Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.804
Filtrar
1.
Carbohydr Polym ; 346: 122629, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245497

RESUMEN

The impact of electrical stimulation has been widely investigated on the wound healing process; however, its practicality is still challenging. This study explores the effect of electrical stimulation on fibroblasts in a culture medium containing different electrically-charged polysaccharide derivatives including alginate, hyaluronate, and chitosan derivatives. For this aim, an electrical stimulation, provided by a zigzag triboelectric nanogenerator (TENG), was exerted on fibroblasts in the presence of polysaccharides' solutions. The analyses showed a significant increase in cell proliferation and an improvement in wound closure (160 % and 90 %, respectively) for the hyaluronate-containing medium by a potential of 3 V after 48 h. In the next step, a photo-crosslinkable hydrogel was prepared based on hyaluronic acid methacrylate (HAMA). Then, the cells were cultured on HAMA hydrogel and treated by an electrical stimulation. Surprisingly, the results showed a remarkable increase in cell growth (280 %) and migration (82 %) after 24 h. Attributed to the electroosmosis phenomenon and an amplified transfer of soluble growth factors, a dramatic promotion was underscored in cell activities. These findings highlight the role of electroosmosis in wound healing, where TENG-based electrical stimulation is combined with bioactive polysaccharide-based hydrogels to promote wound healing.


Asunto(s)
Alginatos , Proliferación Celular , Fibroblastos , Ácido Hialurónico , Hidrogeles , Cicatrización de Heridas , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Alginatos/química , Proliferación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/citología , Hidrogeles/química , Hidrogeles/farmacología , Cicatrización de Heridas/efectos de los fármacos , Estimulación Eléctrica , Polielectrolitos/química , Animales , Ratones , Quitosano/química , Movimiento Celular/efectos de los fármacos , Humanos , Células 3T3 NIH
2.
Carbohydr Polym ; 345: 122585, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227125

RESUMEN

Chemical crosslinking is a method widely used to enhance the mechanical strength of biopolymer-based scaffolds. Polysaccharides are natural and biodegradable carbohydrate polymers that can act as crosslinking agents to promote the formation of scaffolds. Compared to synthetic crosslinking agents, Polysaccharide-based crosslinking agents have better biocompatibility for cell adhesion and growth. Traditional Chinese medicine has special therapeutic effects on various diseases and is rich in various bioactive ingredients. Among them, polysaccharides have immune regulatory, antioxidant, and anti-inflammation effects, which allow them to not only act as crosslinking agents but endow the scaffold with greater bioactivity. This article focuses on the latest developments of polysaccharide-based crosslinking agents for biomedical scaffolds, including hyaluronic acid, chondroitin sulfate, dextran, alginate, cellulose, gum polysaccharides, and traditional Chinese medicine polysaccharides. Also, we provide a summary and prospects on the research of polysaccharide-based crosslinking agents.


Asunto(s)
Materiales Biocompatibles , Reactivos de Enlaces Cruzados , Polisacáridos , Bases de Schiff , Andamios del Tejido , Polisacáridos/química , Polisacáridos/farmacología , Reactivos de Enlaces Cruzados/química , Andamios del Tejido/química , Bases de Schiff/química , Bases de Schiff/farmacología , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ingeniería de Tejidos/métodos , Animales , Ácido Hialurónico/química , Ácido Hialurónico/farmacología
3.
Int J Nanomedicine ; 19: 8709-8727, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220191

RESUMEN

Background: The formation of adhesion after tendon injury represents a major obstacle to tendon repair, and currently there is no effective anti-adhesion method in clinical practice. Oxidative stress, inflammation, and fibrosis can occur in tendon injury and these factors can lead to tendon adhesion. Antioxidant carbon dots and ursolic acid (UA) both possess antioxidant and anti-inflammatory properties. In this experiment, we have for the first time created RCDs/UA@Lipo-HAMA using red fluorescent carbon dots and UA co-encapsulated liposomes composite hyaluronic acid methacryloyl hydrogel. We found that RCDs/UA@Lipo-HAMA could better attenuate adhesion formation and enhance tendon healing in tendon injury. Materials and Methods: RCDs/UA@Lipo-HAMA were prepared and characterized. In vitro experiments on cellular oxidative stress and fibrosis were performed. Reactive oxygen species (ROS), and immunofluorescent staining of collagens type I (COL I), collagens type III (COL III), and α-smooth muscle actin (α-SMA) were used to evaluate anti-oxidative and anti-fibrotic abilities. In vivo models of Achilles tendon injury repair (ATI) and flexor digitorum profundus tendon injury repair (FDPI) were established. The major organs and blood biochemical indicators of rats were tested to determine the toxicity of RCDs/UA@Lipo-HAMA. Biomechanical testing, motor function analysis, immunofluorescence, and immunohistochemical staining were performed to assess the tendon adhesion and repair after tendon injury. Results: In vitro, the RCDs/UA@Lipo group scavenged excessive ROS, stabilized the mitochondrial membrane potential (ΔΨm), and reduced the expression of COL I, COL III, and α-SMA. In vivo, assessment results showed that the RCDs/UA@Lipo-HAMA group improved collagen arrangement and biomechanical properties, reduced tendon adhesion, and promoted motor function after tendon injury. Additionally, the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) in the RCDs/UA@Lipo-HAMA group increased; the levels of cluster of differentiation 68 (CD68), inducible Nitric Oxide Synthase (iNOS), COL III, α-SMA, Vimentin, and matrix metallopeptidase 2 (MMP2) decreased. Conclusion: In this study, the RCDs/UA@Lipo-HAMA alleviated tendon adhesion formation and enhanced tendon healing by attenuating oxidative stress, inflammation, and fibrosis. This study provided a novel therapeutic approach for the clinical treatment of tendon injury.


Asunto(s)
Antioxidantes , Carbono , Hidrogeles , Liposomas , Ratas Sprague-Dawley , Traumatismos de los Tendones , Triterpenos , Ácido Ursólico , Animales , Triterpenos/farmacología , Triterpenos/química , Antioxidantes/farmacología , Antioxidantes/química , Liposomas/química , Traumatismos de los Tendones/tratamiento farmacológico , Adherencias Tisulares/tratamiento farmacológico , Carbono/química , Carbono/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Ratas , Estrés Oxidativo/efectos de los fármacos , Masculino , Cicatrización de Heridas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Puntos Cuánticos/química , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Tendón Calcáneo/efectos de los fármacos , Tendón Calcáneo/lesiones
4.
Med Sci Monit ; 30: e945386, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279207

RESUMEN

BACKGROUND Surgical extraction of impacted mandibular third molars is the most commonly performed procedure in oral surgery; its associated complications include sensory nerve damage, swelling, and trismus. This study aimed to evaluate the effects of hyaluronic acid (HA) on healing of the socket following extraction of the lower impacted third molar tooth in 40 dental patients. MATERIAL AND METHODS This prospective, double-blind, randomized, controlled study was carried out on 40 adult healthy patients indicated for surgical removal of bilateral impacted mandibular third molars with equal surgical difficulty (moderate surgical difficulty according to the Koerner index. Patients with right mandibular third molars were included into the study (HA) group and those with left mandibular third molars were included into the control group. Surgical removal of impacted teeth was performed at different times for each patient for proper measurement of postoperative clinical variables, including pain, swelling, and mouth opening. RESULTS Postoperative pain evaluation results using the visual analog scale (VAS) showed reduced pain levels at all observation periods. Postoperative swelling peaked in intensity within 12-48 hours, resolving between the 5th and 7th days, and there was no significant difference in pre- and postoperative measurements of interincisal opening between both groups (P>0.05). CONCLUSIONS We found that intra-socket application of hyaluronic acid after surgical extraction of impacted mandibular third molars promoted normal wound healing, and there was a clinical benefit of reduced postoperative pain and swelling.


Asunto(s)
Ácido Hialurónico , Tercer Molar , Extracción Dental , Diente Impactado , Cicatrización de Heridas , Humanos , Ácido Hialurónico/farmacología , Tercer Molar/cirugía , Extracción Dental/efectos adversos , Extracción Dental/métodos , Diente Impactado/cirugía , Femenino , Masculino , Adulto , Cicatrización de Heridas/efectos de los fármacos , Método Doble Ciego , Estudios Prospectivos , Alveolo Dental/efectos de los fármacos , Dolor Postoperatorio/tratamiento farmacológico
5.
Molecules ; 29(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274908

RESUMEN

Extended exposure to UVB (280-315 nm) radiation results in oxidative damage and inflammation of the skin. Previous research has demonstrated that pilose antler extracts have strong anti-inflammatory properties and possess antioxidant effects. This study aimed to elucidate the mechanism of pilose antler protein in repairing photodamage caused by UVB radiation in HaCaT cells and ICR mice. Pilose antler protein (PAP) was found to increase the expression of type I collagen and hyaluronic acid in HaCaT cells under UVB irradiation while also inhibiting reactive oxygen species (ROS) production and oxidative stress in vitro. In vivo, the topical application of pilose antler protein effectively attenuated UVB-induced skin damage in ICR mice by reducing interleukin-1ß (IL-ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) and inhibiting skin inflammation while alleviating UVB-induced oxidative stress. It was shown that pilose antler protein repaired UVB-induced photodamage through the MAPK and TGF-ß/Smad pathways.


Asunto(s)
Cuernos de Venado , Células HaCaT , Ratones Endogámicos ICR , Estrés Oxidativo , Especies Reactivas de Oxígeno , Piel , Rayos Ultravioleta , Rayos Ultravioleta/efectos adversos , Animales , Humanos , Cuernos de Venado/química , Ratones , Estrés Oxidativo/efectos de los fármacos , Piel/efectos de los fármacos , Piel/efectos de la radiación , Piel/patología , Piel/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Colágeno Tipo I/metabolismo , Ciervos , Ácido Hialurónico/farmacología , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
6.
Stem Cell Res Ther ; 15(1): 287, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256806

RESUMEN

BACKGROUND: Androgenetic alopecia (AGA) is a common form of hair loss. Androgens, such as testosterone and dihydrotestosterone, are the main causes of AGA. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) can reduce AGA. However, preparing therapeutic doses of MSCs for clinical use is challenging. Induced pluripotent stem cell-derived MSCs (iMSCs) are homogenous and easily expandable, enabling scalable production of EVs. Hyaluronic acid (HA) can exert various functions including free radical scavenging, immune regulation, and cell migration. Herein, we examined whether hyaluronic acid (HA) stimulation of iMSCs could produce EVs with enhanced therapeutic outcomes for AGA. METHODS: EVs were collected from iMSCs primed with HA (HA-iMSC-EVs) or without HA (iMSC-EVs). The characteristics of EVs were examined using dynamic light scattering, cryo-transmission electron microscopy, immunoblotting, flow cytometry, and proteomic analysis. In vitro, we compared the potential of EVs in stimulating the survival of hair follicle dermal papilla cells undergoing testosterone-mediated AGA. Additionally, the expression of androgen receptor (AR) and relevant growth factors as well as key proteins of Wnt/ß-catenin signaling pathway (ß-catenin and phosphorylated GSK3ß) was analyzed. Subsequently, AGA was induced in male C57/BL6 mice by testosterone administration, followed by repeated injections of iMSC-EVs, HA-iMSC-EVs, finasteride, or vehicle. Several parameters including hair growth, anagen phase ratio, reactivation of Wnt/ß-catenin pathway, and AR expression was examined using qPCR, immunoblotting, and immunofluorescence analysis. RESULTS: Both types of EVs showed typical characteristics for EVs, such as size distribution, markers, and surface protein expression. In hair follicle dermal papilla cells, the mRNA levels of AR, TGF-ß, and IL-6 increased by testosterone was blocked by HA-iMSC-EVs, which also contributed to the augmented expression of trophic genes related to hair regrowth. However, no notable changes were observed in the iMSC-EVs. Re-activation of Wnt/ß-catenin was observed in HA-iMSC-EVs but not in iMSC-EVs, as shown by ß-catenin stabilization and an increase in phosphorylated GSK3ß. Restoration of hair growth was more significant in HA-iMSC-EVs than in iMSC-EVs, and was comparable to that in mice treated with finasteride. Consistently, the decreased anagen ratio induced by testosterone was reversed by HA-iMSC-EVs, but not by iMSC-EVs. An increased expression of hair follicular ß-catenin protein, as well as the reduction of AR was observed in the skin tissue of AGA mice receiving HA-iMSC-EVs, but not in those treated with iMSC-EVs. CONCLUSIONS: Our results suggest that HA-iMSC-EVs have potential to improve AGA by regulating growth factors/cytokines and stimulating AR-related Wnt/ß-catenin signaling.


Asunto(s)
Alopecia , Vesículas Extracelulares , Folículo Piloso , Ácido Hialurónico , Células Madre Mesenquimatosas , Vesículas Extracelulares/metabolismo , Alopecia/terapia , Alopecia/metabolismo , Alopecia/tratamiento farmacológico , Ácido Hialurónico/farmacología , Ácido Hialurónico/metabolismo , Animales , Ratones , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Folículo Piloso/metabolismo , Folículo Piloso/efectos de los fármacos , Humanos , Vía de Señalización Wnt/efectos de los fármacos , Masculino , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Testosterona/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones Endogámicos C57BL
7.
PLoS One ; 19(9): e0307965, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39255313

RESUMEN

Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is a valuable therapeutic alternative for patients with peritoneal metastases. PIPAC uses a hyaluronic acid-based gel to reduce surgically induced adhesions. The aim of this study was to evaluate the effects of the hyaluronic acid-based gel on tumor dissemination. First, we explored whether the survival of CT26 luciferase-expressing murine colonic tumor cells was correlated with the dose of HyaRegen® Gel, and we determined the half-maximal inhibitory concentration (the IC50) of the gel. Next, we performed an in vitro study of cell survival rates after gel application on day 0 (D0) and day 1 (D1). Finally, we intraperitoneally administered the gel to mice with immunocompetent BALB/c colonic peritoneal metastases (on D0, D5, D10, D14, and D18). Tumor growth was regularly monitored using a bioluminescence assay (on D11, D17, and D21). After all mice had been sacrificed on D21, the body weights and the volumes of intraperitoneal ascites were measured; the Peritoneal Carcinosis Index (PCI) and Ki-antigen 67 scores were calculated. The IC50 value was 70 µL of gel in a total volume of 100 µL. The cell survival rates on D4 were identical in the control group and the two groups that had been treated with gel on D0 and D1. The bioluminescence levels over time were similar in the gel and control groups. The PCI scores were 35.5 ± 2.89 for the control group and 36 ± 2.45 for the gel group (p = 0.8005). The mean Ki-67 index percentages were 37.28 ±1 1.75 for the control group and 34.03 ± 8.62 for the gel group (p = 0.1971). This in vitro and in vivo study using a mouse model of immunocompetent metastatic peritoneal cancer did not reveal any pro- or anti-tumoral effect of HyaRegen® Gel. These findings indicate that the gel can be used to treat PIPACs with minimal apprehension.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Geles , Ácido Hialurónico , Ratones Endogámicos BALB C , Neoplasias Peritoneales , Animales , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Ratones , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ácido Hialurónico/farmacología , Femenino , Supervivencia Celular/efectos de los fármacos , Humanos
8.
Biomacromolecules ; 25(9): 6146-6154, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39197080

RESUMEN

Engineered vascularized tissues in vitro exhibit the potential for transplantation therapy and disease modeling. Despite efforts to design hydrogels as cell culture platforms for in vitro vascularization, development of vascularized tissues recapitulating the natural structures and functions remains difficult due to a poor understanding of the relationships between the matrix microstructures and tube formation of endothelial cells. Herein, we developed microfiber network hydrogels with microporous structures by controlling the liquid-liquid phase separation (LLPS) of proteins and matrix structures in hydrogels. Extracellular matrix protein gelatin was modified with hydrogen-bonding moieties and mixed with hyaluronic acid sodium salt to form microfiber network structures. Gelatin gelation and hyaluronic acid sodium salt dissolution led to the formation of a microporous microfiber network hydrogel formation. Matrix structures of hydrogels were modified by controlling LLPS that affects endothelial cell tube formation. Vascularization was improved using laminin peptides and coculturing with mesenchymal stem cells. Overall, our approach exhibits the potential to induce in vitro vascularization for regenerative medicine and disease modeling applications.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Ácido Hialurónico , Hidrogeles , Células Madre Mesenquimatosas , Neovascularización Fisiológica , Hidrogeles/química , Hidrogeles/farmacología , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Gelatina/química , Ingeniería de Tejidos/métodos , Laminina/química , Laminina/farmacología
9.
Biomater Sci ; 12(18): 4747-4758, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39118400

RESUMEN

Synovial fluid lubricates articular joints by forming a hydrated layer between the cartilage surfaces. In degenerative joint diseases like osteoarthritis (OA), the synovial fluid is compromised, which leads to less effective innate lubrication and exacerbated cartilage degeneration. Studies over the years have led to the development of partially or fully synthetic biolubricants to reduce the coefficient of friction with cartilage in knee joints. Cartilage-adhering, hydrated lubricants are particularly important to provide cartilage lubrication and chondroprotection under high normal load and slow speed. Here, we report the development of a hyaluronic acid (HA)-based lubricant functionalized with cationic branched poly-L-lysine (BPL) molecules that bind to cartilage via electrostatic interactions. We surmised that the electrostatic interactions between the BPL-modified HA molecules (HA-BPL) and the cartilage facilitate localization of the HA molecules to the cartilage surface. The number of BPL molecules on the HA backbone was varied to determine the optimal grafting density for cartilage binding and HA localization. Collectively, our results show that our HA-BPL molecules adhered readily to cartilage and were effective as a lubricant in cartilage-on-cartilage shear measurements where the modified HA molecules significantly reduce the coefficient of friction compared to phosphate-buffered saline or HA alone. This proof-of-concept study shows how the incorporation of cartilage adhering moieties, such as cationic molecules, can be used to enhance cartilage binding and lubrication properties of HA.


Asunto(s)
Cartílago Articular , Cationes , Ácido Hialurónico , Lubrificación , Polilisina , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Adsorción , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Cationes/química , Animales , Polilisina/química , Polilisina/farmacología , Bovinos , Lubricantes/química , Lubricantes/farmacología , Fricción/efectos de los fármacos , Líquido Sinovial/metabolismo , Líquido Sinovial/química , Líquido Sinovial/efectos de los fármacos
10.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39201248

RESUMEN

Hyaluronic acid injection is commonly used clinically to slow down the development of osteoarthritis (OA). A newly developed therapeutic method is to implant chondrocytes/stem cells to regenerate cartilage in the body. The curative effect of stem cell therapy has been proven to come from the paracrine of stem cells. In this study, exosomes secreted by stem cells from human exfoliated deciduous teeth (SHED) and hyaluronic acid were used individually to evaluate the therapeutic effect in slowing down OA. SHED was cultured in a serum-free medium for three days, and the supernatant was collected and then centrifuged with a speed difference to obtain exosomes containing CD9 and CD63 markers, with an average particle size of 154.1 nm. SW1353 cells were stimulated with IL-1ß to produce the inflammatory characteristics of OA and then treated with 40 µg/mL exosomes and hyaluronic acid individually. The results showed that the exosomes successfully inhibited the pro-inflammatory factors, including TNF-α, IL-6, iNOS, NO, COX-2 and PGE2, induced by IL-1ß and the degrading enzyme of the extrachondral matrix (MMP-13). Collagen II and ACAN, the main components of the extrachondral matrix, were also increased by 1.76-fold and 2.98-fold, respectively, after treatment, which were similar to that of the normal joints. The effect can be attributed to the partial mediation of SHED exosomes to the NF-κB pathway, and the ability of exosomes to inhibit OA is found not inferior to that of hyaluronic acid.


Asunto(s)
Exosomas , Ácido Hialurónico , Osteoartritis , Células Madre , Diente Primario , Humanos , Exosomas/metabolismo , Diente Primario/citología , Diente Primario/metabolismo , Osteoartritis/metabolismo , Osteoartritis/terapia , Osteoartritis/patología , Ácido Hialurónico/metabolismo , Ácido Hialurónico/farmacología , Células Madre/metabolismo , Inflamación/metabolismo , Inflamación/patología , Interleucina-1beta/metabolismo , Condrocitos/metabolismo
11.
BMC Oral Health ; 24(1): 994, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182066

RESUMEN

BACKGROUND: Bone loss of residual alveolar ridges is a great challenge in the field of dental implantology. Deproteinized bovine bone mineral (DBBM) is commonly used for bone regeneration, however, it is loose and difficult to handle in clinical practice. Hyaluronic acid (HA) shows viscoelasticity, permeability and excellent biocompatibility. The aim of this study is to evaluate whether high-molecular-weight (MW) HA combined with DBBM could promote new bone formation in rat calvarial critical size defects (CSDs). MATERIALS AND METHODS: Rat calvarial CSDs (5 mm in diameter) were created. Rats (n = 45) were randomly divided into 3 groups: HA-DBBM compound grafting group, DBBM particles only grafting group and no graft group. Defect healing was assessed by hematoxylin-eosin staining and histomorphometry 2, 4 and 8 weeks postop, followed by Micro-CT scanning 8 weeks postop. Statistical analyses were performed by ANOVA followed by Tukey's post hoc test with P < 0.05 indicating statistical significance. RESULTS: All rats survived after surgery. Histomorphometric evaluation revealed that at 2, 4 and 8 weeks postop, the percentage of newly formed bone was significantly greater in HA-DBBM compound grafting group than in the other two groups. Consistently, Micro-CT assessment revealed significantly more trabecular bone (BV/TV and Tb.N) in HA-DBBM compound group than in the other two groups, respectively (P < 0.05). Moreover, the trabecular bone was significantly more continuous (Tb.Pf) in HA-DBBM compound group than in the other two groups, respectively (P < 0.05). CONCLUSION: HA not only significantly promoted new bone formation in rats calvarial CSDs but also improved the handling ability of DBBM.


Asunto(s)
Regeneración Ósea , Sustitutos de Huesos , Ácido Hialurónico , Osteogénesis , Cráneo , Microtomografía por Rayos X , Animales , Ácido Hialurónico/farmacología , Ácido Hialurónico/uso terapéutico , Ratas , Cráneo/cirugía , Cráneo/diagnóstico por imagen , Cráneo/patología , Sustitutos de Huesos/uso terapéutico , Sustitutos de Huesos/farmacología , Osteogénesis/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Masculino , Ratas Sprague-Dawley , Distribución Aleatoria , Bovinos
12.
Arq Bras Oftalmol ; 88(1): e20230163, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109744

RESUMEN

PURPOSE: The epithelial-mesenchymal transition of human lens epithelial cells plays a role in posterior capsule opacification, a fibrotic process that leads to a common type of cataract. Hyaluronic acid has been implicated in this fibrosis. Studies have investigated the role of transforming growth factor (TGF)-ß2 in epithelial-mesenchymal transition. However, the role of TGF-ß2 in hyaluronic acid-mediated fibrosis of lens epithelial cell remains unknown. We here examined the role of TGF-ß2 in the hyaluronic acid-mediated epithelial-mesenchymal transition of lens epithelial cells. METHODS: Cultured human lens epithelial cells (HLEB3) were infected with CD44-siRNA by using the Lipofectamine 3000 transfection reagent. The CCK-8 kit was used to measure cell viability, and the scratch assay was used to determine cell migration. Cell oxidative stress was analyzed in a dichloro-dihydro-fluorescein diacetate assay and by using a flow cytometer. The TGF-ß2 level in HLEB3 cells was examined through immunohistochemical staining. The TGF-ß2 protein level was determined through western blotting. mRNA expression levels were determined through quantitative real-time polymerase chain reaction. RESULTS: Treatment with hyaluronic acid (1.0 µM, 24 h) increased the epithelial-mesenchymal transition of HLEB3 cells. The increase in TGF-ß2 levels corresponded to an increase in CD44 levels in the culture medium. However, blocking the CD44 function significantly reduced the TGF-ß2-mediated epithelial-mesenchymal transition response of HLEB3 cells. CONCLUSIONS: Our study showed that both CD44 and TGF-ß2 are critical contributors to the hyaluronic acid-mediated epithelial-mesenchymal transition of lens epithelial cells, and that TGF-ß2 in epithelial-mesenchymal transition is regulated by CD44. These results suggest that CD44 could be used as a target for preventing hyaluronic acid-induced posterior capsule opacification. Our findings suggest that CD44/TGF-ß2 is crucial for the hyaluronic acid-induced epithelial-mesenchymal transition of lens epithelial cells.


Asunto(s)
Movimiento Celular , Células Epiteliales , Transición Epitelial-Mesenquimal , Receptores de Hialuranos , Ácido Hialurónico , Cristalino , Factor de Crecimiento Transformador beta2 , Humanos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/fisiología , Ácido Hialurónico/farmacología , Receptores de Hialuranos/metabolismo , Factor de Crecimiento Transformador beta2/farmacología , Factor de Crecimiento Transformador beta2/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Cristalino/citología , Cristalino/efectos de los fármacos , Cristalino/metabolismo , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Western Blotting , Opacificación Capsular/metabolismo , Opacificación Capsular/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Citometría de Flujo , Inmunohistoquímica , Células Cultivadas
13.
ACS Nano ; 18(32): 21512-21522, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39096486

RESUMEN

Although minimally invasive interventional occluders can effectively seal heart defect tissue, they still have some limitations, including poor endothelial healing, intense inflammatory response, and thrombosis formation. Herein, a polyphenol-reinforced medicine/peptide glycocalyx-like coating was prepared on cardiac occluders. A coating consisting of carboxylated chitosan, epigallocatechin-3-gallate (EGCG), tanshinone IIA sulfonic sodium (TSS), and hyaluronic acid grafted with 3-aminophenylboronic acid was prepared. Subsequently, the mercaptopropionic acid-GGGGG-Arg-Glu-Asp-Val peptide was grafted by the thiol-ene "click" reaction. The coating showed good hydrophilicity and free radical-scavenging ability and could release EGCG-TSS. The results of biological experiments suggested that the coating could reduce thrombosis by promoting endothelialization, and promote myocardial repair by regulating the inflammatory response. The functions of regulating cardiomyocyte apoptosis and metabolism were confirmed, and the inflammatory regulatory functions of the coating were mainly dependent on the NF-kappa B and TNF signaling pathway.


Asunto(s)
Glicocálix , Hidrogeles , Polifenoles , Animales , Hidrogeles/química , Hidrogeles/farmacología , Polifenoles/química , Polifenoles/farmacología , Glicocálix/metabolismo , Glicocálix/química , Glicocálix/efectos de los fármacos , Inmunomodulación/efectos de los fármacos , Regeneración/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Apoptosis/efectos de los fármacos , Ratones , Miocardio/metabolismo , Catequina/química , Catequina/análogos & derivados , Catequina/farmacología , Ratas Sprague-Dawley , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Masculino
14.
Int J Biol Macromol ; 277(Pt 4): 134250, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39089541

RESUMEN

The current treatments for wounds often fail to induce adequate healing, leaving wounds vulnerable to persistent infections and development of drug-resistant microbial biofilms. New natural-derived nanoparticles were studied to impair bacteria colonization and hinder the formation of biofilms in wounds. The nanoparticles were fabricated through polyelectrolyte complexation of chitosan (CS, polycation) and hyaluronic acid (HA, polyanion). UV-induced photo-crosslinking was used to enhance the stability of the nanoparticles. To achieve this, HA was methacrylated (HAMA, degree of modification of 20 %). Photo-crosslinked nanoparticles obtained from HAMA and CS had a diameter of 478 nm and a more homogeneous size distribution than nanoparticles assembled solely through complexation (742 nm). The nanoparticles were loaded with the antimicrobial agent bacitracin (BC), resulting in nanoparticles with a diameter of 332 nm. The encapsulation of BC was highly efficient (97 %). The BC-loaded nanoparticles showed significant antibacterial activity against gram-positive bacteria Staphylococcus aureus, Methicillin-resistant S. aureus and S. epidermidis. Photo-crosslinked HAMA/CS nanoparticles loaded with BC demonstrated inhibition of biofilm formation and a positive effect on the proliferation of mammalian cells (L929). These crosslinked nanoparticles have potential for the long-term treatment of wounds and controlled antibiotic delivery at the location of a lesion.


Asunto(s)
Antibacterianos , Bacitracina , Biopelículas , Quitosano , Ácido Hialurónico , Nanopartículas , Quitosano/química , Quitosano/farmacología , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Bacitracina/farmacología , Bacitracina/química , Biopelículas/efectos de los fármacos , Portadores de Fármacos/química , Metacrilatos/química , Metacrilatos/farmacología , Animales , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Reactivos de Enlaces Cruzados/química , Ratones
15.
Int J Biol Macromol ; 277(Pt 4): 134493, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111478

RESUMEN

In recent years, polymeric hydrogels have been employed to investigate cancer cell-extracellular matrix (ECM) interactions in vitro. In the context of breast cancer, cancer cells are known to degrade the ECM using matrix-metalloproteinases (MMPs) to support invasion resulting in disease progression. Polymeric hydrogels incorporating MMP-cleavable peptides have been employed to study cancer cell invasion, however, the approaches employed to incorporate these peptides often change other hydrogel properties. This underscores the need for decoupling hydrogel properties while incorporating MMP-cleavable peptides. Herein, we report structurally decoupled hyaluronic acid (HA) hydrogels formulated using varying ratios of a biologically sensitive MMP-cleavable peptide and an insensitive counterpart (Dithiothreitol (DTT) or polyethylene glycol dithiol (PEGDT)) to study MMP-mediated metastatic breast cancer cell invasion. Rheological, swelling ratio, estimated mesh size, and permeability measurements showed similar mechanical and physical properties for hydrogels crosslinked with different DTT (or PEGDT)/MMP ratios. However, their degradation rate in the presence of collagenase correlated with the ratio of MMP-cleavable peptide. Encapsulated metastatic breast cancer spheroids in HA hydrogels with MMP sensitivity exhibited increased invasiveness compared to those without MMP sensitivity after 14 days of culture. Overall, such structurally decoupled HA hydrogels provide a platform to study MMP-mediated breast cancer cell invasion in vitro.


Asunto(s)
Neoplasias de la Mama , Ácido Hialurónico , Hidrogeles , Metaloproteinasas de la Matriz , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Metaloproteinasas de la Matriz/metabolismo , Línea Celular Tumoral , Invasividad Neoplásica , Reología , Metástasis de la Neoplasia , Polietilenglicoles/química
16.
ACS Nano ; 18(33): 21925-21938, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39106436

RESUMEN

Corneal defects can lead to stromal scarring and vision loss, which is currently only treatable with a cadaveric corneal transplant. Although in situ-forming hydrogels have been shown to foster regeneration of the cornea in the setting of stromal defects, the cross-linking, biomechanical, and compositional parameters that optimize healing have not yet been established. This, Corneal defects are also almost universally inflamed, and their rapid closure without fibrosis are critical to preserving vision. Here, an in situ forming, bioorthogonally cross-linked, nanocluster (NC)-reinforced collagen and hyaluronic acid hydrogel (NCColHA hydrogel) with enhanced structural integrity and both pro-regenerative and anti-inflammatory effects was developed and tested within a corneal defect model in vivo. The NCs serve as bioorthogonal nanocross-linkers, providing higher cross-linking density than polymer-based alternatives. The NCs also serve as delivery vehicles for prednisolone (PRD) and the hepatocyte growth factor (HGF). NCColHA hydrogels rapidly gel within a few minutes upon administration and exhibit robust rheological properties, excellent transparency, and negligible swelling/deswelling behavior. The hydrogel's biocompatibility and capacity to support cell growth were assessed using primary human corneal epithelial cells. Re-epithelialization on the NCColHA hydrogel was clearly observed in rabbit eyes, both ex vivo and in vivo, with expression of normal epithelial biomarkers, including CD44, CK12, CK14, α-SMA, Tuj-1, and ZO-1, and stratified, multilayered morphology. The applied hydrogel maintained its structural integrity for at least 14 days and remodeled into a transparent stroma by 56 days.


Asunto(s)
Hidrogeles , Hidrogeles/química , Hidrogeles/farmacología , Animales , Conejos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Córnea/efectos de los fármacos , Regeneración/efectos de los fármacos , Humanos , Reactivos de Enlaces Cruzados/química , Colágeno/química , Factor de Crecimiento de Hepatocito/farmacología , Factor de Crecimiento de Hepatocito/metabolismo , Factor de Crecimiento de Hepatocito/química
17.
Arch Biochem Biophys ; 759: 110112, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111613

RESUMEN

Inflammation is the body's response to injuries, which depends on numerous regulatory factors. Among them, miRNAs have gained much attention for their role in regulating inflammatory gene expression at multiple levels. In particular, miR-21 is up-regulated during the inflammatory response and reported to be involved in the resolution of inflammation by down-regulating pro-inflammatory mediators, including MyD88. Herein, we evaluated the regulatory effects of miR-21 on the TLR-4/MyD88 pathway in an in vitro model of 6-mer HA oligosaccharides-induced inflammation in human chondrocytes. The exposition of chondrocytes to 6-mer HA induced the activation of the TLR4/MyD88 pathway, which culminates in NF-kB activation. Changes in miR-21, TLR-4, MyD88, NLRP3 inflammasome, IL-29, Caspase1, MMP-9, iNOS, and COX-2 mRNA expression of 6-mer HA-stimulated chondrocytes were examined by qRT-PCR. Protein amounts of TLR-4, MyD88, NLRP3 inflammasome, p-ERK1/2, p-AKT, IL-29, caspase1, MMP-9, p-NK-kB p65 subunit, and IKB-a have been evaluated by ELISA kits. NO and PGE2 levels have been assayed by colorimetric and ELISA kits, respectively. HA oligosaccharides induced a significant increase in the expression of the above parameters, including NF-kB activity. The use of a miR-21 mimic attenuated MyD88 expression levels and the downstream effectors. On the contrary, treatment with a miR-21 inhibitor induced opposite effects. Interestingly, the use of a MyD88 siRNA confirmed MyD88 as the target of miR-21 action. Our results suggest that miR-21 expression could increase in an attempt to reduce the inflammatory response, targeting MyD88.


Asunto(s)
Condrocitos , Ácido Hialurónico , Inflamación , MicroARNs , Factor 88 de Diferenciación Mieloide , Oligosacáridos , Humanos , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , MicroARNs/genética , MicroARNs/metabolismo , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Ácido Hialurónico/farmacología , Ácido Hialurónico/metabolismo , Inflamación/metabolismo , Inflamación/genética , Oligosacáridos/farmacología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Transducción de Señal/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , FN-kappa B/metabolismo , Células Cultivadas
18.
Proc Natl Acad Sci U S A ; 121(33): e2405454121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39106310

RESUMEN

Regeneration of hyaline cartilage in human-sized joints remains a clinical challenge, and it is a critical unmet need that would contribute to longer healthspans. Injectable scaffolds for cartilage repair that integrate both bioactivity and sufficiently robust physical properties to withstand joint stresses offer a promising strategy. We report here on a hybrid biomaterial that combines a bioactive peptide amphiphile supramolecular polymer that specifically binds the chondrogenic cytokine transforming growth factor ß-1 (TGFß-1) and crosslinked hyaluronic acid microgels that drive formation of filament bundles, a hierarchical motif common in natural musculoskeletal tissues. The scaffold is an injectable slurry that generates a porous rubbery material when exposed to calcium ions once placed in cartilage defects. The hybrid material was found to support in vitro chondrogenic differentiation of encapsulated stem cells in response to sustained delivery of TGFß-1. Using a sheep model, we implanted the scaffold in shallow osteochondral defects and found it can remain localized in mechanically active joints. Evaluation of resected joints showed significantly improved repair of hyaline cartilage in osteochondral defects injected with the scaffold relative to defects injected with the growth factor alone, including implantation in the load-bearing femoral condyle. These results demonstrate the potential of the hybrid biomimetic scaffold as a niche to favor cartilage repair in mechanically active joints using a clinically relevant large-animal model.


Asunto(s)
Condrogénesis , Andamios del Tejido , Factor de Crecimiento Transformador beta1 , Animales , Andamios del Tejido/química , Ovinos , Factor de Crecimiento Transformador beta1/metabolismo , Condrogénesis/efectos de los fármacos , Polímeros/química , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Cartílago Articular/efectos de los fármacos , Regeneración/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Humanos , Materiales Biocompatibles/química , Condrocitos/efectos de los fármacos , Cartílago Hialino/metabolismo
19.
J Mater Chem B ; 12(34): 8408-8419, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39086221

RESUMEN

We addressed the damage caused by internal and external factors on the skin, as well as the aging phenomenon caused by delayed repair after damage. We prepared supramolecular hyaluronic acid-ectoin (HA-ECT) by combining theoretical calculations and experimental research, using intermolecular forces between hyaluronic acid and ectoin. This supramolecule has good stability, safety, and skin permeability and can penetrate the stratum corneum of the skin, reaching the epidermis and dermis of the skin. Compared with ectoin, the permeability of the supramolecule HA-ECT was 3.39-fold higher. Supramolecular HA-ECT can promote the proliferation of keratinocytes and fibroblasts, significantly increase the content of type collagen-I, reduce the expression of inflammatory factors in keratinocytes, and enhance skin hydration and repair effects. HA-ECT can reduce intracellular reactive oxygen species and inhibit the expression of matrix metalloproteinase-1 (reduced by 1.27-fold) to improve skin photoaging. Therefore, supramolecular HA-ECT has potential application in the field of cosmetics for skin antioxidants, anti-aging, and repair.


Asunto(s)
Antioxidantes , Ácido Hialurónico , Piel , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Humanos , Piel/efectos de los fármacos , Piel/metabolismo , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/química , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Fibroblastos/efectos de los fármacos , Ratones
20.
Biomed Pharmacother ; 178: 117261, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39106708

RESUMEN

BACKGROUND: Long-term anti-angiogenesis leads to pruned vasculature, densely deposited extracellular matrix (ECM), and consequently reduced chemotherapy delivery in esophagogastric cancer (EGC). To address this issue, we evaluated the efficacy of adding a hyaluronidase or a NO-donor to the regimen of chemotherapy and anti-angiogenic drugs. METHODS: A patient-derived EGC xenograft model was developed. Grafted mice were randomly assigned to four experimental groups and one control group. The experimental groups received DC101, a murine angiogenesis inhibitor, and nab-paclitaxel (NPTX), with the addition of hyaluronidase (PEGPH20), or NO-donor (nitroglycerine, NTG), or their combination, respectively. We compared tumor growth during 17 days of treatment. We performed immunohistochemistry for ECM components hyaluronan (HA) and collagen, CD31 for endothelial cells, and γH2AX for DNA damage. The positively stained areas were quantified, and vessel diameters were measured using QuPath software. RESULTS: Prolonged DC101 treatment induced deposition of HA (p<0.01) and collagen (p<0.01). HA was effectively degraded by PEGPH20 (p<0.001), but not by NTG as expected. Both PEGPH20 (p<0.05) and NTG (p<0.01) dilated vessels collapsed in response to long-term DC101 treatment. However, only PEGPH20 (rather than NTG) was found to significantly inhibit tumor growth (p<0.05) in combination with NPTX and DC101. CONCLUSIONS: These findings suggest that the mechanical barrier of HA is the major reason responsible for the resistance developed during prolonged anti-angiogenesis in EGC. Incorporating PEGPH20 into the existing treatment regimen is promising to improve outcomes for patients with EGC.


Asunto(s)
Albúminas , Inhibidores de la Angiogénesis , Neoplasias Esofágicas , Hialuronoglucosaminidasa , Neovascularización Patológica , Paclitaxel , Neoplasias Gástricas , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Paclitaxel/farmacología , Paclitaxel/administración & dosificación , Paclitaxel/uso terapéutico , Hialuronoglucosaminidasa/administración & dosificación , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/patología , Humanos , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/administración & dosificación , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Albúminas/farmacología , Albúminas/administración & dosificación , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Ratones , Ácido Hialurónico/farmacología , Ratones Desnudos , Femenino , Angiogénesis , Anticuerpos Monoclonales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA