including protection against phytopathogens and promotion of root growth. In this sense, Xylaria sp. is a cellulose-decomposing fungus with biotechnological potential. It is worth mentioning that indole-3-acetic acid (IAA) also plays an extremely important role in plant-micro-organism interactions, as it is essential for physiology and proper plant morphological development. It is known that nitrile-hydrolytic enzymes (nitrilases) are involved in the synthesis of plant indole compounds; however, relatively little information is available concerning the nature of these enzymes in the fungal kingdom. In view of the above, through a biochemical and molecular-genetic approach, it has been demonstrated for the first time that Xylaria sp. carries out nitrile-hydrolytic enzyme activity using nitrogen and carbon-rich compounds as substrate. The studied strain increased its relative gene expression levels and showed mycelial growth, both in the presence of chemical compounds such as cyanobenzene and KCN. Thus, the results of this work suggest that the micro-organism is capable of degrading complex nitrogenous molecules. On the other hand, through fungal biofertilization, it was observed that Xylaria sp. promotes the development of the root system of Arabidopsis thaliana seedlings, in addition to synthesizing IAA.