Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 696
Filtrar
1.
Food Chem ; 462: 141011, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226643

RESUMEN

Chlorogenic acid (CGA) is a well-known plant secondary metabolite exhibiting multiple physiological functions. The present study focused on screening for synergistic antibacterial combinations containing CGA. The combination of CGA and p-coumaric acid (pCA) exhibited remarkably enhanced antibacterial activity compared to that when administering the treatment only. Scanning electron microscopy revealed that a low-dose combination treatment could disrupt the Shigella dysenteriae cell membrane. A comprehensive analysis using nucleic acid and protein leakage assay, conductivity measurements, and biofilm formation inhibition experiments revealed that co-treatment increased the cell permeability and inhibited the biofilm formation substantially. Further, the polyacrylamide protein- and agarose gel-electrophoresis indicated that the proteins and DNA genome of Shigella dysenteriae severely degraded. Finally, the synergistic bactericidal effect was established for fresh-cut tomato preservation. This study demonstrates the remarkable potential of strategically selecting antibacterial agents with maximum synergistic effect and minimum dosage exhibiting excellent antibacterial activity in food preservation.


Asunto(s)
Antibacterianos , Ácido Clorogénico , Ácidos Cumáricos , Sinergismo Farmacológico , Shigella dysenteriae , Antibacterianos/farmacología , Antibacterianos/química , Ácidos Cumáricos/farmacología , Ácidos Cumáricos/química , Ácido Clorogénico/farmacología , Ácido Clorogénico/química , Shigella dysenteriae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Biopelículas/efectos de los fármacos , Propionatos/farmacología , Solanum lycopersicum/química , Solanum lycopersicum/microbiología , Conservación de Alimentos/métodos
2.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273291

RESUMEN

We describe the antioxidant capability of scavenging the superoxide radical of several tea and yerba mate samples using rotating ring-disk electrochemistry (RRDE). We directly measured superoxide concentrations and detected their decrease upon the addition of an antioxidant to the electrochemical cell. We studied two varieties of yerba mate, two varieties of black tea from Bangladesh, a sample of Pu-erh tea from China, and two components, caffeic acid and chlorogenic acid. All of these plant infusions and components showed strong antioxidant activities, virtually annihilating the available superoxide concentration. Using density functional theory (DFT) calculations, we describe a mechanism of superoxide scavenging via caffeic and chlorogenic acids. Superoxide can initially interact at two sites in these acids: the H4 catechol hydrogen (a) or the acidic proton of the acid (b). For (a), caffeic acid needs an additional π-π superoxide radical, which transfers electron density to the ring and forms a HO2- anion. A second caffeic acid proton and HO2- anion forms H2O2. Chlorogenic acid acts differently, as the initial approach of superoxide to the catechol moiety (a) is enough to form the HO2- anion. After an additional acidic proton of chlorogenic acid is given to HO2-, three well-separated compounds arise: (1) a carboxylate moiety, (2) H2O2, and a (3) chlorogenic acid semiquinone. The latter can capture a second superoxide in a π-π manner, which remains trapped due to the aromatic ring, as for caffeic acid. With enough of both acids and superoxide radicals, the final products are equivalent: H2O2 plus a complex of the type [X-acid-η-O2], X = caffeic, chlorogenic. Chlorogenic acid (b) is described by the following reaction: 2 O2•- + 2 chlorogenic acid → 2 chlorogenic carboxylate + O2 + H2O2, and so, it acts as a non-enzymatic superoxide dismutase (SOD) mimic, as shown via the product formation of O2 plus H2O2, which is limited due to chlorogenic acid consumption. Caffeic acid (b) differs from chlorogenic acid, as there is no acidic proton capture via superoxide. In this case, approaching a second superoxide to the H4 polyphenol moiety forms a HO2- anion and, later, an H2O2 molecule upon the transfer of a second caffeic acid proton.


Asunto(s)
Antioxidantes , Ácidos Cafeicos , Camellia sinensis , Ácido Clorogénico , Ilex paraguariensis , Superóxidos , Superóxidos/química , Superóxidos/metabolismo , Ácidos Cafeicos/química , Ácido Clorogénico/química , Ilex paraguariensis/química , Antioxidantes/química , Camellia sinensis/química , Teoría Funcional de la Densidad , Depuradores de Radicales Libres/química , Técnicas Electroquímicas , Extractos Vegetales/química
3.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273336

RESUMEN

The objective of the study was to develop a novel topical gel by mixing Potentilla tormentilla ethanolic extract, thermosensitive poloxamer 407, and carbomer 940 and evaluating its stability and rheological behavior. The irritation potential of the gel was evaluated in accordance with the Organization for Economic Cooperation and Development Guidelines 404. The potential anti-inflammatory effects of the developed gel were evaluated in vivo in rats using the carrageenan-induced paw edema test. Moreover, the in silico binding affinity for chlorogenic and ellagic acid, as dominant components in the extract, against cyclooxygenase (COX) 1 and 2 was also determined. Our findings suggest that the gel containing Potentilla tormentilla extract remained stable throughout the observation period, exhibited pseudoplastic behavior, and caused no irritation in rats, thus being considered safe for topical treatment. Additionally, the developed gel showed the capability to reduce rat paw edema, which highlights significant anti-inflammatory potential. In silico analysis revealed that chlorogenic and ellagic acid exhibited a reduced binding affinity against COX-1 but had a similar inhibitory effect on COX-2 as flurbiprofen, which was confirmed by molecular dynamics results. The study proposes the possible application of Potentilla tormentilla ethanolic extract gel for the alleviation of localized inflammatory diseases; however, future clinical evaluation is required.


Asunto(s)
Antiinflamatorios , Ciclooxigenasa 1 , Edema , Extractos Vegetales , Potentilla , Animales , Potentilla/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ratas , Antiinflamatorios/farmacología , Antiinflamatorios/química , Edema/tratamiento farmacológico , Edema/inducido químicamente , Masculino , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 1/química , Geles/química , Ácido Elágico/farmacología , Ácido Elágico/química , Ciclooxigenasa 2/metabolismo , Carragenina , Ratas Wistar , Poloxámero/química , Resinas Acrílicas/química , Ácido Clorogénico/química , Ácido Clorogénico/farmacología
4.
Artículo en Inglés | MEDLINE | ID: mdl-39089065

RESUMEN

Ainsliaea fragrans Champ, a strong heat-clearing and detoxifying traditional Chinese medicine, has been effectively used for treating chronic cervicitis, endometritis, pelvic inflammatory diseases, and other conditions caused by damp heat. It shows a good effect in the treatment of cervicitis and has broad clinical application prospects. Nevertheless, there is no comprehensive study on its in vivo and in vitro chemical analysis. UHPLC-QTOF-MS/MS combined with the non-targeted characteristic filter analysis were used to conjecture and characterize the chemical components and in vivo metabolites of rats following oral administration of Ainsliaea fragrans Champ. In this study, A total of 85 compounds were identified in Ainsliaea fragrans Champ, including 29 flavonoids, 14 sesquiterpenoids, 25 chlorogenic acids, and 17 other compounds. In the plasma of rats after administration of Ainsliaea fragrans Champ, 160 compounds were deduced (19 prototype compounds and 141 metabolites). The 141 metabolites consist of 50 flavonoids, 80 phenolic acids and 11 Chlorogenic acids. The related metabolic pathways mainly involved demethylation, reduction, sulfonation, decarboxylation, hydroxylation, methylation, and glucuronide conjunction. In summary, the chemical components and metabolites of Ainsliaea fragrans Champ were comprehensively identified by using a rapid and accurate analysis method, which laid a foundation for dissecting its bioactive substances. In addition, it provides a scientific basis for the in-depth study of the material basis of Ainsliaea fragrans Champ efficacy and theoretical support for illustrating the mechanism of medical action and its clinical application.


Asunto(s)
Medicamentos Herbarios Chinos , Flavonoides , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Animales , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Ratas , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/metabolismo , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacocinética , Administración Oral , Flavonoides/sangre , Flavonoides/química , Femenino , Ácido Clorogénico/sangre , Ácido Clorogénico/química , Ácido Clorogénico/administración & dosificación , Ácido Clorogénico/metabolismo , Asteraceae/química , Hidroxibenzoatos/sangre , Hidroxibenzoatos/análisis , Hidroxibenzoatos/metabolismo
5.
Food Funct ; 15(18): 9085-9099, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39157985

RESUMEN

The onset and progression of ulcerative colitis (UC) are intricately linked to the worsening of intestinal inflammation, an imbalance in oxidative stress, and impairment of the intestinal mucosal barrier. Although chlorogenic acid (CA) shows potential in effectively alleviating the symptoms of UC, its clinical application is hindered by its poor bioavailability, stability, rapid metabolism, and quick excretion. This study utilized a one-step enzyme-catalyzed polymerization technique to create chlorogenic acid nanoparticles (CA NPs), aiming to improve the bioavailability and stability of CA. The CA NPs exhibited an optimal nanosize (106.65 ± 4.12 nm) and showed increased cellular uptake over time. Importantly, CA NPs significantly prolonged retention time in inflamed colonic tissues, enhancing accumulation and providing a targeted therapy for UC. Animal studies confirmed the substantial benefits of CA NPs, including reduced weight loss, lessened reduction in colon length, and a lowered disease activity index (DAI) score in DSS-induced UC mice. Moreover, CA NPs effectively reduced oxidative stress and levels of inflammatory factors in the colonic tissues of UC mice, thus mitigating tissue damage and restoring the integrity of the intestinal mucosal barrier. In conclusion, our research proposes a novel approach to increase the bioavailability and stability of CA, offering a promising avenue for its effective application in preventing UC.


Asunto(s)
Ácido Clorogénico , Colitis Ulcerosa , Nanopartículas , Colitis Ulcerosa/tratamiento farmacológico , Ácido Clorogénico/farmacología , Ácido Clorogénico/química , Ácido Clorogénico/administración & dosificación , Animales , Nanopartículas/química , Ratones , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL , Humanos , Modelos Animales de Enfermedad , Colon/metabolismo , Colon/efectos de los fármacos , Colon/patología , Mucosa Intestinal/metabolismo , Disponibilidad Biológica
6.
Int J Biol Macromol ; 278(Pt 2): 134863, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39168208

RESUMEN

The interaction between polyphenols and starch is an important factor affecting the structure and function of starch. Here, the impact of chlorogenic acid on the multi-scale structure and digestive properties of lotus seed starch under autoclaving treatment were evaluated in this study. The results showed that lotus seed starch granules were destroyed under autoclaving treatment, and chlorogenic acid promoted the formation of loose gel structure of lotus seed starch. In particular, the long- and short-range ordered structure of lotus seed starch-chlorogenic acid complexes were reduced compared with lotus seed starch under autoclaving treatment. The relative crystallinity of A-LS-CA complexes decreased from 23.4 % to 20.3 %, the value of R1047/1022 reduced from 0.87 to 0.80, and the proportion of amorphous region increased from 10.26 % to 13.85 %. In addition, thermal stability, storage modulus and loss modulus of lotus seed starch-chlorogenic acid complexes were reduced, indicating that the viscoelasticity of lotus seed starch gel was weakened with the addition of chlorogenic acid. It is remarkable that chlorogenic acid increased the proportion of resistant starch from 58.25 ± 1.43 % to 63.85 ± 0.96 % compared with lotus seed starch under autoclaving treatment. Here, the research results provided a theoretical guidance for the development of functional foods containing lotus seed starch.


Asunto(s)
Ácido Clorogénico , Lotus , Semillas , Almidón , Ácido Clorogénico/química , Ácido Clorogénico/farmacología , Semillas/química , Almidón/química , Lotus/química
7.
Chem Pharm Bull (Tokyo) ; 72(8): 751-761, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39143008

RESUMEN

Gout is the second largest metabolic disease worldwide after diabetes, with acute gouty arthritis as most common symptom. Xanthine oxidase (XOD) and the NOD like receptor-3 (NLRP3) inflammasome are the key targets for acute gout treatment. Chlorogenic acid has been reported with a good anti-inflammatory activity, and Apigenin showed an excellent potential in XOD inhibition. Therefore, a series of chlorogenic acid-apigenin (CA) conjugates with varying linkers were designed and synthesized as dual XOD/NLRP3 inhibitors, and their activities both in XOD and NLRP3 inhibition were evaluated. An in vitro study of XOD inhibitory activity revealed that the majority of CA conjugates exhibited favorable XOD inhibitory activity. Particularly, the effects of compounds 10c and 10d, with an alkyl linker on the apigenin moiety, were stronger than that of allopurinol. The selected CA conjugates also demonstrated a favorable anti-inflammatory activity in RAW264.7 cells. Furthermore, compound 10d, which showed the optimal activity both in XOD inhibition and anti-inflammatory, was chosen and its inhibitory ability on NLRP3 and related proinflammatory cytokines was further tested. Compound 10d effectively reduced NLRP3 expression and the secretion of interluekin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) with an activity stronger than the positive control isoliquiritigenin (ISL). Based on these findings, compound 10d exhibits dual XOD/NLRP3 inhibitory activity and, therefore, the therapeutic effects on acute gout is worthy of further study.


Asunto(s)
Apigenina , Ácido Clorogénico , Supresores de la Gota , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Apigenina/farmacología , Apigenina/química , Apigenina/síntesis química , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células RAW 264.7 , Ácido Clorogénico/farmacología , Ácido Clorogénico/química , Ácido Clorogénico/síntesis química , Supresores de la Gota/farmacología , Supresores de la Gota/síntesis química , Supresores de la Gota/química , Supresores de la Gota/uso terapéutico , Relación Estructura-Actividad , Xantina Oxidasa/antagonistas & inhibidores , Xantina Oxidasa/metabolismo , Estructura Molecular , Gota/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Antiinflamatorios/síntesis química , Antiinflamatorios/farmacología , Antiinflamatorios/química
8.
Food Res Int ; 192: 114818, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147513

RESUMEN

Boiled lotus rhizome discs (BLRDs), as common processed products of lotus rhizome, have gained increasing attention from consumers and food manufacturers. However, the blue pigment formed during boiling affects its appearance and reduces the appetite of BLRDs. In this study, the effects of polyphenols and iron contents on blue pigment formation in BLRDs in different regions and months were investigated. Results revealed that blue variation was more serious in March and April of the second year in Wuhan, and polyphenols and iron contents in these two months were significantly higher than those in other months. Then, UPLC and UV-Vis analysis showed that polyphenols causing the formation of blue pigment in BLRDs were L-dopa, gallocatechin, catechin, epigallocatechin, chlorogenic acid and epicatechin, among which L-dopa (52.450 mg/100 g in fresh lotus rhizome (FLR)) and gallocatechin (36.210 mg/100 g in FLR) possessed the greatest effect. Moreover, the ESI-Q-TOF-MS analysis of L-dopa-iron chelate and gallocatechin-iron chelate suggested that the blue pigment of BLRDs was mainly in the form of bis-complexes under boiling conditions. The study on formation mechanism of blue pigment in BLRDs can provide a reference for lotus rhizome processing.


Asunto(s)
Hierro , Polifenoles , Rizoma , Rizoma/química , Polifenoles/química , Polifenoles/análisis , Hierro/química , Quelantes del Hierro/química , Pigmentos Biológicos/química , Catequina/química , Catequina/análogos & derivados , Catequina/análisis , Levodopa/química , Lotus/química , Cromatografía Líquida de Alta Presión , Culinaria , Calor , Ácido Clorogénico/química , Espectrometría de Masa por Ionización de Electrospray
9.
Microbiol Spectr ; 12(9): e0393423, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39046262

RESUMEN

Efflux pumps and biofilm play significant roles in bacterial antibiotic resistance. This study investigates the potential of chlorogenic acid (CGA) and carnosol (CL), as phenolic and diterpene compounds, respectively, for their inhibitory effects on efflux pumps. Among the 12 multidrug-resistant (MDR) strains of Staphylococcus aureus and Pseudomonas aeruginosa isolated from nosocomial skin infections, eight strains were identified as extensively drug resistant (XDR) using the disc diffusion method. The presence of efflux pumps in MDR strains of S. aureus and P. aeruginosa was screened using carbonyl cyanide-m-chlorophenylhydrazone. Between the 12 MDR strains of S. aureus and P. aeruginosa, 80% (4 out of 5) of the S. aureus strains and 85.7% (6 out of 7) of the P. aeruginosa strains exhibited active efflux pumps associated with gentamicin resistance. The checkerboard assay results, in combination with gentamicin, demonstrated that CGA exhibited a reduction in the minimum inhibitory concentration (MIC) for XDR S. aureus strain. Similarly, CL showed a synergistic effect and reduced the MIC for both XDR strains of S. aureus and P. aeruginosa. Flow cytometry was used to examine efflux pump activity at sub-MIC concentrations of 1/8, 1/4, and 1/2 MIC in comparison to the control. In XDR S. aureus, CGA demonstrated 39%, 70%, and 19% inhibition, while CL exhibited 74%, 73.5%, and 62% suppression. In XDR P. aeruginosa, CL exhibited inhibition rates of 25%, 10%, and 15%. The inhibition of biofilm formation was assessed using the microtiter plate method, resulting in successful inhibition of biofilm formation. Finally, the MTT assay was conducted, and it confirmed minimal cytotoxicity. Given the significant reduction in efflux pump activity and biofilm formation observed with CGA and CL in this study, these compounds can be considered as potential inhibitors of efflux pumps and biofilm formation, offering potential strategies to overcome antimicrobial resistance. IMPORTANCE: In summary, CGA and CL demonstrated promising potentiating antimicrobial effects against XDR strains of Staphylococcus aureus and Pseudomonas aeruginosa, suggesting their probably potential as candidates for addressing nosocomial pathogens. They exhibited significant suppression of efflux pump activity, indicating a possible successful inhibition of this mechanism. Moreover, all substances effectively inhibited biofilm formation, while showing minimal cytotoxicity. However, further advancement to clinical trials is needed to evaluate the feasibility of utilizing CGA and CL for reversing bacterial XDR efflux and determining their efficacy against biofilms. These trials will provide valuable insights into the practical applications of these compounds in combating drug-resistant infections.


Asunto(s)
Abietanos , Antibacterianos , Biopelículas , Ácido Clorogénico , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Staphylococcus aureus , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Antibacterianos/farmacología , Humanos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Abietanos/farmacología , Ácido Clorogénico/farmacología , Ácido Clorogénico/química , Infecciones Estafilocócicas/microbiología , Sinergismo Farmacológico , Infecciones por Pseudomonas/microbiología , Infección Hospitalaria/microbiología
10.
J Photochem Photobiol B ; 258: 112989, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032373

RESUMEN

Exposure to ultraviolet B (UVB) radiation represents a significant environmental threat to human skin. This study investigates the protective mechanism of Artemisia Capillaris Thunb. (AC) extract against UVB-induced apoptosis and inflammation in HaCaT keratinocytes. AC extract demonstrated a significant protective effect, as evidenced by reduced early apoptosis, late apoptosis, and necrosis, as well as decreased apoptotic cell status upon UVB exposure. Additionally, AC extract effectively inhibited UVB-induced DNA damage, as indicated by diminished γ-H2AX foci formation. Restoration of mitochondrial damage and normalization of mitochondrial membrane potential, along with the reduction of intracellular and mitochondrial reactive oxygen species (ROS) levels, were observed with AC extract pre-treatment. The extract also exhibited anti-inflammatory properties, evidenced by the decreased release of IL-1α, IL-6, and PGE2 from keratinocytes. Additional research on the molecular mechanisms uncovered that the AC extract alters the cGAS/STING pathway, suppressing the mRNA (cGAS, STING, IRF3, IRF7 and TBK1) and protein levels (cGAS, STING, IRF3, IRF7 and NF-κB) linked to this particular pathway. The HPLC analysis identified chlorogenic acid and its derivatives as the major components in AC, constituting up to 16.44% of the total chlorogenic acid content. The cGAS/STING signaling pathway was found to be suppressed by chlorogenic acid and its derivatives, as indicated by molecular docking studies and RT-qPCR analysis. This suppression contributes to the protective effects against cell apoptosis and inflammation induced by UVB. To summarize, AC extract, which is abundant in chlorogenic acid and its derivatives, shows potential in protecting keratinocytes from damage caused by UVB by regulating the cGAS/STING signaling pathway.


Asunto(s)
Apoptosis , Artemisia , Queratinocitos , Proteínas de la Membrana , Nucleotidiltransferasas , Extractos Vegetales , Transducción de Señal , Rayos Ultravioleta , Humanos , Rayos Ultravioleta/efectos adversos , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Extractos Vegetales/farmacología , Extractos Vegetales/química , Artemisia/química , Nucleotidiltransferasas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Proteínas de la Membrana/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Queratinocitos/citología , Especies Reactivas de Oxígeno/metabolismo , Inflamación/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de la radiación , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Ácido Clorogénico/farmacología , Ácido Clorogénico/química , Dinoprostona/metabolismo , Células HaCaT , Línea Celular
11.
Anal Biochem ; 694: 115616, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38996900

RESUMEN

Chlorogenic acid, a phenolic compound, is prevalent across various plant species and has been known for its pharmacological advantages. Health care experts have identified chlorogenic acid as a potential biomarker for treatment of a wide range of illnesses. Therefore, achieving efficient extraction and analysis of chlorogenic acid from plants and their products has become essential. Molecularly imprinted polymers (MIPs) are highly effective adsorbent for the extraction of chlorogenic acid from complex matrices. Currently, there is a lack of comprehensive review article that consolidate the methods utilized for the purification of chlorogenic acid through molecular imprinting. In this context, we have surveyed the common approaches employed in preparing MIPs specifically designed for the analysis of chlorogenic acid, including both conventional and newly developed. This review discusses the advantages, limitations of polymerization techniques and proposed strategies to produce more efficient MIPs for chlorogenic acid enrichment in complex samples. Additionaly, we present advanced imprinting methods for designing MIPs, which improve the adsorption capacity, sensitivity and selectivity towards chlorogenic acid.


Asunto(s)
Ácido Clorogénico , Polímeros Impresos Molecularmente , Ácido Clorogénico/análisis , Ácido Clorogénico/química , Polímeros Impresos Molecularmente/química , Impresión Molecular , Adsorción , Polimerizacion , Extracción en Fase Sólida/métodos
12.
Food Chem ; 458: 139842, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38996490

RESUMEN

One of the principal byproducts of coffee roasting is the coffee parchment. It is abundant in bioactive substances, including derivatives of chlorogenic acids, which are well-known for their exceptional antioxidant effects. It is advantageous to use environmentally friendly extraction techniques on such residues since it adds value to the entire coffee production process supply chain. The aim of this work was to assess and enhance the ability of non-conventional extraction techniques to extract derivatives of chlorogenic acid from coffee parchment. A central composite design was used to maximize the recovery of those phenolic compounds. The optimized extraction conditions were with 5 min extraction period, at a temperature of 70 °C, and 80% ethanol in the extractor solvent. In this conditions extraction recovery of chlorogenic acids was of 0.8% by the use of microwave-aided extraction (MAE). The optimized conditions are practical, economical, and ecologically friendly method to extract phenolic compounds and, consequently, underscores the potential for sustainable utilization of coffee parchment, offering a valuable contribution to the development of environmentally conscious strategies within the coffee industry.


Asunto(s)
Ácido Clorogénico , Coffea , Café , Extractos Vegetales , Ácido Clorogénico/aislamiento & purificación , Ácido Clorogénico/química , Ácido Clorogénico/análisis , Coffea/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Café/química , Fraccionamiento Químico/métodos , Fraccionamiento Químico/instrumentación , Microondas , Calor
13.
Molecules ; 29(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39064880

RESUMEN

Cancer is a complicated and ever-evolving disease that remains a significant global cause of disease and mortality. Its complexity, which is evident at the genetic and phenotypic levels, contributes to its diversity and resistance to treatment. Numerous scientific investigations on human and animal models demonstrate the potential of phytochemicals in cancer prevention. Coffee has been shown to possess potent anti-carcinogenic properties, and studies have documented the consumption of coffee as a beverage reduces the risk of cancer occurrence. The major secondary metabolites of coffee, named caffeine and chlorogenic acid, have been linked to anti-inflammatory and antineoplastic effects through various signaling. In light of this, this review article provides a comprehensive analysis based on studies in anticancer effects of coffee, chlorogenic acid, and caffeine published between 2010 and 2023, sourced from Scopus, Pubmed, and Google Scholar databases. We summarize recent advances and scientific evidence on the association of phytochemicals found in coffee with a special emphasis on their biological activities against cancer and their molecular mechanism deemed potential to be used as a novel therapeutic target for cancer prevention and therapy.


Asunto(s)
Cafeína , Ácido Clorogénico , Café , Neoplasias , Ácido Clorogénico/farmacología , Ácido Clorogénico/química , Humanos , Cafeína/farmacología , Cafeína/química , Café/química , Neoplasias/prevención & control , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Animales , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/uso terapéutico , Quimioprevención , Anticarcinógenos/farmacología , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química
14.
Drug Deliv ; 31(1): 2372285, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38952133

RESUMEN

In this study, chitosan low molecular weight (LCH) and chitosan medium molecular weight (MCH) were employed to encapsulate a yarrow extract rich in chlorogenic acid and dicaffeoylquinic acids (DCQAs) that showed antiproliferative activity against colon adenocarcinoma cells. The design of CH micro/nanoparticles to increase the extract colon delivery was carried out by using two different techniques: ionic gelation and spray drying. Ionic gelation nanoparticles obtained were smaller and presented higher yields values than spray-drying microparticles, but spray-drying microparticles showed the best performance in terms of encapsulation efficiency (EE) (> 94%), also allowing the inclusion of a higher quantity of extract. Spray-drying microparticles designed using LCH with an LCH:extract ratio of 6:1 (1.25 mg/mL) showed a mean diameter of 1.31 ± 0.21 µm and EE values > 93%, for all phenolic compounds studied. The release profile of phenolic compounds included in this formulation, at gastrointestinal pHs (2 and 7.4), showed for most of them a small initial release, followed by an increase at 1 h, with a constant release up to 3 h. Chlorogenic acid presented the higher release values at 3 h (56.91% at pH 2; 44.45% at pH 7.4). DCQAs release at 3 h ranged between 9.01- 40.73%, being higher for 1,5- and 3,4-DCQAs. After gastrointestinal digestion, 67.65% of chlorogenic and most DCQAs remained encapsulated. Therefore, spray-drying microparticles can be proposed as a promising vehicle to increase the colon delivery of yarrow phenolics compounds (mainly chlorogenic acid and DCQAs) previously described as potential agents against colorectal cancer.


Asunto(s)
Achillea , Proliferación Celular , Quitosano , Ácido Clorogénico , Neoplasias Colorrectales , Nanopartículas , Tamaño de la Partícula , Extractos Vegetales , Quitosano/química , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Achillea/química , Ácido Clorogénico/farmacología , Ácido Clorogénico/administración & dosificación , Ácido Clorogénico/química , Nanopartículas/química , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Línea Celular Tumoral , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacología , Ácido Quínico/química , Ácido Quínico/administración & dosificación , Liberación de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Colon/efectos de los fármacos , Colon/metabolismo , Portadores de Fármacos/química , Peso Molecular
15.
Int J Biol Macromol ; 273(Pt 1): 133029, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852716

RESUMEN

This study determined the inhibitory mechanism as well as anti-biofilm activity of chlorogenic acid-grafted-chitosan (CS-g-CA) against Pseudomonas fluorescens (P. fluorescens) in terms of biofilm content, oxidative stress, quorum sensing and cyclic diguanosine monophosphate (c-di-GMP) concentration, and detected the changes in the expression levels of related genes by quantitative real-time PCR (qRT-PCR). Results indicated that treatment with sub-concentrations of CS-g-CA for P. fluorescens led to reduce the biofilm size of large colonies, decrease the content of biofilm and extracellular polymers, weaken the motility and adhesion of P. fluorescens. Moreover, CS-g-CA resulted in higher ROS levels, diminished catalase activity (CAT), and increased superoxide dismutase (SOD) in P. fluorescens. CS-g-CA reduced the production of quorum-sensing signaling molecules (AHLs) and the concentration of c-di-GMP in bacteria. Genes for flagellar synthesis (flgA), the resistance to stress (rpoS and hfq), and pde (phosphodiesterases that degrade c-di-GMP) were significantly down-regulated as determined by RT-PCR. Overall, CS-g-CA leads to the accumulation of ROS in bacteria via P. fluorescens environmental resistance genes and decreases the activity of enzymes in the bacterial antioxidant system, and interferes with the production and reception of quorum-sensing signaling molecules and the synthesis of c-di-GMP in P. fluorescens, which regulates the generation of biofilms.


Asunto(s)
Biopelículas , Quitosano , Ácido Clorogénico , GMP Cíclico , Estrés Oxidativo , Pseudomonas fluorescens , Percepción de Quorum , Pseudomonas fluorescens/efectos de los fármacos , Pseudomonas fluorescens/metabolismo , Quitosano/química , Quitosano/farmacología , Biopelículas/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/química , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
16.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38892026

RESUMEN

In this study, we examined the potential antidepressant-like effects of Chinese quince fruit extract (Chaenomeles sinensis fruit extract, CSFE) in an in vivo model induced by repeated injection of corticosterone (CORT)-induced depression. HPLC analysis determined that chlorogenic acid (CGA), neo-chlorogenic acid (neo-CGA), and rutin (RT) compounds were major constituents in CSFE. Male ICR mice (5 weeks old) were orally administered various doses (30, 100, and 300 mg/kg) of CSFE and selegiline (10 mg/kg), a monoamine oxidase B (MAO-B) inhibitor, as a positive control following daily intraperitoneal injections of CORT (40 mg/kg) for 21 days. In our results, mice treated with CSFE exhibited significant improvements in depressive-like behaviors induced by CORT. This was evidenced by reduced immobility times in the tail suspension test and forced swim test, as well as increased step-through latency times in the passive avoidance test. Indeed, mice treated with CSFE also exhibited a significant decrease in anxiety-like behaviors as measured by the elevated plus maze test. Moreover, molecular docking analysis indicated that CGA and neo-CGA from CSFE had stronger binding to the active site of MAO-B. Our results indicate that CSFE has potential antidepressant effects in a mouse model of repeated injections of CORT-induced depression.


Asunto(s)
Antidepresivos , Depresión , Frutas , Ratones Endogámicos ICR , Simulación del Acoplamiento Molecular , Extractos Vegetales , Rosaceae , Animales , Antidepresivos/farmacología , Antidepresivos/química , Masculino , Ratones , Frutas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Depresión/tratamiento farmacológico , Rosaceae/química , Conducta Animal/efectos de los fármacos , Monoaminooxidasa/metabolismo , Modelos Animales de Enfermedad , Corticosterona , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Ácido Clorogénico/farmacología , Ácido Clorogénico/química , Pueblos del Este de Asia
17.
Int J Biol Macromol ; 275(Pt 1): 133528, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945346

RESUMEN

Burns are a prevalent type of injury worldwide, affecting tens of millions of people each year and significantly impacting the physical and psychological well-being of patients. Consequently, prompt treatment of burn wounds is imperative, with oxidative stress and excessive inflammation identified as primary factors contributing to delayed healing. In recent years, there has been growing interest in in situ crosslinked multifunctional hydrogels as a minimally invasive approach for personalized treatment delivery. To address these, a photocrosslinkable methacryloyl hyaluronic acid hydrogel scaffold embedded with chlorogenic acid/carboxymethyl chitosan nanoparticles (CGA/CMCS-HAMA, CCH), was developed for the treatment of burn wounds. The hydrogel prepared degraded by over 50 % by day 20, demonstrating stability and meeting the therapeutic requirements for burn wounds. Leveraging the extracellular matrix-like properties of HAMA and the antioxidant capabilities of CGA/CMCS NPs, this hydrogel demonstrates the ability to locally and continuously scavenge ROS and inhibit lipid peroxidation, inhibiting ferroptosis. Moreover, hydrogels well modulate the expression of macrophage- and fibroblast-associated inflammatory factors. Additionally, the hydrogel promotes cell adhesion and migration, further supporting the healing process. Overall, this innovative approach offers a safe and promising solution for burn wound treatment, addressing drug breakthrough and safety concerns while being adaptable to various irregular wound types.


Asunto(s)
Quemaduras , Quitosano , Ácido Clorogénico , Ácido Hialurónico , Hidrogeles , Nanopartículas , Cicatrización de Heridas , Quitosano/química , Quitosano/análogos & derivados , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Quemaduras/tratamiento farmacológico , Quemaduras/terapia , Nanopartículas/química , Cicatrización de Heridas/efectos de los fármacos , Ácido Clorogénico/química , Ácido Clorogénico/farmacología , Animales , Ratones , Piel/efectos de los fármacos , Piel/metabolismo , Andamios del Tejido/química , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
18.
Food Chem ; 457: 140084, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38905842

RESUMEN

This study investigated the interaction mechanism between chlorogenic acid (CA) and soy protein isolate (SPI) through multi-spectroscopic and computational docking and analyzed the changes in its functional properties. The results showed that the interaction of CA with SPI changed its UV and fluorescence absorption, and the fluorescence quenching mechanism was static quenching. At the same time, the secondary structure of the protein was altered, with a reduction in α-helix, ß-sheet and ß-turn. Computer docking analysis showed that CA binds to SPI through hydrophobic interactions, van der Waals forces, and hydrogen bonding to form a more compact complex. In addition, the dose-dependent enhancement of CA improved the functional properties of the complexes, including foaming, emulsification, and antioxidant properties. This study systematically investigated the mechanism of interaction between CA and SPI, which supports further research on food complex systems containing CA and SPI, as well as the application of the complex.


Asunto(s)
Ácido Clorogénico , Simulación del Acoplamiento Molecular , Proteínas de Soja , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Ácido Clorogénico/química , Interacciones Hidrofóbicas e Hidrofílicas , Enlace de Hidrógeno , Estructura Secundaria de Proteína , Espectrometría de Fluorescencia , Unión Proteica , Antioxidantes/química
19.
Bioorg Chem ; 150: 107571, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38936048

RESUMEN

In recent years, Varicocele (VC) has been recognized as a common cause of male infertility that can be treated by surgery or drugs. How to reduce the damage of VC to testicular spermatogenic function has attracted extensive attention in recent years. Among them, overexpressed ROS and high levels of inflammation may play a key role in VC-induced testicular damage. As the key mediated innate immune pathways, cGAS-STING shaft under pathological conditions, such as in cell and tissue damage stress can be cytoplasmic DNA activation, induce the activation of NLRP3 inflammatory corpuscle, triggering downstream of the inflammatory cascade reaction. Chlorogenic acid (CGA), as a natural compound from a wide range of sources, has strong anti-inflammatory and antioxidant activities, and is a potential effective drug for the treatment of varicocele infertility. The aim of this study is to investigate the role of CGA in the spermatogenic dysfunction of the rat testis induced by VC and the potential mechanisms. The results of this study have shown that CGA gavage treatment ameliorated the pathological damage of seminiferous tubules, increased the number of sperm in the lumen, and increased the expression levels of Occludin and ZO-1, which indicated the therapeutic effect of CGA on spermatogenic dysfunction in the testis of VC rats. Meanwhile, the damage of mitochondrial structure was alleviated and the expression levels of ROS, NLRP3 and pro-inflammatory cytokines (IL-1ß, IL-6, IL-18) were significantly reduced in the testicular tissues of model rats after CGA treatment. In addition, we demonstrated for the first time the high expression status of cGAS and STING in testicular tissues of VC model rats, and this was ameliorated to varying degrees after CGA treatment. In conclusion, this study suggests that CGA can improve the spermatogenic function of the testis by reducing mitochondrial damage and inhibiting the activation of the cGAS-STING axis, inhibiting the activation of the NLRP3 inflammasome, and improving the inflammatory damage of the testis, highlighting the potential of CGA as a therapeutic agent for varicocele infertility.


Asunto(s)
Ácido Clorogénico , ADN Mitocondrial , Inflamasomas , Proteínas de la Membrana , Mitocondrias , Proteína con Dominio Pirina 3 de la Familia NLR , Nucleotidiltransferasas , Varicocele , Animales , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Ratas , Varicocele/tratamiento farmacológico , Varicocele/metabolismo , ADN Mitocondrial/metabolismo , Inflamasomas/metabolismo , Inflamasomas/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/antagonistas & inhibidores , Nucleotidiltransferasas/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratas Sprague-Dawley , Espermatogénesis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Homeostasis/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular
20.
Int J Biol Macromol ; 274(Pt 2): 133451, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944088

RESUMEN

SARS-CoV-2 main protease (Mpro) is a well-recognized target for COVID-19 therapy. Green tea (-)-epigallocatechin-3-gallate (EGCG) possesses Mpro-inhibitory activity; however, the influence of EGCG oxidation on its inhibition activity remains obscure, given its high oxidation propensity. This study reveals that prolonged EGCG oxidation in the presence of Mpro dramatically increases its inhibitory activity with an IC50 of 0.26 µM. The inhibitory mechanism is that EGCG-quinone preferentially binds the active site Mpro-Cys145-SH, which forms a quinoprotein. Though Mpro is present in the cell lysate, EGCG preferentially depletes its thiols. Non-cytotoxic EGCG effectively generates a quinoprotein in living cells, thus EGCG might selectively inhibit Mpro in SARS-CoV-2 infected cells. Chlorogenic acid facilitates EGCG oxidation. Together, they synergistically deplete multiple Mpro thiols though this is not more beneficial than EGCG alone. By contrast, excessive EGCG oxidation prior to incubation with Mpro largely compromises its inhibitory activity. Overall, the low IC50 and the high selectivity imply that EGCG is a promising dietary Mpro inhibitor. While EGCG oxidation in the presence of Mpro has a pivotal role in inhibition, enhancing EGCG oxidation by chlorogenic acid no longer increases its inhibitory potential. EGCG oxidation in the absence of Mpro should be avoided to maximize its Mpro-inhibitory activity.


Asunto(s)
Catequina , Proteasas 3C de Coronavirus , Oxidación-Reducción , SARS-CoV-2 , Catequina/análogos & derivados , Catequina/farmacología , Catequina/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Humanos , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , Ácido Clorogénico/farmacología , Ácido Clorogénico/química , Ácido Clorogénico/análogos & derivados , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Antivirales/farmacología , Antivirales/química , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Dominio Catalítico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA