Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biochem Mol Toxicol ; 38(8): e23774, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39041324

RESUMEN

Colorectal cancer (CRC) is a common gastrointestinal malignancy. Long noncoding RNAs (lncRNAs) are associated with the progression of various cancers, including CRC. Herein, we explored the function of lncRNA LINC01550 in CRC. LINC01550 expression in CRC was analyzed using The Cancer Genome Atlas (TCGA). The diagnostic value of LINC01550 was evaluated using ROC curves. The relationship between clinicopathological variables and LINC01550 expression was explored, and its prognostic value was assessed using Kaplan-Meier and Cox regression analyses. The relationship between LINC01550 expression and immune cell infiltration was analyzed using CIBERSORT. Tumor-associated mutations and drug sensitivity were compared between high and low LINC01550 expression groups. The effects of LINC01550 overexpression on CRC cells were investigated using CCK-8, flow cytometry, wound healing, Transwell, qRT-PCR, and western blot assays. LINC01550 was downregulated in CRC tissues, and the low expression of LINC01550 was correlated with advanced stage and metastasis. CRC patients with low LINC01550 expression had poorer overall survival. LINC01550 expression was an independent risk factor for CRC prognosis. APC and TP53 mutations were more frequent in the low LINC01550 expression group, while the high LINC01550 expression group was significantly more sensitive to 5-fluorouracil, irinotecan, trametinib, gemcitabine, rapamycin, and XAV939. LINC01550 overexpression suppressed the proliferation, migration, invasion, and epithelial-mesenchymal transition of HCT-116 and HT-29 cells and promoted apoptosis. LINC01550 exerted these effects by inhibiting Wnt/ß-catenin signaling. Our results suggest LINC01550 as a diagnostic and prognostic predictor in CRC that acts as a tumor suppressor and a potential therapeutic target.


Asunto(s)
Neoplasias Colorrectales , ARN Largo no Codificante , Vía de Señalización Wnt , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Línea Celular Tumoral , Pronóstico , Proliferación Celular/efectos de los fármacos , beta Catenina/metabolismo , beta Catenina/genética , Transición Epitelial-Mesenquimal , Movimiento Celular
2.
Oncol Rep ; 52(3)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39027989

RESUMEN

Cribriform morular thyroid carcinoma (CMTC) has been included within the group of thyroid tumors of uncertain histogenesis in the recent World Health Organization classification of endocrine tumors. Most CMTCs occur in young euthyroid women with multiple (and bilateral) thyroid nodules in cases associated with familial adenomatous polyposis (FAP) or as single nodules in sporadic cases. CMTC generally behaves indolently, while aggressiveness and mortality are associated with high­grade CMTC. This tumor histologically displays a distinctive combination of growth patterns with morular structures. Strong diffuse nuclear and cytoplasmic immunostaining for ß­catenin is the hallmark of CMTC. Tumor cells are also positive for thyroid transcription factor­1 and for estrogen and progesterone receptors, but negative for thyroglobulin and calcitonin. It is possible that the CMTC phenotype could result from blockage in the terminal/follicular differentiation of follicular cells (or their precursor cells) secondary to the permanent activation of the Wnt/ß­catenin pathway. In CMTC, the activation of the Wnt/ß­catenin pathway is the central pathogenetic event, which in FAP­associated cases results from germline mutations of the APC regulator of WNT signaling pathway (APC) gene, and in sporadic cases from somatic inactivating mutations in the APC, AXIN1 and CTNNB1 genes. Estrogens appear to play a tumor­promoting role by stimulating both the PI3K/AKT/mTOR and the RAS/RAF/MAPK signaling pathways. Additional somatic mutations (i.e. RET rearrangements, or KRAS, phosphatidylinositol­4,5­bisphosphate 3­kinase catalytic subunit α, telomerase reverse transcriptase or tumor protein 53 mutations) may further potentiate the development and progression of CMTC. While hemithyroidectomy would be the treatment of choice for sporadic cases without high­risk data, total thyroidectomy would be indicated in FAP­associated cases. There is insufficient clinical data to propose therapies targeting the Wnt/ß­catenin pathway, but multikinase or selective inhibitors could be used in a manner analogous to that of conventional thyroid tumors. It is also unknown whether adjuvant antiestrogenic therapy could be useful in the subgroup of women undergoing surgery with high­risk CMTC, as well as when there is tumor recurrence and/or metastasis.


Asunto(s)
Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/genética , Femenino , Vía de Señalización Wnt , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/patología , beta Catenina/genética , beta Catenina/metabolismo
3.
J Cell Physiol ; : e31385, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39030845

RESUMEN

This study delved into the role of delta-like noncanonical notch ligand 2 (DLK2) in the cell cycle, proliferation, apoptosis, and differentiation of myoblasts, as well as its interaction with the classical Wnt/ß-catenin signaling pathway in regulating myoblast function. The research revealed that upregulation of DLK2 in myoblasts during the proliferation phase enhanced myoblast proliferation, facilitated cell cycle progression, and reduced apoptosis. Conversely, downregulation of DLK2 expression using siRNA during the differentiation phase promoted myoblast hypertrophy and fusion, suppressed the expression of muscle fiber degradation factors, and expedited the differentiation process. DLK2 regulates myoblasts function by influencing the expression of various factors associated with the Wnt/ß-catenin signaling pathway, including CTNNB1, FZD1, FZD6, RSPO1, RSPO4, WNT4, WNT5A, and adenomatous polyposis coli. In essence, DLK2, with the involvement of the Wnt/ß-catenin signaling pathway, plays a crucial regulatory role in the cell cycle, proliferation, apoptosis, and differentiation of myoblasts.

4.
Adv Sci (Weinh) ; : e2404545, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041942

RESUMEN

Microbial tryptophan (Trp) metabolites acting as aryl hydrocarbon receptor (AhR) ligands are shown to effectively improve metabolic diseases via regulating microbial community. However, the underlying mechanisms by which Trp metabolites ameliorate bone loss via gut-bone crosstalk are largely unknown. In this study, supplementation with Trp metabolites, indole acetic acid (IAA), and indole-3-propionic acid (IPA), markedly ameliorate bone loss by repairing intestinal barrier integrity in ovariectomy (OVX)-induced postmenopausal osteoporosis mice in an AhR-dependent manner. Mechanistically, intestinal AhR activation by Trp metabolites, especially IAA, effectively repairs intestinal barrier function by stimulating Wnt/ß-catenin signaling pathway. Consequently, enhanced M2 macrophage by supplementation with IAA and IPA secrete large amount of IL-10 that expands from intestinal lamina propria to bone marrow, thereby simultaneously promoting osteoblastogenesis and inhibiting osteoclastogenesis in vivo and in vitro. Interestingly, supplementation with Trp metabolites exhibit negligible ameliorative effects on both gut homeostasis and bone loss of OVX mice with intestinal AhR knockout (VillinCreAhrfl/fl). These findings suggest that microbial Trp metabolites may be potential therapeutic candidates against osteoporosis via regulating AhR-mediated gut-bone axis.

5.
Adv Sci (Weinh) ; : e2400058, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937989

RESUMEN

Genetically lean and obese individuals have distinct intestinal microbiota and function. However, the underlying mechanisms of the microbiome heterogeneity and its regulation on epithelial function such as intestinal stem cell (ISC) fate remain unclear. Employing pigs of genetically distinct breeds (obese Meishan and lean Yorkshire), this study reveals transcriptome-wide variations in microbial ecology of the jejunum, characterized by enrichment of active Lactobacillus species, notably the predominant Lactobacillus amylovorus (L. amylovorus), and lactate metabolism network in obese breeds. The L. amylovorus-dominant heterogeneity is paralleled with epithelial functionality difference as reflected by highly expressed GPR81, more proliferative ISCs and activated Wnt/ß-catenin signaling. Experiments using in-house developed porcine jejunal organoids prove that live L. amylovorus and its metabolite lactate promote intestinal organoid growth. Mechanistically, L. amylovorus and lactate activate Wnt/ß-catenin signaling in a GPR81-dependent manner to promote ISC-mediated epithelial proliferation. However, heat-killed L. amylovorus fail to cause these changes. These findings uncover a previously underrepresented role of L. amylovorus in regulating jejunal stem cells via Lactobacillus-lactate-GPR81 axis, a key mechanism bridging breed-driven intestinal microbiome heterogeneity with ISC fate. Thus, results from this study provide new insights into the role of gut microbiome and stem cell interactions in maintaining intestinal homeostasis.

6.
J Orthop Res ; 42(9): 1933-1942, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38520666

RESUMEN

Osteoarthritis (OA) is a common degenerative joint disease, and subchondral osteosclerosis is an important pathological change that occurs in its late stages. Cardamonin (CD) is a natural flavonoid isolated from Alpinia katsumadai that has anti-inflammatory activity. The objectives of this study were to investigate the therapeutic effects and potential mechanism of CD in regulating OA subchondral osteosclerosis at in vivo and in vitro settings. Eight-week-old male C57BL/6J mice were randomly divided into four groups: sham operation, anterior cruciate ligament transection (ACLT)-induced OA model, low-dose and high-dose CD treated ACLT-OA model groups. Histological assessment and immunohistochemical examinations for chondrocyte metabolism-related markers metalloproteinase-13, ADAMTS-4, Col II, and Sox-9 were performed. Microcomputed tomography was used to assess the sclerosis indicators in subchondral bone. Further, MC3T3-E1 (a mouse calvarial preosteoblast cell line) cells were treated with various concentrations of CD to reveal the influence and potential molecular pathways of CD in osteogenic differentiations. Animal studies suggested that CD alleviated the pathological changes in OA mice such as maintaining integrity and increasing the thickness of hyaline cartilage, decreasing the thickness of calcified cartilage, decreasing the Osteoarthritis Research Society International score, regulating articular cartilage metabolism, and inhibiting subchondral osteosclerosis. In vitro investigation indicated that CD inhibited alkaline phosphatase expression and production of calcium nodules during osteogenic differentiation of MC3T3-E1 cells. In addition, CD inhibited the expression of osteogenic differentiation-related indicators and Wnt/ß-catenin pathway-related proteins. In conclusion, CD inhibits osteogenic differentiation by downregulating Wnt/ß-catenin signaling and alleviating subchondral osteosclerosis in a mouse model of OA.


Asunto(s)
Diferenciación Celular , Chalconas , Ratones Endogámicos C57BL , Osteoartritis , Osteogénesis , Osteosclerosis , Vía de Señalización Wnt , Animales , Masculino , Chalconas/farmacología , Chalconas/uso terapéutico , Osteogénesis/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Ratones , Osteosclerosis/tratamiento farmacológico , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Diferenciación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , beta Catenina/metabolismo
7.
Cell Biol Int ; 48(5): 647-664, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38353345

RESUMEN

Intrauterine adhesions (IUA), the main cause of secondary infertility in women, result from irreversible fibrotic repair of the endometrium due to inflammation or human factors, accompanied by disruptions in the repair function of endometrial stem cells. This significantly impacts the physical and mental health of women in their childbearing years. Telocytes (TCs), a distinctive type of interstitial cells found in various tissues and organs, play diverse repair functions due to their unique spatial structure. In this study, we conduct the inaugural exploration of the changes in TCs in IUA disease and their potential impact on the function of stem cells. Our results show that in vivo, through double immunofluorescence staining (CD34+/Vimentin+; CD34+/CD31-), as endometrial fibrosis deepens, the number of TCs gradually decreases, telopodes shorten, and the three-dimensional structure becomes disrupted in the mouse IUA mode. In vitro, TCs can promote the proliferation and cycle of bone mesenchymal stem cells (BMSCs) by promoting the Wnt/ß-catenin signaling pathway, which were inhibited using XAV939. TCs can promote the migrated ability of BMSCs and contribute to the repair of stem cells during endometrial injury. In addition, TCs can inhibit the apoptosis of BMSCs through the Bcl-2/Bax pathway. In conclusion, our study demonstrates, for the first time, the resistance role of TCs in IUA disease, shedding light on their potential involvement in endometrial repair through the modulation of stem cell function.


Asunto(s)
Células Madre Mesenquimatosas , Telocitos , Enfermedades Uterinas , Humanos , Ratones , Femenino , Animales , Enfermedades Uterinas/metabolismo , Enfermedades Uterinas/patología , Endometrio/patología , Células Madre Mesenquimatosas/metabolismo , Telocitos/metabolismo , Vía de Señalización Wnt , Modelos Animales de Enfermedad
8.
FEBS J ; 291(10): 2221-2241, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38400523

RESUMEN

It was reported that the Wnt/ß-catenin pathway is involved in the regulation of aerobic glycolysis and that brain glycolytic dysfunction results in the development of Alzheimer's disease (AD). Icariin (ICA), an active component extracted from Epimedii Folium, has been reported to produce neuroprotective effects in multiple models of AD, but its underlying mechanism remains to be fully described. We aimed to investigate the protective effects of ICA on animal and cell models of AD and confirm whether the Wnt/ß-catenin pathway has functions in the neuroprotective function of ICA. The 3 × Tg-AD mice were treated with ICA. HT22 cells, the Aß25-35 peptide and Dickkopf-1 (DKK1) agent (a specific inhibitor of the Wnt/ß-catenin pathway) were used to further explore the underlying mechanism of ICA that produces anti-AD effects. Behavioral examination, western blotting assay, staining analysis, biochemical test, and lactate dehydrogenase (LDH) assays were applied. We first demonstrated that ICA significantly improved cognitive function and autonomous behavior, reduced neuronal damage, and reversed the protein levels and activities of glycolytic key enzymes, and expression of protein molecules of the canonical Wnt signaling pathway, in 3 × Tg-AD mice back to wild-type levels. Next, we further found that ICA increased cell viability and effectively improved the dysfunctional glycolysis in HT22 cells injured by Aß25-35. However, when canonical Wnt signaling was inhibited by DKK1, the above effects of ICA on glycolysis were abolished. In summary, ICA exerts neuroprotective effects in 3 × Tg-AD animals and AD cellular models by enhancing the function of glycolysis through activation of the Wnt/ß-catenin pathway.


Asunto(s)
Enfermedad de Alzheimer , Flavonoides , Glucólisis , Ratones Transgénicos , Vía de Señalización Wnt , Animales , Masculino , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Modelos Animales de Enfermedad , Flavonoides/farmacología , Glucólisis/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
9.
Mol Nutr Food Res ; 68(13): e2300245, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38143280

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most prevalent dementia, affecting a large number of populations. Despite being under scrutiny for decades, an effective therapeutic option is still not available. METHODS AND RESULTS: This study explores the therapeutic role of a nootropic herb Bacopa monnieri (BM) in AD-like pathological conditions produced by injecting preformed amyloid-ß42 (Aß42) fibril bilaterally into hippocampus of Wistar rats, and ethanolic extract of BM is orally administered for 4 weeks. Assessment of behavioral changes reveals that BM treatment ameliorates Aß42-induced cognitive impairment and compromised explorative behavior. Supplementation of BM also reduces oxidative stress biomarkers, proinflammatory cytokines, and cholinesterase activity in the AD rats. Additionally, BM treatment restores Bcl-2-associated X protein (Bax)/ B-cell lymphoma 2 (Bcl-2) imbalance, increases neurotrophic factors expression, and prevents neurodegeneration validated by quantifying Nissl-positive hippocampal neurons. Interestingly, BM administration eliminates amyloid plaques in the hippocampal region and normalizes the Aß42-induced increase in phospho-tau and total tau expression. Mechanistic investigations reveal that BM interacts with glycogen synthase kinase (GSK-3ß) and restores Wnt/ß-catenin signaling. CONCLUSION: BM has been used in diet as a nootropic herb for several centuries. This study highlights the anti-Alzheimer activity of BM from the behavioral to the molecular level by modulating mitochondrial dysfunction, and GSK-3ß mediates the Wnt/ß-catenin signaling pathway.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Bacopa , Glucógeno Sintasa Quinasa 3 beta , Hipocampo , Mitocondrias , Extractos Vegetales , Ratas Wistar , Vía de Señalización Wnt , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Bacopa/química , Péptidos beta-Amiloides/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Extractos Vegetales/farmacología , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Fragmentos de Péptidos , beta Catenina/metabolismo , Modelos Animales de Enfermedad
10.
Oncol Rep ; 51(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38099414

RESUMEN

The radioresistance of glioma is an important cause of treatment failure and tumor aggressiveness. In the present study, under performed with linear accelerator, the effects of 0.3 and 3.0 Gy low­dose radiation (LDR) on the proliferation and migration of C6 glioma stem cells in vitro were examined by flow cytometric analysis, immunocytochemistry and western blot analysis. It was found that low­dose ionizing radiation (0.3 Gy) stimulated the proliferation and migration of these cells, while 3.0 Gy ionizing radiation inhibited the proliferation of C6 glioma stem cells, which was mediated through enhanced Wnt/ß­catenin signaling, which is associated with glioma tumor aggressiveness. LDR treatment increased the expression of the DNA damage marker γ­H2AX but promoted cell survival with a significant reduction in apoptotic and necrotic cells. When LDR cells were also treated with an inhibitor of Wnt receptor 1 (IWR1), cell proliferation and migration were significantly reduced. IWR1 treatment significantly inhibited Wnt1, Wnt3a and ß­catenin protein expression. Collectively, the current results demonstrated that IWR1 treatment effectively radio­sensitizes glioma stem cells and helps to overcome the survival advantages promoted by LDR, which has significant implications for targeted treatment in radioresistant gliomas.


Asunto(s)
Glioma , beta Catenina , Humanos , beta Catenina/genética , Glioma/genética , Glioma/radioterapia , Glioma/metabolismo , Vía de Señalización Wnt , Supervivencia Celular , Proliferación Celular , Línea Celular Tumoral
11.
Int J Oncol ; 63(5)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37681484

RESUMEN

Chloroxylenol is the active ingredient of the antibacterial agent Dettol. The anticancer effect and underlying mechanisms of this compound and other common antimicrobial agents have not been clearly elucidated. In the present study, the effects of chloroxylenol, benzalkonium chloride, benzethonium chloride, triclosan and triclocarban on ß­catenin­mediated Wnt signaling in colorectal cancer were evaluated using the SuperTOPFlash reporter assay. It was demonstrated that chloroxylenol, but not the other antimicrobial agents tested, inhibited the Wnt/ß­catenin signaling pathway by decreasing the nuclear translocation of ß­catenin and disrupting ß­catenin/T­cell factor 4 complex, which resulted in the downregulation of the Wnt target genes Axin2, Survivin and Leucine­rich G protein­coupled receptor­5. Chloroxylenol effectively inhibited the viability, proliferation, migration and invasion, and sphere formation, and induced apoptosis in HCT116 and SW480 cells. Notably, chloroxylenol attenuated the growth of colorectal cancer in the MC38 cell xenograft model and inhibited organoid formation by the patient­derived cells. Chloroxylenol also demonstrated inhibitory effects on the stemness of colorectal cancer cells. The results of the present study demonstrated that chloroxylenol could exert anti­tumor activities in colorectal cancer by targeting the Wnt/ß­catenin signaling pathway, which provided an insight into its therapeutic potential as an anticancer agent.


Asunto(s)
Antiinfecciosos , Neoplasias Colorrectales , Humanos , beta Catenina , Vía de Señalización Wnt , Neoplasias Colorrectales/tratamiento farmacológico
12.
Oncol Rep ; 50(5)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37772388

RESUMEN

Tumor suppressor cylindromatosis (CYLD) dysfunction by its downregulation is significantly associated with poor prognosis in patients with glioblastoma (GBM), the most aggressive and malignant type of glioma. However, no effective treatment is currently available for patients with CYLD­downregulated GBM. The aim of the present study was to identify the crucial cell signaling pathways and novel therapeutic targets for CYLD downregulation in GBM cells. CYLD knockdown in GBM cells induced GBM malignant characteristics, such as proliferation, metastasis, and GBM stem­like cell (GSC) formation. Comprehensive proteomic analysis and RNA sequencing data from the tissues of patients with GBM revealed that Wnt/ß­catenin signaling was significantly activated by CYLD knockdown in patients with GBM. Furthermore, a Wnt/ß­catenin signaling inhibitor suppressed all CYLD knockdown­induced malignant characteristics of GBM. Taken together, the results of the present study revealed that Wnt/ß­catenin signaling is responsible for CYLD silencing­induced GBM malignancy; therefore, targeting Wnt/ß­catenin may be effective for the treatment of CYLD­negative patients with GBM with poor prognosis.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/patología , beta Catenina/genética , Proteómica , Vía de Señalización Wnt/genética , Regulación hacia Abajo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo
13.
Int J Mol Med ; 52(4)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37594122

RESUMEN

Toxoplasma gondii excretory/secretory proteins (TgESPs) are a group of proteins secreted by the parasite and have an important role in the interaction between the host and Toxoplasma gondii (T. gondii). They can participate in various biological processes in different cells and regulate cellular energy metabolism. However, the effect of TgESPs on energy metabolism and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) has remained elusive. In the present study, TgESPs were extracted from the T. gondii RH strain and used to treat BMSCs to observe the effect of TgESPs on energy metabolism and osteogenic differentiation of BMSCs and to explore the molecular mechanisms involved. The osteogenic differentiation and energy metabolism of BMSCs were evaluated using Alizarin Red S staining, qRT-PCR, western blot, immunofluorescence and Seahorse extracellular flux assays. The results indicated that TgESPs activated the Wnt/ß­catenin signaling pathway to enhance glycolysis and lactate production in BMSCs, and promoted cell mineralization and expression of osteogenic markers. In conclusion, the present study uncovered the potential mechanism by which TgESPs regulate BMSCs, which will provide a theoretical reference for the study of the function of TgESPs in the future.


Asunto(s)
Células Madre Mesenquimatosas , Toxoplasma , Vía de Señalización Wnt , Osteogénesis/genética , Diferenciación Celular , Glucólisis
14.
Mol Med Rep ; 28(3)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37449526

RESUMEN

Adipose tissue­derived mesenchymal stem cells (ADMSCs) differentiate into cardiomyocytes and may be an ideal cell source for myocardial regenerative medicine. Ghrelin is a gastric­secreted peptide hormone involved in the multilineage differentiation of MSCs. To the best of our knowledge, however, the role and potential downstream regulatory mechanism of ghrelin in cardiomyocyte differentiation of ADMSCs is still unknown. The mRNA and protein levels were measured by reverse transcription­quantitative PCR and western blotting. Immunofluorescence staining was used to show the expression and cellular localization of cardiomyocyte markers and ß­catenin. RNA sequencing was used to explore the differentially expressed genes (DEGs) that regulated by ghrelin. The present study found that ghrelin promoted cardiomyocyte differentiation of ADMSCs in a concentration­dependent manner, as shown by increased levels of cardiomyocyte markers GATA binding protein 4, α­myosin heavy chain (α­MHC), ISL LIM homeobox 1, NK2 homeobox 5 and troponin T2, cardiac type. Ghrelin increased ß­catenin accumulation in nucleus and decreased the protein expression of secreted frizzled­related protein 4 (SFRP4), an inhibitor of Wnt signaling. RNA sequencing was used to determine the DEGs regulated by ghrelin. Functional enrichment showed that DEGs were more enriched in cardiomyocyte differentiation­associated terms and Wnt pathways. Dead­box helicase 17 (DDX17), an upregulated DEG, showed enhanced mRNA and protein expression levels following ghrelin addition. Overexpression of DDX17 promoted protein expression of cardiac­specific markers and ß­catenin and enhanced the fluorescence intensity of α­MHC and ß­catenin. DDX17 upregulation inhibited protein expression of SFRP4. Rescue assay confirmed that the addition of SFRP4 partially reversed ghrelin­enhanced protein levels of cardiac­specific markers and the fluorescence intensity of α­MHC. In conclusion, ghrelin promoted cardiomyocyte differentiation of ADMSCs by DDX17­mediated regulation of the SFRP4/Wnt/ß­catenin axis.


Asunto(s)
Células Madre Mesenquimatosas , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Ghrelina/farmacología , Ghrelina/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Diferenciación Celular/genética , Células Madre Mesenquimatosas/metabolismo , Vía de Señalización Wnt , ARN Mensajero/metabolismo
15.
J Orthop Surg Res ; 18(1): 446, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37344882

RESUMEN

Osteosarcoma (OS) is one of the most common malignant neoplasms in children and adolescents. Immune infiltration into the microenvironment of the tumor has a positive correlation with overall survival in patients with OS. The purpose of this study was to search for potential diagnostic markers that are involved in immune cell infiltration for OS. Patients with OS who acquired metastases within 5 years (n = 34) were compared to patients who did not develop metastases within 5 years (n = 19). Differentially expressed genes (DEGs) were tested for in both patient groups. To discover possible biomarkers, the LASSO regression model and the SVM-RFE analysis were both carried out. With the assistance of CIBERSORT, the compositional patterns of the 22 different types of immune cell fraction in OS were estimated. In this research, a total of 33 DEGs were obtained: 33 genes were significantly downregulated. Moreover, we identified six critical genes, including ALOX5AP, HLA-DOA, HLA-DMA, HLA-DRB4, HCLS1 and LOC647450. ROC assays confirmed their diagnostic value with AUC > 0.7. In addition, we found that the six critical genes were associated with immune infiltration. Then, we confirmed the expression of ALOX5AP was distinctly decreased in OS specimens and cell lines. High expression of ALOX5AP predicted an advanced clinical stage and overall survival of OS patients. Functionally, we found that overexpression of ALOX5AP distinctly suppressed the proliferation, migration, invasion and EMT via modulating Wnt/ß-catenin signaling. Overall, we found that ALOX5AP overexpression inhibits OS development via regulation of Wnt/ß-catenin signaling pathways, suggesting ALOX5AP as a novel molecular biomarker for enhanced therapy of OS.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Adolescente , Niño , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias Óseas/patología , Pronóstico , Osteosarcoma/patología , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Microambiente Tumoral/genética , Proteínas Activadoras de la 5-Lipooxigenasa/genética , Proteínas Activadoras de la 5-Lipooxigenasa/metabolismo
16.
Biomed Pharmacother ; 162: 114675, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37044026

RESUMEN

BACKGROUND: Myocardial infarction (MI) is the leading cause of deaths worldwide, triggering widespread and irreversible damage to the heart. Currently, there are no drugs that can reverse ischemic damage to the myocardium and hence, finding novel therapeutic agents that can limit the extent of myocardial damage following MI is crucial. Liensinine (LSN) is a naturally derived bisbenzylisoquinoline alkaloid that is known to exhibit numerous antioxidative and cardiovascular beneficial effects. However, the role of LSN in MI-induced injury and its underlying mechanisms remain unexplored. PURPOSE: Our study aims to evaluate the cardioprotective effects of LSN following MI and its underlying molecular mechanisms. METHODS: We constructed murine models of MI in order to examine the potential cardioprotective effects and mechanisms of LSN in protecting against myocardial ischemic damage both in vivo and in vitro. RESULTS: Administration with LSN strongly protected against cardiac injuries following MI by decreasing the extent of ischemic damage and improving cardiac function. Additionally, LSN was found to be a potent inhibitor of Wnt/ß­catenin signaling pathway. Hence, the beneficial effects of LSN in preventing oxidative and DNA damage following ischemia was due to its ability to inhibit aberrant activation of Wnt/ß­catenin signaling. CONCLUSIONS: Our findings reveal for the first time a novel cardioprotective role of LSN during myocardial infarction and most notably, its ability to protect cardiomyocytes against oxidative stress-induced damage via inhibiting Wnt/ß-catenin signaling. Our study therefore suggests new therapeutic potential of LSN or plants that contain the natural alkaloid LSN in ischemic heart diseases.


Asunto(s)
Infarto del Miocardio , Vía de Señalización Wnt , Ratones , Animales , beta Catenina/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos
17.
Oncol Rep ; 49(5)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36960872

RESUMEN

Following the publication of the above paper, it was drawn to the Editor's attention by a concerned reader that there appeared to be matching data panels comparing between the Transwell invasion and migration assays shown in Figs. 2C and 5C; moreover, one of the data panels shown in Fig. 2D had previously appeared in a paper written largely by different authors (the author 'T­D Shan' was held in common) at different research institutes in the journal Oncotarget in 2016 [Shan T­D, Xu, J­H, Yu T, Li J­Y, Zhao L­N, Ouyang H, Luo S, Lu X­J, Huang C­Z, Lan Q­S et al: Knockdown of linc­POU3F3 suppresses the proliferation, apoptosis, and migration resistance of colorectal cancer. Oncotarget 7: 961­975, 2016]. Finally, an independent investigation of these data in the Editorial Office revealed that, in addition to the data shared between Figs. 2 and 5, there were overlapping data panels both within Fig. 5C and within the wound healing assay data shown in Fig. 3B. Owing to the fact that the contentious data in the above article had already been published prior to its submission to Oncology Reports, and given the number of cases of overlapping data panels both within and between figures in the artce itself, the Editor has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they did not agree with the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 44: 1194­1295, 2020; DOI: 10.3892/or.2020.7670].

18.
Int J Oncol ; 62(2)2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36579676

RESUMEN

Colorectal cancer (CRC) is one of the most common malignant tumor types occurring in the digestive system. The incidence of CRC has exhibits yearly increases and the mortality rate among patients with CRC is high. The Wnt/ß­catenin signaling pathway, which is associated with carcinogenesis, is abnormally activated in CRC. Most patients with CRC have adenomatous polyposis coli mutations, while half of the remaining patients have ß­catenin gene mutations. Therefore, targeting the Wnt/ß­catenin signaling pathway for the treatment of CRC is of clinical value. In recent years, with in­depth research on the Wnt/ß­catenin signaling pathway, inhibitors have been developed that are able to suppress or hinder the development and progression of CRC. In the present review, the role of the Wnt/ß­catenin signaling pathway in CRC is summarized, the research status on Wnt/ß­catenin pathway inhibitors is outlined and potential targets for inhibition of this pathway are presented.


Asunto(s)
Neoplasias Colorrectales , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Vía de Señalización Wnt/genética , Regulación Neoplásica de la Expresión Génica
19.
BMC Complement Med Ther ; 22(1): 233, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056333

RESUMEN

BACKGROUND: The plant-based medicinal food (PBMF) is a functional compound extracted from 6 medicinal and edible plants: Coix seed, L. edodes, A. officinalis L., H. cordata, Dandelion, and G. frondosa. Our previous studies have confirmed that the PBMF possesses anti-tumor properties in a subcutaneous xenograft model of nude mice. This study aims to further investigate the effects and potential molecular mechanisms of the PBMF on the recurrence and metastasis of gastric cancer (GC). METHODS: Postoperative recurrence and metastasis model of GC was successfully established in inbred 615 mice inoculated with mouse forestomach carcinoma (MFC) cells. After tumorectomy, 63 GC mice were randomly divided into five groups and respectively subject to different treatments for 15 days as below: model control group, 5-Fu group, and three doses of PBMF (43.22, 86.44, 172.88 g/kg PBMF in diet respectively). The inhibition rate (IR) of recurrence tumor weights and organ coefficients were calculated. Meanwhile, histopathological changes were examined and the metastasis IR in lungs and lymph node tissues was computed. The mRNA expressions related to the canonical Wnt/ß-catenin signaling pathway, epithelial-mesenchymal transition (EMT) and lymphangiogenesis were detected by RT-qPCR in recurrence tumors and/or lung tissues. Protein expressions of ß-catenin, p-ß-catenin (Ser33/37/Thr41), GSK-3ß, p-GSK-3ß (Ser9), E-cadherin, and Vimentin in recurrence tumors were determined by Western Blot. LYVE-1, VEGF-C/D, and VEGFR-3 levels in recurrence tumors and/or lung tissues were determined by immunohistochemistry staining. RESULTS: The mRNA, as well as protein expression of GSK-3ß were up-regulated and the mRNA expression of ß-catenin was down-regulated after PBMF treatment. Meanwhile, the ratio of p-ß-catenin (Ser33/37/Thr41) to ß-catenin protein was increased significantly and the p-GSK-3ß (Ser9) protein level was decreased. And PMBF could effectively decrease the mRNA and protein levels of Vimentin while increasing those of E-cadherin. Furthermore, PBMF markedly reduced lymphatic vessel density (LVD) (labeled by LYVE-1) in recurrence tumor tissues, and mRNA levels of VEGF-C/D, VEGFR-2/3 of recurrence tumors were all significantly lower in the high-dose group. CONCLUSIONS: PBMF had a significant inhibitory effect on recurrence and lung metastasis of GC. The potential mechanism may involve reversing EMT by inhabiting the Wnt/ß-catenin signaling pathway. Lymphatic metastasis was also inhibited by PBMF via down-regulating the activation of the VEGF-C/D-VEGFR-2/3 signaling cascade.


Asunto(s)
Neoplasias Pulmonares , Neoplasias Gástricas , Animales , Cadherinas/farmacología , Transición Epitelial-Mesenquimal , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/farmacología , Neoplasias Pulmonares/genética , Ratones , Ratones Desnudos , ARN Mensajero , Neoplasias Gástricas/tratamiento farmacológico , Factor C de Crecimiento Endotelial Vascular/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/farmacología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/farmacología , Vimentina/metabolismo , Vimentina/farmacología , Vía de Señalización Wnt , beta Catenina/metabolismo
20.
Int J Oncol ; 61(4)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35929518

RESUMEN

Pancreatic cancer (PC) is a lethal type of cancer for which effective therapies are limited. Long non­coding RNAs (lncRNAs) represent a critical type of regulator category, mediating the tumorigenesis and development of various tumor types, including PC. However, the expression patterns and functions of numerous lncRNAs in PC remain poorly understood. In the present study, linc01614 was identified as a PC­related lncRNA. linc01614 was notably upregulated in PC tissues and cell lines and was associated with the poor disease­free survival of patients with PC according to the analysis of The Cancer Genome Atlas­derived datasets. Functionally, linc01614 knockdown suppressed PC cell proliferation, migration and invasion in vitro, and inhibited tumor proliferation in vitro and in vivo. Mechanistically, linc01614 overexpression stabilized the level of ß­catenin protein to hyperactivate the WNT/ß­catenin signaling pathway in PC cells. Further analyses revealed that linc01614 bound to GSK­3ß and perturbed the interaction between GSK­3ß and AXIN1, thereby preventing the formation of the ß­catenin degradation complex and reducing the degradation of ß­catenin. In summary, the present findings reveal that linc01614 may function as an oncogene and promote the progression of PC and may thus be considered as a potential therapeutic target in the future.


Asunto(s)
Neoplasias Pancreáticas , ARN Largo no Codificante , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA