Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39292638

RESUMEN

Zirconium-based metal-organic frameworks (MOFs) have become one of the most promising materials for the adsorption and destruction of chemical warfare agents. While numerous studies have shown differences in reactivity based on MOF topology and postsynthetic modification, the understanding of how modifying MOF macromorphology is less understood. MOF xerogels demonstrate modified defect levels and larger porosity, which increase the number of and access to potential active sites. Indeed, UiO-66 and NU-901 xerogels display reaction rates 2 and 3 times higher, respectively, for the hydrolysis of DMNP relative to their powder morphologies. Upon recycling, MOF-808 xerogel outperforms MOF-808 powder, previously noted as the fastest Zr6 MOF for hydrolysis of organophosphate nerve agents. The increase in reactivity is largely driven by a higher external surface area and the introduction of mesoporosity to previously microporous materials.

2.
Anal Chim Acta ; 1320: 343028, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142793

RESUMEN

BACKGROUND: Hydrogen peroxide is a key reagent in many analytical assays. At the same time, it is rather unstable and prone to evaporation. For these reasons, its application in sensors requiring reagents in solid state, for example in paper-based microfluidics, is hindered. Usually in paper-based analytical devices reagents are stored in a dried form within paper matrix until the device is used. This approach is not feasible in case of hydrogen peroxide. Here, hydrogen peroxide stabilization on paper with the aid of silica xerogel was studied and optimized to create long-term stable systems which rapidly deliver hydrogen peroxide. RESULTS: The variables affecting hydrogen peroxide stability such as gelation time, silica to H2O2 ratio, type of solid support and storage conditions were optimized to find the combination of variables providing stable H2O2 concentration for the longest time possible. Such paper-silica-H2O2 composites allow to maintain steady hydrogen peroxide concentration for at least 27 days in the optimal conditions. Hydrogen peroxide is rapidly released from silica-paper matrix within a few minutes upon contact with water, without any byproducts. The obtained systems were characterized using scanning electron microscopy with energy dispersive spectroscopy and infrared spectroscopy, revealing that silica is present as a thin film covering cellulose fibers. Finally, to test the developed hydrogen peroxide stabilization method in real sensing scenario, a proof-of-concept paper-based sensor was created for phenolic content determination in fruits and wine. SIGNIFICANCE: The outcome of this research will open new avenues in the development of user-friendly, long-term stable paper-based analytical devices which utilize hydrogen peroxide as one of reagents. Owing to the fact, that silica matrix is insoluble in water, the proposed H2O2 stabilization method is compatible with most detection schemes without the risk of interfering with the assay.

3.
Environ Sci Pollut Res Int ; 31(35): 47866-47881, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39012529

RESUMEN

The organic xerogel (OX) was synthesized through sol-gel polymerization of formaldehyde and resorcinol in inverse emulsion using Na2CO3 as a catalyst. Meanwhile, OX containing sepiolite (OX-Sep) and vermiculite (OX-Ver) were prepared similarly to OX but adding clays during synthesis. All materials were mesoporous and presented spherical morphology, and the surface of these materials exhibited an acidic character because the concentration of acidic sites was higher than those of basic sites. Cd(II) adsorption from aqueous solutions onto OX, OX-Sep, and OX-Ver was examined, and the OX-Sep showed the highest adsorption capacity towards Cd(II) of 189.7 mg/g, being 1.5, 2, and 36 times higher than that of OX-Ver, OX, and Sep. The OX-Sep capacity for adsorbing Cd(II) was significantly lessened by decreasing the pH from 7 to 4 and raising the ionic strength from 0.01 N to 0.1 N. This trend was ascribed to electrostatic attraction between the Cd+2 in water and the negatively charged surface of OX-Sep. Besides, desorption studies at pH 4 showed that the average desorption percentage of Cd(II) adsorbed on OX-Sep was 80%. The characterization results and the effect of the operating conditions on the adsorption capacity proved that electrostatic attraction and cation exchange play a crucial role in the adsorption mechanism.


Asunto(s)
Silicatos de Aluminio , Cadmio , Microesferas , Adsorción , Cadmio/química , Silicatos de Aluminio/química , Silicatos de Magnesio/química , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Geles/química
4.
Gels ; 10(7)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39057475

RESUMEN

Solid-state supercapacitors with gel electrolytes have emerged as a promising field for various energy storage applications, including electronic devices, electric vehicles, and mobile phones. In this study, nanocomposite gel membranes were fabricated using the solution casting method with perfluorosulfonic acid (PFSA) ionomer dispersion, both with and without the incorporation of 10 wt.% montmorillonite (MMT). MMT, a natural clay known for its high surface area and layered structure, is expected to enhance the properties of supercapacitor systems. Manganese oxide, selected for its pseudocapacitive behavior in a neutral electrolyte, was synthesized via direct co-precipitation. The materials underwent structural and morphological characterization. For electrochemical evaluation, a two-electrode Swagelok cell was employed, featuring a carbon xerogel negative electrode, a manganese dioxide positive electrode, and a PFSA polymer membrane serving as both the electrolyte and separator. The membrane was immersed in a 1 M Na2SO4 solution before testing. A comprehensive electrochemical analysis of the hybrid cells was conducted and compared with a symmetric carbon/carbon supercapacitor. Cyclic voltammetric curves were recorded, and galvanostatic charge-discharge tests were conducted at various temperatures (20, 40, 60 °C). The hybrid cell with the PFSA/MMT 10 wt.% exhibited the highest specific capacitance and maintained its hybrid profile after prolonged cycling at elevated temperatures, highlighting the potential of the newly developed membrane.

5.
Carbohydr Polym ; 340: 122258, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38857999

RESUMEN

Ionic charge transport in polymer-based solid electrolytes is significantly affected by thermal perturbations, facilitating the detection of temperature variations. However, the impact of ionic interactions and molecular arrangements in polymeric single-ion conductors (SICs) has not been thoroughly investigated for temperature sensing. By probing the effect of the associated energies for ionic interactions and polymeric rearrangements, the thermal sensing characteristics of alginate have been studied. For the first time, alginate SIC interacting with multivalent ions (viz., Na+, Ca2+ and Fe3+) to form xerogel has been exploited as a temperature-sensing layer by fabricating a xerogel-based ionic thermistor (xIT) as a temperature sensor. The xIT has demonstrated stable functioning from 25 to 70 °C and unveiled enhanced sensing abilities in the physiological state of the human body (35-40 °C), exhibiting a monotonic linear response, high sensitivity (-3.77 % °C-1), and high accuracy (0.1 °C). The sensing characteristic is observed due to the inward ionic flux under thermal and electrical perturbations. The concentration of ionic charge carriers and ionic drift are assumed to be Arrhenius-activated processes. A general microscopic model of ion transport within polysaccharides has been elucidated via hopping mechanisms, and the effects of the associated activation energies on temperature sensitivity have been explained.

6.
Int J Pharm ; 660: 124282, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38802028

RESUMEN

The xerogel pill has been developed as a novel dosage form with dose-adjusting and swallow-assisting functions by using drop freeze-drying (DFD) technique. It was double-structured small sphere composed of an inner drug core and an outer dried-gel layer, however, had problem of insufficient physical strength. In this study, it was attempted to use dextrin (DEX), one of oligosaccharides, to strengthen the xerogel pill. DEX was co-dissolved in the dropping fluid in the DFD process and co-loaded in the conventional pill, which was mainly composed of mannitol (MNT) as a filler, to prepare the rigid body. DEX-loaded pill could be successfully prepared with high recovery (>90 %) by optimizing the ratio of DEX and MNT. Further, the representative pills with and without DEX (P-DEX and P-MNT, respectively) were hardening-processed under humidification. The physical strength of P-DEX pill was significantly increased when humidified under severe condition, resulting in enough hardness (>5N) and friability (<1.0 %). Processed P-DEX was found to have dense structure covered with a thick outer shell, which would be formed by interparticle bridge of DEX. It was also found that processed P-DEX pill suppressed initial drug dissolution significantly and exhibited sustained dissolution behavior, suggesting the potential function of bitter taste masking. Processed P-DEX pill had excellent sliding behavior with low friction forces as a result of lubricant effect of xanthan gum (XG) surrounding the pills. Furthermore, the sliding test also suggested that processed P-DEX pill had hard candy-like texture, in contrast unprocessed P-DEX pill had orally disintegrating (OD) tablet-like texture. Various xerogel pills with such different swallowing texture would have a potential to accommodate the children's preferences when taking medication.


Asunto(s)
Liberación de Fármacos , Geles , Humedad , Liofilización , Manitol/química , Dureza , Deglución , Calor , Composición de Medicamentos/métodos , Comprimidos , Excipientes/química , Química Farmacéutica/métodos , Solubilidad
7.
ACS Appl Bio Mater ; 7(6): 4162-4174, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38769764

RESUMEN

The escalating threat of antimicrobial resistance has become a global health crisis. Therefore, there is a rising momentum in developing biomaterials with self-sanitizing capabilities and inherent antibacterial properties. Despite their promising antimicrobial properties, metal nanoparticles (MNPs) have several disadvantages, including increased toxicity as the particle size decreases, leading to oxidative stress and DNA damage that need consideration. One solution is surface functionalization with biocompatible organic ligands, which can improve nanoparticle dispersibility, reduce aggregation, and enable targeted delivery to microbial cells. The existing research predominantly concentrates on the advancement of peptide-based hydrogels for coating materials to prevent bacterial infection, with limited exploration of developing surface coatings using organogels. Herein, we have synthesized organogel-based coatings doped with MNPs that can offer superior hydrophobicity, oleophobicity, and high stability that are not easily achievable with hydrogels. The self-assembled gels displayed distinct morphologies, as revealed by scanning electron microscopy and atomic force microscopy. The cross-linked matrix helps in the controlled and sustained release of MNPs at the site of bacterial infection. The synthesized self-assembled gel@MNPs exhibited excellent antibacterial properties against harmful bacteria such as Escherichia coli and Staphylococcus aureus and reduced bacterial viability up to 95% within 4 h. Cytotoxicity testing against metazoan cells demonstrated that the gels doped with MNPs were nontoxic (IC50 > 100 µM) to mammalian cells. Furthermore, in this study, we coated the organogel@MNPs on cotton fabric and tested it against Gram +ve and Gram -ve bacteria. Additionally, the developed cotton fabric exhibited superhydrophobic properties and developed a barrier that limits the interaction between bacteria and the surface, making it difficult for bacteria to adhere and colonize, which holds potential as a valuable resource for self-cleaning coatings.


Asunto(s)
Antibacterianos , Cobre , Interacciones Hidrofóbicas e Hidrofílicas , Ensayo de Materiales , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Plata , Propiedades de Superficie , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Nanopartículas del Metal/química , Plata/química , Plata/farmacología , Cobre/química , Cobre/farmacología , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Péptidos/química , Péptidos/farmacología , Supervivencia Celular/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Geles/química
8.
Environ Res ; 256: 119247, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38815719

RESUMEN

The incorporation of organic groups into sol-gel silica materials is known to have a noticeable impact on the properties and structure of the resulting xerogels due to the combination of the properties inherent to the organic fragments (functionality and flexibility) with the mechanical and structural stability of the inorganic matrix. However, the reduction of the inorganic content in the materials could be detrimental to their thermal stability properties, limiting the range of their potential applications. Therefore, this work aims to evaluate the thermal stability of hybrid inorganic-organic silica xerogels prepared from mixtures of tetraethoxysilane and organochlorinated triethoxysilane precursors. To this end, a series of four materials with a molar percentage of organochlorinated precursor fixed at 10%, but differing in the type of organic group (chloroalkyls varying in the alkyl-chain length and chlorophenyl), has been selected as model case study. The gases and vapors released during the thermal decomposition of the samples under N2 atmosphere have been analyzed and their components determined and quantified using a thermogravimetric analyzer coupled to a Fourier-transform infrared spectrophotometer and to a gas chromatography-mass spectrometry unit. These analyses have allowed to identify up to three different thermal events for the pyrolysis of the organochlorinated xerogel materials and to elucidate the reaction pathways associated with such processes. These mechanisms have been found to be strongly dependent on the specific nature of the organic group.


Asunto(s)
Dióxido de Silicio , Dióxido de Silicio/química , Adsorción , Hidrocarburos Clorados/química , Geles/química , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Calor , Volatilización , Cromatografía de Gases y Espectrometría de Masas
9.
Gels ; 10(2)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38391453

RESUMEN

This study deals with the preparation of adsorbents from a commercial xerogel by chemically modifying its surface with concentrated mineral acids and alkali metal chlorides, their physicochemical characterization, and their use as adsorbents for gallic acid in aqueous solution. Although there are publications on the use of carbon xerogels as adsorbents, we propose and study simple modifications that can change their chemical properties and, therefore, their performance as adsorbents. The adsorbate of choice is gallic acid and, to our knowledge, there is no history of its adsorption with carbon xerogels. The prepared adsorbents have a high specific surface area (347-563 m2 g-1), better pore development for samples treated with alkali metal chlorides than with mineral acids, and are more acidic than the initial xerogel (p.z.c range 2.49-6.87 vs. 7.20). The adsorption equilibrium is reached in <16 h with a kinetic constant between 0.018 and 0.035 h-1 for the pseudo-second-order model. The adsorption capacity, according to the Langmuir model, reaches 62.89 to 83.33 mg g-1. The adsorption properties of the commercial xerogel improved over a wide range of pH values and temperatures. The experimental results indicate that the adsorption process is thermodynamically favored.

10.
Gels ; 10(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38275857

RESUMEN

This article portrays solid xerogel-type materials, based on chitosan, TEGylated phenothiazine, and TEG (tri-ethylene glycol), dotted with a large number of pores, that are effectively represented in their constitutive structure. They were assumed to be fractal geometrical entities and adjudged as such. The acoustic fractional propagation equation in a fractal porous media was successfully applied and solved with the help of Bessel functions. In addition, the fractal character was demonstrated by the produced fractal analysis, and it has been proven on the evaluated scanning electron microscopy (SEM) pictures of porous xerogel compounds. The fractal parameters (more precisely, the fractal dimension), the lacunarity, and the Hurst index were calculated with great accuracy.

11.
Life (Basel) ; 14(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276288

RESUMEN

Secondary metabolites derived from plants are recognized as valuable products with several successful applications in the pharmaceutical, cosmetic, and food industries. The major limitation to the broader implementation of these compounds is their low manufacturing efficiency. Current efforts to overcome unprofitability depend mainly on biotechnological methods, especially through the application of plant in vitro cultures. This concept allows unprecedented bioengineering opportunities for culture system modifications with in situ product removal. The silica-based xerogels can be used as a novel, porous biomaterial characterized by a large surface area and high affinity to lipophilic secondary metabolites produced by plant tissue. This study aimed to investigate the influence of xerogel-based biomaterials functionalized with methyl, hydroxyl, carboxylic, and amine groups on Rindera graeca transgenic root growth and the production of naphthoquinone derivatives. The application of xerogel-based scaffolds functionalized with the methyl group resulted in more than 1.5 times higher biomass proliferation than for reference untreated culture. The naphthoquinone derivatives' production was noted exclusively in culture systems supplemented with xerogel functionalized with methyl and hydroxyl groups. Applying chemically functionalized xerogels as in situ adsorbents allowed for the enhanced growth and productivity of in vitro cultured R. graeca transgenic roots, facilitating product isolation due to their selective and efficient accumulation.

12.
Gels ; 9(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38131969

RESUMEN

For the development and optimization of solid-state symmetrical supercapacitors, herein, we propose using carbon-based electrodes and sodium- and lithium-form Aquivion electrolyte membranes, which serve as the separator and electrolyte. Carbon xerogels, synthesized using microwave-assisted sol-gel methodology, with designed and controlled properties were obtained as electrode materials. Commercial activated carbon (YP-50F, "Kuraray Europe" GmbH) was used as the active material for comparison. Notably, the developed solid-state symmetrical supercapacitors provide sufficiently high specific capacitances of 105-110 F g-1 at 0.2 A g-1, along with an energy density of 4.5 Wh kg-1 at 300 W kg-1, and a voltage window of 0-1.2 V in aqueous environments, also demonstrating an excellent cycling stability for up to 10,000 charge/discharge cycles. These results can demonstrate the potential applications of carbon xerogel as the active electrode material and cation exchange membrane as the electrolyte in the development of solid-state supercapacitor devices.

13.
Gels ; 9(11)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37998942

RESUMEN

(N-Alkyloxalamido)-amino acid amides 9-12 exhibit excellent gelation capacities toward some lipophilic solvents as well as toward the commercial fuels, petrol and diesel. Gelator 10 exhibits an excellent phase-selective gelation (PSG) ability and also possesses the highest gelation capacity toward petrol and diesel known to date, with minimum gelation concentration (MGC) values (%, w/v) as low as 0.012 and 0.015, respectively. The self-assembly motif of 10 in petrol and toluene gel fibres is determined from xerogel X-ray powder diffraction (XRPD) data via the simulated annealing procedure (SA) implemented in the EXPO2014 program and refined using the Rietveld method. The elucidated motif is strongly supported by the NMR (NOE and variable temperature) study of 10 toluene-d8 gel. It is shown that the triple unidirectional hydrogen bonding between gelator molecules involving oxalamide and carboxamide groups, together with their very low solubility, results in the formation of gel fibres of a very high aspect ratio (d = 10-30 nm, l = 0.6-1.3 µm), resulting in the as-yet unprecedented capacity of gelling commercial fuels. Rheological measurements performed at low concentrations of 10 confirmed the strength of the self-assembled network with the desired thixotropic properties that are advantageous for multiple applications. Instantaneous phase-selective gelation was obtained at room temperature through the addition of the 10 solution to the biphasic mixture of diesel and water in which the carrier solvent was congealed along with the diesel phase. The superior gelling properties and PSG ability of 10 may be used for the development of more efficient marine and surface oil spill recovery and waste water treatment technologies as well as the development of safer fuel storage and transport technologies.

14.
Gels ; 9(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37998958

RESUMEN

Multifunctional materials based on carbon xerogel (CX) with embedded bismuth (Bi) and iron (Fe) nanoparticles are tested for ultrasensitive amperometric detection of lead cation (Pb2+) and hydrogen peroxide (H2O2). The prepared CXBiFe-T nanocomposites were annealed at different pyrolysis temperatures (T, between 600 and 1050 °C) and characterized by X-ray diffraction (XRD), Raman spectroscopy, N2 adsorption, dynamic light scattering (DLS), and electron microscopies (SEM/EDX and TEM). Electrochemical impedance spectroscopy (EIS) and square wave anodic stripping voltammetry (SWV) performed at glassy carbon (GC) electrodes modified with chitosan (Chi)-CXBiFe-T evidenced that GC/Chi-CXBiFe-1050 electrodes exhibit excellent analytical behavior for Pb2+ and H2O2 amperometric detection: high sensitivity for Pb2+ (9.2·105 µA/µM) and outstanding limits of detection (97 fM, signal-to-noise ratio 3) for Pb2+, and remarkable for H2O2 (2.51 µM). The notable improvements were found to be favored by the increase in pyrolysis temperature. Multi-scale parameters such as (i) graphitization, densification of carbon support, and oxide nanoparticle reduction and purification were considered key aspects in the correlation between material properties and electrochemical response, followed by other effects such as (ii) average nanoparticle and Voronoi domain dimensions and (iii) average CXBiFe-T aggregate dimension.

15.
Nanomaterials (Basel) ; 13(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37999303

RESUMEN

Current study provides a novel strategy to synthesize the nano-sized MnO nanoparticles from the quick, ascendable, sol-gel synthesis strategy. The MnO nanoparticles are supported on nitrogen-doped carbon derived from the cheap sustainable source. The resulting MnO/N-doped carbon catalysts developed in this study are systematically evaluated via several physicochemical and electrochemical characterizations. The physicochemical characterizations confirms that the crystalline MnO nanoparticles are successfully synthesized and are supported on N-doped carbons, ascertained from the X-ray diffraction and transmission electron microscopic studies. In addition, the developed MnO/N-doped carbon catalyst was also found to have adequate surface area and porosity, similar to the traditional Pt/C catalyst. Detailed investigations on the effect of the nitrogen precursor, heat treatment temperature, and N-doped carbon support on the ORR activity is established in 0.1 M of HClO4. It was found that the MnO/N-doped carbon catalysts showed enhanced ORR activity with a half-wave potential of 0.69 V vs. RHE, with nearly four electron transfers and excellent stability with just a loss of 10 mV after 20,000 potential cycles. When analyzed as an ORR catalyst in dual-chamber microbial fuel cells (DCMFC) with Nafion 117 membrane as the electrolyte, the MnO/N-doped carbon catalyst exhibited a volumetric power density of ~45 mW m2 and a 60% degradation of organic matter in 30 days of continuous operation.

16.
Materials (Basel) ; 16(19)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37834703

RESUMEN

Carbon xerogels (CXs) are materials obtained via the pyrolysis of resins prepared via the sol-gel polycondensation of resorcinol and formaldehyde. These materials attract great attention as adsorbents, catalyst supports, and energy storage materials. One of the most interesting features of CXs is the possibility of fine-tuning their structures and textures by changing the synthesis conditions in the sol-gel stage. Thus, the first part of this review is devoted to the processes taking place in the polycondensation stage of organic precursors. The formation of hydroxymethyl derivatives of resorcinol and their polycondensation take place at this stage. Both of these processes are catalyzed by acids or bases. It is revealed that the sol-gel synthesis conditions, such as pH, the formaldehyde/resorcinol ratio, concentration, and the type of basic modifier, all affect the texture of the materials being prepared. The variation in these parameters allows one to obtain CXs with pore sizes ranging from 2-3 nm to 100-200 nm. The possibility of using other precursors for the preparation of organic aerogels is examined as well. For instance, if phenol is used instead of resorcinol, the capabilities of the sol-gel method become rather limited. At the same time, other phenolic compounds can be applied with great efficiency. The methods of gel drying and the pyrolysis conditions are also reviewed. Another important aspect analyzed within this review is the surface modification of CXs by introducing various functional groups and heteroatoms. It is shown that compounds containing nitrogen, sulfur, boron, or phosphorus can be introduced at the polycondensation stage to incorporate these elements into the gel structure. Thus, the highest surface amount of nitrogen (6-11 at%) was achieved in the case of the polycondensation of formaldehyde with melamine and hydroxyaniline. Finally, the methods of preparing metal-doped CXs are overviewed. Special attention is paid to the introduction of a metal precursor in the gelation step. The elements of the iron subgroup (Fe, Ni, Co) were found to catalyze carbon graphitization. Therefore, their introduction can be useful for enhancing the electrochemical properties of CXs. However, since the metal surface is often covered by carbon, such materials are poorly applicable to conventional catalytic processes. In summary, the applications of CXs and metal-doped CXs are briefly mentioned. Among the promising application areas, Li-ion batteries, supercapacitors, fuel cells, and adsorbents are of special interest.

17.
Biosensors (Basel) ; 13(8)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37622884

RESUMEN

The incorporation of nanomaterials (NMs) into biosensing schemes is a well-established strategy for gaining signal enhancement. With electrochemical biosensors, the enhanced performance achieved from using NMs is often attributed to the specific physical properties of the chosen nanocomponents, such as their high electronic conductivity, size-dependent functionality, and/or higher effective surface-to-volume ratios. First generation amperometric biosensing schemes, typically utilizing NMs in conjunction with immobilized enzyme and semi-permeable membranes, can possess complex sensing mechanisms that are difficult to study and challenging to understand beyond the observable signal enhancement. This study shows the use of an enzymatic reaction between xanthine (XAN) and xanthine oxidase (XOx), involving multiple electroactive species, as an electrochemical redox probe tool for ascertaining mechanistic information at and within the modified electrodes used as biosensors. Redox probing using components of this enzymatic reaction are demonstrated on two oft-employed biosensing approaches and commonly used NMs for modified electrodes: gold nanoparticle doped films and carbon nanotube interfaces. In both situations, the XAN metabolism voltammetry allows for a greater understanding of the functionality of the semipermeable membranes, the role of the NMs, and how the interplay between the two components creates signal enhancement.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Oro , Conductividad Eléctrica , Electrodos
18.
Environ Sci Pollut Res Int ; 30(43): 98211-98230, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37606781

RESUMEN

This paper proposes the study of a solar-based photocatalytic ozonation process for the degradation of salicylic acid (SA) using a novel S-scheme ZnO/Cu2O/CuO/carbon xerogel photocatalyst. The incorporation of CuO and Cu2O aims to enhance charge mobility through the formation of p-n heterojunctions with ZnO, whereas the carbon xerogel (XC) was selected due to its eco-friendly nature, capacity to stabilize S-scheme heterojunctions as a solid-state electron mediator, and ability to function as a reducing agent under high temperatures. The characterization of the composites demonstrates that the presence of the XC during the calcination step led to the reduction of a fraction of the CuO into Cu2O, forming a ternary semiconductor heterojunction system. In terms of photocatalysis, the XC/ZnO-CuxO 5% composite achieved the best efficiency for salicylic acid degradation, mainly due to the stabilization of the S-scheme charge transfer pathway between the ZnO/CuO/Cu2O semiconductors by the XC. The total organic carbon (TOC) removal during heterogeneous photocatalysis was 80% for the solar-based process and 68% for the visible light process, after 300 min. The solar-based photocatalytic ozonation process was highly successful regarding the degradation of SA, achieving a 75% increase in the apparent reaction rate constant when compared to heterogeneous photocatalysis. Furthermore, a 78% TOC removal was achieved after 150 min, which is half the time required by the heterogeneous photocatalysis to obtain the same result. Temperature, salinity, and turbidity had major effects on the efficiency of the photocatalytic ozonation process; the system's pH did not cause any major performance variation, which holds relevance for industrial applications.


Asunto(s)
Ozono , Óxido de Zinc , Temperatura , Salinidad , Carbono , Ácido Salicílico , Concentración de Iones de Hidrógeno
19.
J Mech Behav Biomed Mater ; 145: 106044, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37506568

RESUMEN

Crosslinked chitosan (CS) is one of the most useable hydrogels in biomedicine and tissue engineering. Unlike most chitosan crosslinkers that are toxic, such as glutaraldehyde, vanillin is a natural, biocompatible, and antimicrobial alternative. The crosslinking of chitosan and vanillin consists of Schiff base bonds between the amines of chitosan and the aldehydes of vanillin, in addition to hydrogen bonds formed across the network. In most studies, the combination of chitosan and vanillin has been investigated in small sizes (micro/nanoscale and biofilms). In this study, a chitosan-vanillin (CV) hydrogel was studied on a macroscale with a three-dimensional porous structure, and it was compared with chitosan crosslinked with glutaraldehyde (CG) on the same scale. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (FE-SEM) used to identify the bonds formed and examine the morphology of the hydrogels. The gel content, swelling, porosity, mechanical properties, cell viability (on L929 and mesenchymal cells), and antibacterial activity (against Escherichia coli and Staphylococcus aureus) of the samples were investigated. The results showed that the CV had both gel content and high porosity (>90%), with an interconnected porous network of uniform pore size. The CV hydrogel exhibited good antibacterial activity and cell viability. In terms of mechanical properties, CV has weaker mechanical properties compared to CG in the dry state, while the mechanical properties of CV have more improved in the swollen state compared to CG.


Asunto(s)
Quitosano , Quitosano/química , Glutaral , Porosidad , Reactivos de Enlaces Cruzados/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Antibacterianos/farmacología , Antibacterianos/química , Hidrogeles/farmacología , Hidrogeles/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos
20.
Gels ; 9(6)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37367108

RESUMEN

First-generation amperometric xanthine (XAN) biosensors, assembled via layer-by-layer methodology and featuring xerogels doped with gold nanoparticles (Au-NPs), were the focus of this study and involved both fundamental exploration of the materials as well as demonstrated usage of the biosensor in both clinical (disease diagnosis) and industrial (meat freshness) applications. Voltammetry and amperometry were used to characterize and optimize the functional layers of the biosensor design including a xerogel with and without embedded xanthine oxidase enzyme (XOx) and an outer, semi-permeable blended polyurethane (PU) layer. Specifically, the porosity/hydrophobicity of xerogels formed from silane precursors and different compositions of PU were examined for their impact on the XAN biosensing mechanism. Doping the xerogel layer with different alkanethiol protected Au-NPs was demonstrated as an effective means for enhancing biosensor performance including improved sensitivity, linear range, and response time, as well as stabilizing XAN sensitivity and discrimination against common interferent species (selectivity) over time-all attributes matching or exceeding most other reported XAN sensors. Part of the study focuses on deconvoluting the amperometric signal generated by the biosensor and determining the contribution from all of the possible electroactive species involved in natural purine metabolism (e.g., uric acid, hypoxanthine) as an important part of designing XAN sensors (schemes amenable to miniaturization, portability, or low production cost). Effective XAN sensors remain relevant as potential tools for both early diagnosis of diseases as well as for industrial food monitoring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA