Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Sci Rep ; 14(1): 21876, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300242

RESUMEN

The United Nations focuses on 17 urgent problems to call for action in all countries. Goal 7 of the 17 urgent problems is based on affordable and clean energy. Since 2017, National Taitung University (NTTU) has dedicated more time and effort to attain the wisdom, health, sustainability and aesthetics as an international green university. To accomplish this, we adhere and construct a safe radiofrequency and electromagnetic wave environment to achieve healthy and sustainable campus objectives. According to the UI GreenMetric World University Rankings, NTTU was ranked 74th in 2021, 67th in 2022 and 58th in 2023. In this study, we propose a formal estimation of wireless network services for classrooms or smart spaces to achieve the goal of safe radiofrequency and electromagnetic waves. Inside classrooms or smart spaces, better wireless signal strength and safer electromagnetic waves are achieved. Moreover, the proposed method can be used to determine the quantity of wireless access points for a given classroom or smart space to avoid unsafe electromagnetic waves and inappropriate energy consumption. The experimental results show that all benchmarks meet the wireless exposure limits of the WHO and physician safe technologies in the NTTU.

2.
Heliyon ; 10(11): e31368, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38828293

RESUMEN

Although college physical education (PE) is a compulsory course in college teaching, due to the openness of assessment standards and students studying to pass the final exam, college PE has been undervalued, so this paper aims to explore the new model of college PE teaching. In response, this paper took the air volleyball course as an example and redesigned the teaching of college PE based on the theory of flipped classroom and outcomes-based education (OBE). This paper also proposed a personalised learning system for college sports based on genetic algorithm (GA) and data structure, greatly improving college PE's autonomous learning ability and willingness. In the design of the teaching model, this paper compared and analysed the teaching model combining flipped classroom and OBE with flipped classroom teaching model, OBE teaching model and traditional teaching model. A one-semester investigation was conducted by selecting 40 students who took the air volleyball PE course at Hebei Normal University for Nationalities. The 40 students were divided into four groups, and their learning after one semester was compared. The experimental results showed that, compared with the traditional teaching model group, the outcome-based education and flipped classroom education group's performance of hitting the ball, passing the ball, spiking the ball, and serving the ball increased by 3.8 %, 14.3 %, 20.8 %, and 10.3 %, respectively. This suggested that the new college physical education teaching model based on flipped classrooms and OBE has a good teaching effect and can be used as a reference and help for others.

3.
Sensors (Basel) ; 24(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38794072

RESUMEN

This paper addresses the increasing demand for computing power and the challenges associated with adding more core units to a computer processor. It explores the utilization of System-on-Chip (SoC) technology, which integrates Terahertz (THz) wave communication capabilities for intra- and inter-chip communication, using the concept of Wireless Network-on-Chips (WNoCs). Various types of network topologies are discussed, along with the disadvantages of wired networks. We explore the idea of applying wireless connections among cores and across the chip. Additionally, we describe the WNoC architecture, the flip-chip package, and the THz antenna. Electromagnetic fields are analyzed using a full-wave simulation software, Ansys High Frequency Structure Simulator (HFSS). The simulation is conducted with dipole and zigzag antennas communicating within the chip at resonant frequencies of 446 GHz and 462.5 GHz, with transmission coefficients of around -28 dB and -33 to -41 dB, respectively. Transmission coefficient characterization, path loss analysis, a study of electric field distribution, and a basic link budget for transmission are provided. Furthermore, the feasibility of calculated transmission power is validated in cases of high insertion loss, ensuring that the achieved energy expenditure is less than 1 pJ/bit. Finally, employing a similar setup, we study intra-chip communication using the same antennas. Simulation results indicate that the zigzag antenna exhibits a higher electric field magnitude compared with the dipole antenna across the simulated chip structure. We conclude that transmission occurs through reflection from the ground plane of a printed circuit board (PCB), as evidenced by the electric field distribution.

4.
J Med Signals Sens ; 14: 3, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510672

RESUMEN

In this article, a patient monitoring system is proposed that is able to obtain heart rate and oxygen saturation (SpO2) levels of patients, identify abnormal conditions, and inform emergency status to the nurses. The proposed monitoring system consists of smart patient wristbands, smart nurse wristbands, central monitoring user interface (UI) software, and a wireless communication network. In the proposed monitoring system, a unique smart wristband is dedicated to each of the patients and nurses. To measure heart rate and SpO2 level, a pulse oximeter sensor is used in the patient wristbands. The output of this sensor is transferred to the wristband's microcontroller where heart rate and SpO2 are calculated through advanced signal processing algorithms. Then, the calculated values are transmitted to central UI software through a wireless network. In the UI software, received values are compared with their normal values and a predefined message is sent to the nurses' wristband if an abnormal condition is identified. Whenever this message is received by a nurse's wristband, an acoustic alarm with vibration is generated to inform an emergency status to the nurse. By doing so, health services are delivered to the patients more quickly and as a result, the probability of the patient recovery is increased effectively.

5.
Entropy (Basel) ; 25(9)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37761630

RESUMEN

This study considers a wireless network where multiple nodes transmit status updates to a base station (BS) through a shared bandwidth-limited channel. Considering the random arrival of status updates, we measure the data freshness with the age of synchronization (AoS) metric; specifically, we use the time elapsed since the latest synchronization as a metric. The objective of this study is to minimize the weighted sum of the average AoS of the entire network while meeting the minimum throughput requirement of each node. We consider both the central scheduling scenario and the distributed scheduling scenario. In the central scheduling scenario, we propose the optimal stationary randomized policy when the transmission feedback is unavailable and the max-weight policy when it is available. In the distributed scenario, we propose a distributed policy. The complexity of the three scheduling policies is significantly low. Numerical simulations show that the policies can satisfy the throughput constraint in the central controlling scenario and the AoS performance of the max-weight policy is close to the lower bound.

6.
Sensors (Basel) ; 23(13)2023 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-37447947

RESUMEN

One of the primary challenges in wireless blockchain networks is to ensure security and high throughput with constrained communication and energy resources. In this paper, with curve fitting on the collected blockchain performance dataset, we explore the impact of the data transmission rate configuration on the wireless blockchain system under different network topologies, and give the blockchain a utility function which balances the throughput, energy efficiency, and stale rate. For efficient blockchain network deployment, we propose a novel Graph Convolutional Neural Network (GCN)-based approach to quickly and accurately determine the optimal data transmission rate. The experimental results demonstrate that the average relative deviation between the blockchain utility obtained by our GCN-based method and the optimal utility is less than 0.21%.


Asunto(s)
Cadena de Bloques , Comunicación , Redes Neurales de la Computación
7.
Data Brief ; 49: 109342, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37448738

RESUMEN

Wireless community networks, WCN, have proliferated around the world. Cheap off-the-shelf WiFi devices have enabled this new network paradigm where users build their own network infrastructure in a do-it-yourself alternative to traditional network operators. The fact that users are responsible for the administration of their own nodes makes the network very dynamic. There are frequent reboots of the networking devices, and users that join and leave the network. In addition, the unplanned deployment of the network makes it very heterogeneous, with both high and low capacity links. Therefore, anomaly detection in such dynamic scenario is challenging. In this paper we provide a dataset gathered from a production WCN. The data was obtained from a central server that collects data from the mesh nodes that build the network. In total, 63 different nodes were encountered during the data collection. The WCN is used daily to access the Internet from 17 subscribers of the local ISP available on the mesh. We have produced a dataset gathering a large set of features related not only to traffic, but other parameters such as CPU and memory. Furthermore, we provide the network topology of each sample in terms of the adjacency matrix, routing table and routing metrics. In the data we provide there is a known unprovoked gateway failure. Therefore, the dataset can be used to investigate the performance of unsupervised machine learning algorithms for fault detection in WCN. To our knowledge, this is the first dataset that allows fault detection to be investigated from a production WCN.

8.
Sensors (Basel) ; 23(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37430511

RESUMEN

Sub-GHz communication provides long-range coverage with low power consumption and reduced deployment cost. LoRa (Long-Range) has emerged, among existing LPWAN (Low Power Wide Area Networks) technologies, as a promising physical layer alternative to provide ubiquitous connectivity to outdoor IoT devices. LoRa modulation technology supports adapting transmissions based on parameters such as carrier frequency, channel bandwidth, spreading factor, and code rate. In this paper, we propose SlidingChange, a novel cognitive mechanism to support the dynamic analysis and adjustment of LoRa network performance parameters. The proposed mechanism uses a sliding window to smooth out short-term variations and reduce unnecessary network re-configurations. To validate our proposal, we conducted an experimental study to evaluate the performance concerning the Signal-to-Noise Ratio (SNR) parameter of our SlidingChange against InstantChange, an intuitive mechanism that considers immediate performance measurements (parameters) for re-configuring the network. The SlidingChange is compared with LR-ADR too, a state-of-the-art-related technique based on simple linear regression. The experimental results obtained from a testbed scenario demonstrated that the InstanChange mechanism improved the SNR by 4.6%. When using the SlidingChange mechanism, the SNR was around 37%, while the network reconfiguration rate was reduced by approximately 16%.

9.
Sensors (Basel) ; 23(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37112216

RESUMEN

5G (fifth-generation technology) technologies are becoming more mainstream thanks to great efforts from telecommunication companies, research facilities, and governments. This technology is often associated with the Internet of Things to improve the quality of life for citizens by automating and gathering data recollection processes. This paper presents the 5G and IoT technologies, explaining common architectures, typical IoT implementations, and recurring problems. This work also presents a detailed and explained overview of interference in general wireless applications, interference unique to 5G and IoT, and possible optimization techniques to overcome these challenges. This manuscript highlights the importance of addressing interference and optimizing network performance in 5G networks to ensure reliable and efficient connectivity for IoT devices, which is essential for adequately functioning business processes. This insight can be helpful for businesses that rely on these technologies to improve their productivity, reduce downtime, and enhance customer satisfaction. We also highlight the potential of the convergence of networks and services in increasing the availability and speed of access to the internet, enabling a range of new and innovative applications and services.

10.
Micromachines (Basel) ; 14(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36985001

RESUMEN

The performance of wireless networks is related to the optimized structure of the antenna. Therefore, in this paper, a Machine Learning (ML)-assisted new methodology named Self-Adaptive Bayesian Neural Network (SABNN) is proposed, aiming to optimize the antenna pattern for next-generation wireless networks. In addition, the statistical analysis for the presented SABNN is evaluated in this paper and compared with the current Gaussian Process (GP). The training cost and convergence speed are also discussed in this paper. In the final stage, the proposed model's measured results are demonstrated, showing that the system has optimized outcomes with less calculation time.

11.
Sensors (Basel) ; 23(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36905010

RESUMEN

Throughout the course of human history, owing to innovations that shape the future of mankind, many technologies have been innovated and used towards making people's lives easier. Such technologies have made us who we are today and are involved with every domain that is vital for human survival such as agriculture, healthcare, and transportation. The Internet of Things (IoT) is one such technology that revolutionizes almost every aspect of our lives, found early in the 21st century with the advancement of Internet and Information Communication (ICT) Technologies. As of now, the IoT is served in almost every domain, as we mentioned above, allowing the connectivity of digital objects around us to the Internet, thus allowing the remote monitoring, control, and execution of actions based on underlying conditions, making such objects smarter. Over time, the IoT has progressively evolved and paved the way towards the Internet of Nano-Things (IoNT) which is the use of nano-size miniature IoT devices. The IoNT is a relatively new technology that has lately begun to establish a name for itself, and many are not aware of it, even in academia or research. The use of the IoT always comes at a cost, owing to the connectivity to the Internet and the inherently vulnerable nature of IoT, wherein it paves the way for hackers to compromise security and privacy. This is also applicable to the IoNT, which is the advanced and miniature version of IoT, and brings disastrous consequences if such security and privacy violations were to occur as no one can notice such issues pertaining to the IoNT, due to their miniaturized nature and novelty in the field. The lack of research in the IoNT domain has motivated us to synthesize this research, highlighting architectural elements in the IoNT ecosystem and security and privacy challenges pertaining to the IoNT. In this regard, in the study, we provide a comprehensive overview of the IoNT ecosystem and security and privacy pertaining to the IoNT as a reference to future research.


Asunto(s)
Internet de las Cosas , Privacidad , Humanos , Ecosistema , Seguridad Computacional , Atención a la Salud , Internet
12.
Entropy (Basel) ; 25(3)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36981318

RESUMEN

In wireless distributed computing systems, worker nodes connect to a master node wirelessly and perform large-scale computational tasks that are parallelized across them. However, the common phenomenon of straggling (i.e., worker nodes often experience unpredictable slowdown during computation and communication) and packet losses due to severe channel fading can significantly increase the latency of computational tasks. In this paper, we consider a heterogeneous, wireless, distributed computing system performing large-scale matrix multiplications which form the core of many machine learning applications. To address the aforementioned challenges, we first propose a random linear network coding (RLNC) approach that leverages the linearity of matrix multiplication, which has many salient properties, including ratelessness, maximum straggler tolerance and near-ideal load balancing. We then theoretically demonstrate that its latency converges to the optimum in probability when the matrix size grows to infinity. To combat the high encoding and decoding overheads of the RLNC approach, we further propose a practical variation based on batched sparse (BATS) code. The effectiveness of our proposed approaches is demonstrated by numerical simulations.

13.
Sensors (Basel) ; 23(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36679723

RESUMEN

The recent development of unmanned aerial vehicle (UAV) technology has shown the possibility of using UAVs in many research and industrial fields. One of them is for UAVs moving in swarms to provide wireless networks in environments where there is no network infrastructure. Although this method has the advantage of being able to provide a network quickly and at a low cost, it may cause scalability problems in multi-hop connectivity and UAV control when trying to cover a large area. Therefore, as more UAVs are used to form drone networks, the problem of efficiently controlling the network topology must be solved. To solve this problem, we propose a topology control system for drone networks, which analyzes relative positions among UAVs within a swarm, then optimizes connectivity among them in perspective of both interference and energy consumption, and finally reshapes a logical structure of drone networks by choosing neighbors per UAV and mapping data flows over them. The most important function in the scheme is the connectivity optimization because it should be adaptively conducted according to the dynamically changing complex network conditions, which includes network characteristics such as user density and UAV characteristics such as power consumption. Since neither a simple mathematical framework nor a network simulation tool for optimization can be a solution, we need to resort to reinforcement learning, specifically DDPG, with which each UAV can adjust its connectivity to other drones. In addition, the proposed system minimizes the learning time by flexibly changing the number of steps used for parameter learning according to the deployment of new UAVs. The performance of the proposed system was verified through simulation experiments and theoretical analysis on various topologies consisting of multiple UAVs.


Asunto(s)
Aprendizaje , Dispositivos Aéreos No Tripulados , Simulación por Computador , Industrias , Tecnología
14.
Soft comput ; 27(10): 6761-6781, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36475039

RESUMEN

Society is increasingly connected, utilizing more data that demands greater capacity and better channel quality. Furthermore, wireless networks are being inserted into the population's daily lives. Therefore, solutions capable of transferring a high volume of data are increasingly needed. In this context, we present a framework that aims to network planning through data collection, modeling, and routers optimization in the environment. Ziwi framework can simulate wireless networks in indoor and outdoor environments with the main classical propagation models, obtain and calculate metrics and performance parameters. It is possible to measure data by cell phone and send it to the website quickly. Furthermore, it can model the data and compare with different propagation models. Also, optimize them using a genetic algorithm or permutation, choosing whether or not to consider sockets to turn on the routers and how many routers are needed to place in the environment. In addition, have a virtual reality environment aiming at greater interactivity with the data. We analyzed framework results comparing with Close-In propagation model, free space model, and statically using the root mean square error metric. Measurements were made in a real environment using the Ziwi mobile application, inserting data captured on Ziwi website to validate the framework.

15.
Micromachines (Basel) ; 13(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36557431

RESUMEN

The high-yield optical wireless network (OWN) is a promising framework to strengthen 5G and 6G mobility. In addition, high direction and narrow bandwidth-based laser beams are enormously noteworthy for high data transmission over standard optical fibers. Therefore, in this paper, the performance of a vertical cavity surface emitting laser (VCSEL) is evaluated using the machine learning (ML) technique, aiming to purify the optical beam and enable OWN to support high-speed, multi-user data transmission. The ML technique is applied on a designed VCSEL array to optimize paths for DC injection, AC signal modulation, and multiple-user transmission. The mathematical model of VCSEL narrow beam, OWN, and energy loss through nonlinear interference in an optical wireless network is studied. In addition, the mathematical model is then affirmed with a simulation model following the bit error rate (BER), the laser power, the current, and the fiber-length performance matrices. The results estimations declare that the presented methodology offers a narrow beam of VCSEL, mitigating nonlinear interference in OWN and increasing energy efficiency.

16.
Sensors (Basel) ; 22(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36501906

RESUMEN

Structural health monitoring (SHM) is vital to ensuring the integrity of people and structures during earthquakes, especially considering the catastrophic consequences that could be registered in countries within the Pacific ring of fire, such as Ecuador. This work reviews the technologies, architectures, data processing techniques, damage identification techniques, and challenges in state-of-the-art results with SHM system applications. These studies use several data processing techniques such as the wavelet transform, the fast Fourier transform, the Kalman filter, and different technologies such as the Internet of Things (IoT) and machine learning. The results of this review highlight the effectiveness of systems aiming to be cost-effective and wireless, where sensors based on microelectromechanical systems (MEMS) are standard. However, despite the advancement of technology, these face challenges such as optimization of energy resources, computational resources, and complying with the characteristic of real-time processing.


Asunto(s)
Terremotos , Internet de las Cosas , Sistemas Microelectromecánicos , Humanos , Análisis de Ondículas , Tecnología
17.
Sensors (Basel) ; 22(20)2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36298200

RESUMEN

Full-duplex (FD) communication has been attractive as the breakthrough technology for improving attainable spectral efficiency since the 5G mobile communication system. Previous research focused on self-interference cancellation and medium access control (MAC) protocol to realize the FD system in wireless networks. This paper proposes an optimal achievable transmission capacity (OATC) scheme for capacity optimization in the FD multihop wireless networks. In this paper, the proposed OATC scheme considers the temporal reuse for spectral efficiency and the spatial reuse with transmit power control scheme for interference mitigation and capacity optimization. OATC scheme controls the transmit power to mitigate interference and optimizes the transmission capacity, which leads to the optimal achievable network capacity. We conduct the performance evaluation through numerical simulations and compare it with the existing FD MAC protocols. The numerical simulations reveal that considering only the concurrent transmissions in the FD system does not guarantee optimal transmission capacity. Moreover, the hybrid mechanism, including the sequential transmissions, is also crucial because of the interference problem. Besides, numerical simulation validates that the proposed OATC scheme accomplishes the optimal achievable network capacity with lower interference power and higher achievable throughput than the existing MAC protocols.

18.
Sensors (Basel) ; 22(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36236315

RESUMEN

This paper presents an on-chip fully integrated analog front-end (AFE) with a non-coherent digital binary phase-shift keying (DBPSK) demodulator suitable for short-range magnetic field wireless communication applications. The proposed non-coherent DBPSK demodulator is designed based on using comparators to digitize the received differential analog BPSK signal. The DBPSK demodulator does not need any phase-lock loop (PLL) to detect the data and recover the clock. Moreover, the proposed demodulator provides the detected data and the recovered clock simultaneously. Even though previous studies have offered the basic structure of the AFEs, this work tries to amplify and generate the required differential BPSK signal without missing data and clock throughout the AFE, while a low voltage level signal is received at the input of the AFE. A DC-offset cancellation (DCOC), a cascaded variable gain amplifier (VGA), and a single-to-differential (STOD) converter are employed to construct the implemented AFE. The simulation results indicate that the AFE provides a dynamic range of 0 dB to 40 dB power gain with 2 dB resolution. Measurement results show the minimum detectable voltage at the input of AFE is obtained at 20 mV peak-to-peak. The AFE and the proposed DBSPK demodulator are analyzed and fabricated in a 130 nm Bipolar-CMOS-DMOS (BCD) technology to recover the maximum data rate of 32 kbps where the carrier frequency is 128 kHz. The implemented DCOC, cascaded VGA, STOD, and the demodulator occupy 0.15 mm2, 0.063 mm2, 0.045 mm2, and 0.03 mm2 of area, respectively. The AFE and the demodulator consume 2.9 mA and 0.15 mA of current from an external 5 V power supply, respectively.

19.
Adv Sci (Weinh) ; 9(26): e2201458, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35748164

RESUMEN

This paper introduces the concept of smart radio environments, currently intensely studied for wireless communication in metasurface-programmable meter-scaled environments (e.g., inside rooms), on the chip scale. Wireless networks-on-chips (WNoCs) are a candidate technology to improve inter-core communication on chips but current proposals are plagued by a dilemma: either the received signal is weak, or it is significantly reverberated such that the on-off-keying modulation speed must be throttled. Here, this vexing problem is overcome by endowing the wireless on-chip environment with in situ programmability which enables the shaping of the channel impulse response (CIR); thereby, a pulse-like CIR shape can be imposed despite strong multipath propagation and without entailing a reduced received signal strength. First, a programmable metasurface suitable for integration in the on-chip environment ("on-chip reconfigurable intelligent surface") is designed and characterized. Second, its configuration is optimized to equalize selected wireless on-chip channels "over the air." Third, by conducting a rigorous communication analysis, the feasibility of significantly higher modulation speeds with shaped CIRs is evidenced. The results introduce a programmability paradigm to WNoCs which boosts their competitiveness as complementary on-chip interconnect solution.


Asunto(s)
Tecnología Inalámbrica , Redes de Comunicación de Computadores , Radio
20.
Sensors (Basel) ; 22(9)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35591244

RESUMEN

Full-duplex (FD) communication has been attractive as one of the research interests related to spectrum utilization for wireless networks from the previous evolution of communication systems. Previous studies discuss the realization of the FD system by focusing on self-interference cancellation and transmit power control in low-power wireless network scenarios. Today, capacity maximization is a key challenge in FD multihop wireless networks, in which the multi-channel allocation may lead to imbalance interference power due to the different number of simultaneous transmissions and its group selection that occurred on the same sub-channels. In this paper, we focus on the capacity maximization of the FD system by considering the influence of total interference power on each sub-channel and how to balance by selecting the different number of simultaneous transmissions to form a group that leads to a minimum difference in the total interference power on those sub-channels. Therefore, a channel interference balancing allocation (CIBA) scheme for balancing the total interference power in the multi-channel multihop wireless networks is proposed and further investigated by the idea of cooperative transmission. We also adopt the concept of interference distance to overcome the interference balancing problem of the proposed CIBA scheme. Performance evaluation results reveal that the proposed CIBA scheme achieves lesser total interference power and higher achievable capacity than other fixed channel allocation schemes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA