Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 399
Filtrar
1.
Front Plant Sci ; 15: 1454205, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280943

RESUMEN

Introduction: To examine the impacts of varied water and nitroge combinations on wheat yield and quality under drip irrigation in the Huang-Huai-Hai area, a field experiment was conducted over two growing seasons of winter wheat from 2019 to 2021. Methods: Traditional irrigation and fertilization methods served as the control (CK), with two nitrogen application rates set: N1 (180 kg/ha) and N2 (210 kg/ha). The irrigation schedules were differentiated by growth stages: jointing, anthesis (S2); jointing, anthesis, and filling (S3); and jointing, booting, anthesis, and filling (S4), at soil depths of 0-10 cm (M1) and 0-20 cm (M2). Results: Results indicated that compared to CK, the 3 and 4 times irrigation treatments comprehensively improved grain yield (GY) by 8.0% and 13.6% respectively, increased the average plant partial factor productivity of nitrogen fertilizer (PFPN) and irrigation use efficiency (IUE) by 57.5% and 38.2%, and 62.2% and 35.8%, respectively. The gluten content (GC) of 3 irrigations was 1.6% higher than CK, and other metrics such as dough tenacity (DT), softness (ST), water absorption (WAS), and gluten hardness (GH) also showed improvements. Furthermore, the contents of amylose, amylopectin, and total starch under 3 irrigations significantly increased by 9.4%, 11.4%, and 9.8%, respectively, with higher than 4 irrigations. The crude protein content and soluble sugar content in 3 irrigations rose by 6.5% and 9.8% respectively over two years. These irrigation treatments also optimized gelatinization characteristics of grains, such as breakdown viscosity (BDV), consistency peak viscosity (CPV), consistency setback viscosity (CSV), pasting temperature (PeT), and pasting time (PaT). Discussion: The study demonstrated that appropriate drip irrigation can effectively synchronize water and nitrogen supply during critical growth stages in winter wheat, ensuring robust late-stage development and efficient transfer of photosynthetic products into the grains, thus enhancing grain mass and yield. This also led to improved utilization of water and fertilizer and enhanced the nutritional and processing quality of the grain. However, excessive irrigation did not further improve grain quality. In conclusion, given the goals of saving water and fertilizer, achieving excellent yield, and ensuring high quality, the N1S3M1 treatment is recommended as an effective production management strategy in the Huang-Huai Hai area; N1S3M2 could be considered in years of water scarcity.

2.
Sci Total Environ ; 954: 176293, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284447

RESUMEN

Surface ozone has become a significant atmospheric pollutant in China, exerting a profound impact on crop production and posing a serious threat to food security. Previous studies have extensively explored the physiological mechanisms of ozone damage to plants. However, the effects of ozone interactions with other environmental factors, such as climate change, on agricultural productivity at the regional scale, particularly under natural conditions, remain insufficiently understood. In this study, we employed an interpretable machine learning framework, specifically the eXtreme Gradient Boosting (XGBoost) algorithm enhanced by SHapley Additive exPlanations (SHAP), to investigate the influence of ozone and its interactions with environmental factors on crop production in China's primary winter wheat region. Additionally, a structural equation model was developed to elucidate the mechanisms driving these interactions. Our findings demonstrate that ozone pollution exerts a significant negative effect on winter wheat productivity (r = -0.47, P < 0.001), with productivity losses escalating from -12.28 % to -22.09 % as ozone levels increase. Notably, the impact of ozone is spatially heterogeneous, with western Shandong province identified as a hotspot for ozone-induced damage. Furthermore, our results confirm the complexity of the relationship between ozone pollution and agricultural productivity, which is influenced by multiple interacting environmental factors. Specifically, we found that severe ozone pollution, when combined with high aerosol concentrations or elevated temperatures, significantly exacerbates crop productivity losses, although drought conditions can partially mitigate these adverse effects. Our study highlights the importance of incorporating the interactive effects of air pollution and climate change into future crop models. The comprehensive framework developed in this study, which integrates statistical modeling with explainable machine learning, provides a valuable methodological reference for quantitatively assessing the impact of air pollution on crop productivity at a regional scale.

3.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1833-1842, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39233412

RESUMEN

The mechanism for water-saving and high-yield of wide-range precision sowing technology remains unclear. We investigated the impact of wide-range precision sowing on the physiological characteristics of root system, water consumption, and grain yield of wheat 'Jimai 22' during the growing seasons of 2017-2019. We set up two planting modes: wide precision sowing and conventional strip sowing, and three row spacings of 20 cm, 25 cm, and 30 cm under water-saving cultivation with supplemental irrigation to examine the effects of planting modes on root biomass and senescence characteristics of wheat, water utilization characteristics, interplant evaporation, grain yield, and water utilization efficiency. The results showed that the 25 cm treatment (K25) led to an increase in root weight density, root soluble protein content, and root activity by 7.2%-23.9%, 8.7%-25.1%, 10.7%-29.9%, and 7.3%-27.6%, 8.0%-38.5%, 15.2%-32.7%, respectively, compared to the other treatments. At the same row spacing, the wide-range precision sowing treatment showed a significantly higher soil water storage consumption and proportion to total water consumption compared to the conventional strip-tillage treatment. Additionally, irrigation and interplant evaporation were lower in the wide-range precision sowing treatment. The K25 treatment exhibited significantly higher water consumption and modal coefficient of water consumption from flowering to ripening than other treatments. Furthermore, it had significantly higher seed yield, water utilization efficiency, and irrigation utilization efficiency than the other treatments. We found that a 25 cm spacing in the lower rows and density of 180-270 plants·m-2 was the water-saving and high-yielding planting pattern of wide-range precision sowing wheat in Huang-Huai-Hai region.


Asunto(s)
Biomasa , Grano Comestible , Triticum , Agua , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Agua/metabolismo , Agua/análisis , Grano Comestible/crecimiento & desarrollo , Riego Agrícola/métodos , Agricultura/métodos , Producción de Cultivos/métodos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
4.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1564-1572, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39235014

RESUMEN

The shortage of water resources and the irrational application of nitrogen fertilizer restrict the synergistic enhancement of yield and water- and fertilizer-use efficiencies of wheat in the Huang-Huai-Hai region. In this study, we conducted an experiment following two-factor split zone design with three irrigation levels and four nitrogen application rates. The relative water content of the 0-40 cm soil layer was supplemented to 65% (W1), 75% (W2), and 85% (W3) of field water capacity at the jointing and anthesis stages of wheat. The rates of nitrogen application were 0 (N0), 150 (N1), 180 (N2), and 210 (N3) kg·hm-2. We analyzed the effects of these different managements on post-anthesis photosynthetic matter production, yield, and water- and nitrogen-use efficiencies. The results showed that yield first increased with increases in the levels of irrigation and nitrogen application, peaking under the W2N2 treatment (9103.53 kg·hm-2). However, further increases in water and nitrogen input did not have further enhancement of wheat yield. Under the same nitrogen application condition, compared with W1 treatment, the canopy light interception rate, chlorophyll relative content and actual photochemical efficiency after anthesis increased by 4.5%-6.0%, 19.7%-28.2%, and 7.5%-9.8% in response to the W2 treatment, respectively, without any difference between the W2 and W3 irrigation levels. At the same irrigation level, post-anthesis dry matter accumulation in repose to the N2 treatment increased by 80.1%-88.9% and 16.7%-22.2% compared with N0 and N1 treatments, respectively, without significant difference between the N2 and N3 treatments. Both the irrigation water-use efficiency (IWUE) and the nitrogen partial factor productivity declined with increases in the levels of irrigation and nitrogen application. Under the W1, W2, and W3 treatments, the values obtained for IWUE were 16.23, 11.01, and 7.91 kg·hm-2·m-3, respectively, whereas in response to the N1, N2, and N3 treatments, N partial factor productivity was 50.8%, 48.4%, and 42.5%, respectively. In all, based on soil moisture measurements and assessments of wheat yield and water- and nitrogen-use efficiencies, the optimal water and nitrogen management strategy for enhancing wheat yield in the Huang-Huai-Hai region is supplementation of water content of 0-40 cm soil layer at the jointing and anthesis stages to 75% field capacity combined with the application of 180 kg·hm-2 nitrogen (W2N2). This approach could achieve high yield and efficiency and promote conservation of water and fertilizer.


Asunto(s)
Riego Agrícola , Fertilizantes , Nitrógeno , Fotosíntesis , Triticum , Agua , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Nitrógeno/metabolismo , Agua/metabolismo , Riego Agrícola/métodos , China , Biomasa
5.
Sci Rep ; 14(1): 17886, 2024 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095440

RESUMEN

The precise extraction of winter wheat planting structure holds significant importance for food security risk assessment, agricultural resource management, and governmental decision-making. This study proposed a method for extracting the winter wheat planting structure by taking into account the growth phenology of winter wheat. Utilizing the fitting effect index, the optimal Savitzky-Golay (S-G) filtering parameter combination was determined automatically to achieve automated filtering and reconstruction of NDVI time series data. The phenological phases of winter wheat growth was identified automatically using a threshold method, and subsequently, a model for extracting the winter wheat planting structure was constructed based on three key phenological stages, including seeding, heading, and harvesting, with the combination of hierarchical classification principles. A priori sample library was constructed using historical data on winter wheat distribution to verify the accuracy of the extracted results. The validation of fitting effect on different surfaces demonstrated that the optimal filtering parameters for S-G filtering could be obtained automatically by using the fitting effect index. The extracted winter wheat phenological phases showed good consistency with ground-based observational results and MOD12Q2 phenological products. Validation against statistical yearbook data and the proposed priori knowledge base exhibited high statistical accuracy and spatial precision, with an extracting accuracy of 94.92%, a spatial positioning accuracy of 93.26%, and a kappa coefficient of 0.9228. The results indicated that the proposed method for winter wheat planting structure extracting can identify winter wheat areas rapidly and significantly. Furthermore, this method does not require training samples or manual experience, and exhibits strong transferability.


Asunto(s)
Estaciones del Año , Triticum , Triticum/crecimiento & desarrollo , Agricultura/métodos
6.
J Sci Food Agric ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113436

RESUMEN

BACKGROUND: Water and nutrients are two main determinants of wheat yield, which are vital for maintaining high crop yields. In the present study, the effects of water and phosphate fertilization on wheat yield, photosynthetic parameters, water productivity and phosphate use efficiency were investigated. Five dryland wheat cultivars from the 1940s to the 2010s that are widely cultivated in Shaanxi Province, China, were used. Experiments were conducted from 2019 to 2022 using two irrigation levels (normal rainfall and no precipitation after the reviving stage) and two phosphorus application levels (0 and 100 kg ha-1). RESULTS: Compared with old cultivars ('Mazha'), the grain yield of modern cultivars ('Changhan 58') was 89.24% higher and was closely correlated with chlorophyll index, leaf area index, photosynthetic rate and tillers. With the replacement of cultivars, the phosphorus content, water potential and phosphatase activity of wheat leaves increased. Considering water-phosphorus interactions, the water use efficiency and phosphorus use efficiency of wheat showed a significant positive correlation. CONCLUSION: Our findings indicate that modern wheat cultivars are more responsive to phosphorus. Further analysis revealed that modern varieties have evolved two phosphorus absorption strategies in response to phosphorus deficiency - namely, the formation of a phosphorus supply source, which may result in larger numbers of green organs; and an increase in phosphorus sinks, which tended to activation and transport of plant phosphorus. Our results may thus contribute to water conservation, increased yields and the development of strategies for efficient phosphorus fertilization. © 2024 Society of Chemical Industry.

7.
J Sci Food Agric ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39149861

RESUMEN

BACKGROUND: Leaf area index (LAI) is an important indicator for assessing plant growth and development, and is also closely related to photosynthesis in plants. The realization of rapid accurate estimation of crop LAI plays an important role in guiding farmland production. In study, the UAV-RGB technology was used to estimate LAI based on 65 winter wheat varieties at different fertility periods, the wheat varieties including farm varieties, main cultivars, new lines, core germplasm and foreign varieties. Color indices (CIs) and texture features were extracted from RGB images to determine their quantitative link to LAI. RESULTS: The results revealed that among the extracted image features, LAI exhibited a significant positive correlation with CIs (r = 0.801), whereas there was a significant negative correlation with texture features (r = -0.783). Furthermore, the visible atmospheric resistance index, the green-red vegetation index, the modified green-red vegetation index in the CIs, and the mean in the texture features demonstrated a strong correlation with the LAI with r > 0.8. With reference to the model input variables, the backpropagation neural network (BPNN) model of LAI based on the CIs and texture features (R2 = 0.730, RMSE = 0.691, RPD = 1.927) outperformed other models constructed by individual variables. CONCLUSION: This study offers a theoretical basis and technical reference for precise monitor on winter wheat LAI based on consumer-level UAVs. The BPNN model, incorporating CIs and texture features, proved to be superior in estimating LAI, and offered a reliable method for monitoring the growth of winter wheat. © 2024 Society of Chemical Industry.

8.
Front Plant Sci ; 15: 1396929, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135649

RESUMEN

The uneven spatial and temporal distribution of light resources and water scarcity during the grain-filling stage pose significant challenges for sustainable crop production, particularly in the arid areas of the Loess Plateau in Northwest China. This study aims to investigate the combined effects of drought and shading stress on winter wheat growth and its physio-biochemical and antioxidative responses. Wheat plants were subjected to different drought levels- full irrigation (I100), 75% of full irrigation (I75), 50% of full irrigation (I50), and 25% of full irrigation (I25), and shading treatments - 12, 9, 6, 3 and 0 days (SD12, SD9, SD6, SD3, and CK, respectively) during the grain-filling stage. The effects of drought and shading treatments reduced yield in descending order, with the most significant reductions observed in the SD12 and I25 treatments. These treatments decreased grain yield, spikes per plant, 1000-grain weight, and spikelets per spike by 160.67%, 248.13%, 28.22%, and 179.55%, respectively, compared to the CK. Furthermore, MDA content and antioxidant enzyme activities exhibited an ascending trend with reduced irrigation and longer shading durations. The highest values were recorded in the I75 and SD12 treatments, which increased MDA, SOD, POD, and CAT activities by 65.22, 66.79, 65.07 and 58.38%, respectively, compared to the CK. The Pn, E, Gs, and iCO2 exhibited a decreasing trend (318.14, 521.09, 908.77, and 90.85%) with increasing shading duration and decreasing irrigation amount. Drought and shading treatments damage leaf chlorophyll fluorescence, decreasing yield and related physiological and biochemical attributes.

9.
J Sci Food Agric ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120149

RESUMEN

BACKGROUND: Global temperature is projected to rise continuously under climate change, negatively impacting the growth and yield of winter wheat. Optimizing traditional agricultural measures is necessary to mitigate potential winter wheat yield losses caused by future climate change. This study aims to explore the variations in winter wheat growth and yield on the Loess Plateau of China under future climate change, identify the key meteorological factors affecting winter wheat growth and yield, and analyze the differences in winter wheat yield and root characteristics under different fertilization depths. RESULTS: Meteorological data from 20 General Circulation Models were applied to drive the Decision Support System for Agrotechnology Transfer model, simulating the future growth characteristics of winter wheat under various fertilization depths. The Random Forest model was used to determine the relative importance of meteorological factors influencing winter wheat yield, root length density and leaf area index. The results showed that temperature and high emission concentration were primary factors influencing crop yield under future climate change. The temperature increase projected from 2021 to 2100 would be anticipated to shorten the phenology period of winter wheat by 2-16 days and reduce grain yield by 2.9-12.7% compared to the period from 1981 to 2020. Conversely, the root length density and root weight of winter wheat would increase by 1.2-10.9% and 0.2-24.1%, respectively, in the future, and excessive allocation of root system resources was identified as a key factor contributing to the reduction in winter wheat yield. Compared with the shallow fertilization treatment (N5), the deep fertilization treatments (N15 and N25) increased the proportion of roots in the deep soil layer (30-60 cm) by 2.7-10.2%. Because of the improvement in root structure, the decline in winter wheat yield under deep fertilization treatments in the future is expected to be reduced by 1.2% to 6.5%, whereas water use efficiency increases by 1.1% to 2.4% compared to the shallow fertilization treatment. CONCLUSION: The deep fertilization treatment can enhance the root structure of winter wheat and increase the proportion of roots in the deep soil layer, thereby effectively mitigating the decline in winter wheat yield under future climate change. Overall, optimizing fertilization depth effectively addresses the reduced winter wheat yield risks and agricultural production challenges under future climate change. © 2024 Society of Chemical Industry.

10.
Plants (Basel) ; 13(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39124154

RESUMEN

Increased aboveground biomass is contingent on enhanced photosynthetically active radiation intercepted by the canopy (IPAR), improved radiation use efficiency (RUE), or both. We investigated whether and how optimized agronomic management practices promote IPAR and RUE. Four integrated agronomic management treatments, i.e., local traditional practice (LP), improved local traditional practice (ILP), high-yield agronomic management (HY), and improved high-yield agronomic management (IHY), were compared over two wheat (Triticum aestivum L.) growing seasons. The average grain yield obtained with IHY was 96% relative to that of HY and was 7% and 23% higher than that with ILP and LP, respectively. Both HY and IHY consistently supported large values of the leaf area index and IPAR fraction, thereby increasing total IPAR. Treatment HY showed increased pre-anthesis RUE, manifested as a higher specific leaf nitrogen content and whole-plant N nutrition index at anthesis. The highest pre-anthesis aboveground biomass was obtained with HY due to the highest pre-anthesis IPAR and RUE. Along with a higher canopy apparent photosynthetic rate, IHY produced higher post-anthesis aboveground biomass due to its higher post-anthesis IPAR and RUE. Treatment IHY had a slightly lower total IPAR but a similar total RUE and harvest index, thus producing a slightly lower grain yield relative to HY. These results demonstrate that the optimized agronomic management practice used under IHY effectively enhances radiation capture and improves radiation utilization. Additionally, the net profit for IHY was higher than that for HY, ILP, and LP by 8%, 11%, and 88%, respectively. Considering the high grain yield, high RUE and high economic benefits, we recommend IHY as the agronomic management practice in the target region, although further study of improvements in pre-anthesis RUE is required.

11.
Plants (Basel) ; 13(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39124227

RESUMEN

This study examines the impact of climate change on winter wheat production in Henan Province. The analysis, under the utilization of GLASS LAI data, focuses on shifts in the planting areas of winter wheat. In addition, a comprehensive assessment of the spatiotemporal trends in meteorological factors during the winter wheat growth period has also been conducted. The findings reveal a fluctuating increase in accumulated temperature across Henan Province, ranging from 3145 °C to 3424 °C and exhibiting a gradual rise from north to south. In particular, precipitation patterns from 1980 to 2019 showed limited significant trends, while notable abrupt changes were observed in 1983, 2004, 2009, and 2016. Geographically, southwestern Henan Province experiences greater precipitation than the northeast. Moreover, a fluctuating downward trend in sunshine hours has been observed, gradually decreasing from north to south. The study further highlights an increase in winter wheat planting frequency in the northwestern region of Luoyang and the northeastern part of Zhumadian, contrasted by a decrease in Zhengzhou and Kaifeng. Accumulated temperature is positively correlated with the expansion of winter wheat planting areas (R2 = 0.685), while sunshine hours exert a suppressive effect (R2 = 0.637). Among meteorological factors, accumulated temperature emerges as the most crucial determinant, followed by precipitation, with sunshine hours having a relatively minor influence. Yield demonstrates a positive association with accumulated temperature (R2 = 0.765) and a negative correlation with sunshine hours (R2 = -0.614). This finding is consistent with the impact of meteorological factors on winter wheat production. The results of this study enhance the understanding of how the underlying mechanisms of climate change impact crop yields.

12.
Environ Monit Assess ; 196(9): 826, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162856

RESUMEN

Winter wheat, as one of the world's key staple crops, plays a crucial role in ensuring food security and shaping international food trade policies. However, there has been a relative scarcity of high-resolution, long time-series winter wheat maps over the past few decades. This study utilized Landsat and Sentinel-2 data to produce maps depicting winter wheat distribution in Google Earth Engine (GEE). We further analyzed the comprehensive spatial-temporal dynamics of winter wheat cultivation in Shandong Province, China. The gap filling and Savitzky-Golay filter method (GF-SG) was applied to address temporal discontinuities in the Landsat NDVI (Normalized Difference Vegetation Index) time series. Six features based on phenological characteristics were used to distinguish winter wheat from other land cover types. The resulting maps spanned from 2000 to 2022, featuring a 30-m resolution from 2000 to 2017 and an improved 10-m resolution from 2018 to 2022. The overall accuracy of these maps ranged from 80.5 to 93.3%, with Kappa coefficients ranging from 71.3 to 909% and F1 scores from 84.2 to 96.9%. Over the analyzed period, the area dedicated to winter wheat cultivation experienced a decline from 2000 to 2011. However, a notable shift occurred with an increase in winter wheat acreage observed from 2014 to 2017 and a subsequent rise from 2018 to 2022. This research highlights the viability of using satellite observation data for the long-term mapping and monitoring of winter wheat. The proposed methodology has long-term implications for extending this mapping and monitoring approach to other similar areas.


Asunto(s)
Monitoreo del Ambiente , Estaciones del Año , Análisis Espacio-Temporal , Triticum , Triticum/crecimiento & desarrollo , China , Monitoreo del Ambiente/métodos , Productos Agrícolas/crecimiento & desarrollo , Agricultura/métodos , Imágenes Satelitales
13.
Plants (Basel) ; 13(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39204699

RESUMEN

The development of water-saving management relies on understanding the physiological response of crops to soil drought. The coordinated regulation of hydraulics and stomatal conductance in plant water relations has steadily received attention. However, research focusing on grain crops, such as winter wheat, remains limited. In this study, three soil water supply treatments, including high (H), moderate (M), and low (L) soil water contents, were conducted with potted winter wheat. Leaf water potential (Ψleaf), leaf hydraulic conductance (Kleaf), and stomatal conductance (gs), as well as leaf biochemical parameters and stomatal traits were measured. Results showed that, compared to H, predawn leaf water potential (ΨPD) significantly reduced by 48.10% and 47.91%, midday leaf water potential (ΨMD) reduced by 40.71% and 43.20%, Kleaf reduced by 64.80% and 65.61%, and gs reduced by 21.20% and 43.41%, respectively, under M and L conditions. Although gs showed a significant difference between M and L, Ψleaf and Kleaf did not show significant differences between these treatments. The maximum carboxylation rate (Vcmax) and maximum electron transfer rate (Jmax) under L significantly decreased by 23.11% and 28.10%, stomatal density (SD) and stomatal pore area index (SPI) under L on the abaxial side increased by 59.80% and 52.30%, respectively, compared to H. The leaf water potential at 50% hydraulic conduction loss (P50) under L was not significantly reduced. The gs was positively correlated with ΨMD and Kleaf, but it was negatively correlated with abscisic acid (ABA) and SD. A threshold relationship between gs and Kleaf was observed, with rapid and linear reduction in gs occurring only when Kleaf fell below 8.70 mmol m-2 s-1 MPa-1. Our findings demonstrate that wheat leaves adapt stomatal regulation strategies from anisohydric to isohydric in response to reduced soil water content. These results enrich the theory of trade-offs between the carbon assimilation and hydraulic safety in crops and also provide a theoretical basis for water management practices based on stomatal regulation strategies under varying soil water conditions.

14.
Plants (Basel) ; 13(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39204747

RESUMEN

Late spring coldness (LSC) is the main limiting factor threatening wheat yield and quality stability. Optimal nutrient management is beneficial in mitigating the harms of LSC by improving wheat root physiology. This study proposed a nutrient management strategy that postponed the application of phosphorus (P) and potassium (K), effectively strengthening wheat's defense against LSC. This experiment used the winter cultivar "Yannong19" (YN 19) as plant material for two consecutive years (2021-2022 and 2022-2023). Two fertilizer treatments were used: traditional P and K fertilizers application (R1: base fertilizer: jointing fertilizer = 10:0) and postponed P and K fertilizers application (R2: base fertilizer: jointing fertilizer = 5:5); wheat plants at the anther connective formation stage shifted to temperature-controlled phytotrons for normal (T0, 11 °C/4 h) and low temperatures (T1, 4 °C/4 h; T2, -4 °C/4 h) as treatments of LSC. The results showed that under low temperature (LT) treatment, compared with R1, the R2 treatment increased the concentrations of osmotic adjustment substances (soluble sugars and soluble protein contents by 6.2-8.7% and 3.0-8.9%), enhanced activities of antioxidant enzymes (superoxide dismutase, peroxidase and catalase activities by 2.2-9.1%, 6.2-9.7% and 4.2-8.4%), balanced the hormone concentrations (increased IAA and GA3 contents by 2.8-17.5% and 10.4-14.1% and decreased ABA contents by 7.2-14.3%), and reduced the toxicity (malondialdehyde, hydrogen peroxide content and O2·- production rate by 5.7-12.4%, 17.7-22.8% and 19.1-19.1%) of the cellular membranes. Furthermore, the wheat root physiology in R2 significantly improved as the root surface area and dry weight increased by 5.0-6.6% and 4.7-6.6%, and P and K accumulation increased by 7.4-11.3% and 12.2-15.4% compared to R1, respectively. Overall, the postponed application of P and K fertilizers enhanced the physiological function of the root system, maintained root morphology, and promoted the accumulation of wheat nutrients under the stress of LSC.

15.
Int J Mol Sci ; 25(14)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39062950

RESUMEN

Expansin is a cell wall relaxant protein that is common in plants and directly or indirectly participates in the whole process of plant root growth, development and morphogenesis. A well-developed root system helps plants to better absorb water and nutrients from the soil while effectively assisting them in resisting osmotic stress, such as salt stress. In this study, we observed and quantified the morphology of the roots of Arabidopsis overexpressing the TaEXPAs gene obtained by the research group in the early stage of development. We combined the bioinformatics analysis results relating to EXPA genes in five plants and identified TaEXPA7-B, a member of the EXPA family closely related to root development in winter wheat. Subcellular localization analysis of the TaEXPA7-B protein showed that it is located in the plant cell wall. In this study, the TaEXPA7-B gene was overexpressed in rice. The results showed that plant height, root length and the number of lateral roots of rice overexpressing the TaEXPA7-B gene were significantly higher than those of the wild type, and the expression of the TaEXPA7-B gene significantly promoted the growth of lateral root primordium and cortical cells. The plants were treated with 250 mM NaCl solution to simulate salt stress. The results showed that the accumulation of osmotic regulators, cell wall-related substances and the antioxidant enzyme activities of the overexpressed plants were higher than those of the wild type, and they had better salt tolerance. This paper discusses the effects of winter wheat expansins in plant root development and salt stress tolerance and provides a theoretical basis and relevant reference for screening high-quality expansin regulating root development and salt stress resistance in winter wheat and its application in crop molecular breeding.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Estrés Salino , Triticum , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Oryza/efectos de los fármacos , Oryza/fisiología , Presión Osmótica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Estrés Salino/genética , Tolerancia a la Sal/genética , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/metabolismo
16.
Plants (Basel) ; 13(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39065419

RESUMEN

Studying the influence of the host plant genotype on the spectral reflectance of crops infected by a pathogen is one of the key directions in the development of precision methods for monitoring the phytosanitary state of wheat agrocenoses. The purpose of this research was to study the influence of varietal factors and disease development on the spectral characteristics of winter wheat varieties of different susceptibility to diseases during the growing seasons of 2021, 2022 and 2023. The studied winter wheat crops were represented by three varieties differing in susceptibility to phytopathogens: Grom, Svarog and Bezostaya 100. Over three years of research, a clear and pronounced influence of the varietal factor on the spectral characteristics of winter wheat crops was observed, which in most cases manifested itself as an immunological reaction of specific varieties to the influence of pathogen development. The nature of the influence of the pathogenic background and the spectral characteristics of winter wheat crops were determined by the complex interaction of the development of individual diseases under the conditions of a particular year of research. A uniform and clear division of the spectral characteristics of winter wheat according to the intensity of the disease was recorded only at a level of pathogen development of more than 5%. Moreover, this gradation was most clearly manifested in the spectral channels of the near-infrared range and at a wavelength of 720 nm.

17.
Plants (Basel) ; 13(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39065453

RESUMEN

Monitoring winter wheat Soil-Plant Analysis Development (SPAD) values using Unmanned Aerial Vehicles (UAVs) is an effective and non-destructive method. However, predicting SPAD values during the booting stage is less accurate than other growth stages. Existing research on UAV-based SPAD value prediction has mainly focused on low-altitude flights of 10-30 m, neglecting the potential benefits of higher-altitude flights. The study evaluates predictions of winter wheat SPAD values during the booting stage using Vegetation Indices (VIs) from UAV images at five different altitudes (i.e., 20, 40, 60, 80, 100, and 120 m, respectively, using a DJI P4-Multispectral UAV as an example, with a resolution from 1.06 to 6.35 cm/pixel). Additionally, we compare the predictive performance using various predictor variables (VIs, Texture Indices (TIs), Discrete Wavelet Transform (DWT)) individually and in combination. Four machine learning algorithms (Ridge, Random Forest, Support Vector Regression, and Back Propagation Neural Network) are employed. The results demonstrate a comparable prediction performance between using UAV images at 120 m (with a resolution of 6.35 cm/pixel) and using the images at 20 m (with a resolution of 1.06 cm/pixel). This finding significantly improves the efficiency of UAV monitoring since flying UAVs at higher altitudes results in greater coverage, thus reducing the time needed for scouting when using the same heading overlap and side overlap rates. The overall trend in prediction accuracy is as follows: VIs + TIs + DWT > VIs + TIs > VIs + DWT > TIs + DWT > TIs > VIs > DWT. The VIs + TIs + DWT set obtains frequency information (DWT), compensating for the limitations of the VIs + TIs set. This study enhances the effectiveness of using UAVs in agricultural research and practices.

18.
Genome Biol ; 25(1): 200, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080779

RESUMEN

BACKGROUND: Winter wheat undergoes vernalization, a process activated by prolonged exposure to low temperatures. During this phase, flowering signals are generated and transported to the apical meristems, stimulating the transition to the inflorescence meristem while inhibiting tiller bud elongation. Although some vernalization genes have been identified, the key cis-regulatory elements and precise mechanisms governing this process in wheat remain largely unknown. RESULTS: In this study, we construct extensive epigenomic and transcriptomic profiling across multiple tissues-leaf, axillary bud, and shoot apex-during the vernalization of winter wheat. Epigenetic modifications play a crucial role in eliciting tissue-specific responses and sub-genome-divergent expressions during vernalization. Notably, we observe that H3K27me3 primarily regulates vernalization-induced genes and has limited influence on vernalization-repressed genes. The integration of these datasets enables the identification of 10,600 putative vernalization-related regulatory elements including distal accessible chromatin regions (ACRs) situated 30Kb upstream of VRN3, contributing to the construction of a comprehensive regulatory network. Furthermore, we discover that TaSPL7/15, integral components of the aging-related flowering pathway, interact with the VRN1 promoter and VRN3 distal regulatory elements. These interactions finely regulate their expressions, consequently impacting the vernalization process and flowering. CONCLUSIONS: Our study offers critical insights into wheat vernalization's epigenomic dynamics and identifies the putative regulatory elements crucial for developing wheat germplasm with varied vernalization characteristics. It also establishes a vernalization-related transcriptional network, and uncovers that TaSPL7/15 from the aging pathway participates in vernalization by directly binding to the VRN1 promoter and VRN3 distal regulatory elements.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Triticum , Vernalización , Frío , Epigénesis Genética , Epigenómica , Flores/genética , Flores/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Triticum/genética , Triticum/crecimiento & desarrollo , Vernalización/genética
19.
Sci Total Environ ; 949: 175114, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39084384

RESUMEN

Drought is one of the vital meteorological disasters that influence crop growth. Timely and accurately estimating the drought dynamics of crops is valuable for decision-maker to formulate scientific management measures of agricultural drought risk. In this study, the evapotranspiration and drought dynamics of winter wheat from 1981 to 2020 in the Huang-Huai-Hai (HHH) region of China were evaluated based on long-term multi-source observation data. Four key developmental stages of winter wheat were given attentions: growth before winter stage, overwintering stage, stage of greening-heading, and stage of filling-maturity. The crop water deficit index (CWDI) on a daily scale was established for quantitatively appraising the impacts of drought on winter wheat. Our results indicated that interannual variation in reference crop evapotranspiration (ET0) during the growth season of winter wheat from 1981 to 2020 in the HHH region showed a slight increase trend, with an average of 602.4 mm and obvious spatial differences of decreasing from the Northeast to the Southwest. Over the past forty years, the winter wheat in the HHH region was most severely affected by severe drought, followed by moderate drought, and finally mild drought. In addition, the impacts of drought on winter wheat at different critical growth stages varied greatly. For the growth before winter stage, the winter wheat was mainly threatened by mild, moderate, and severe droughts. For the overwintering stage, the winter wheat was mainly threatened by moderate, severe, and extreme droughts. For the greening-heading stage, the winter wheat was mainly threatened by mild, moderate, severe, and extreme droughts. For the filling-maturity stage, the winter wheat was mainly threatened by mild and moderate droughts. Finally, the impacts of drought on winter wheat during 1981-2020 in the HHH region were revealed to differ extraordinarily in space. In particular, the areas of winter wheat affected by severe drought significantly decreased. However, the areas of winter wheat affected by moderate drought clearly expanded. Our findings provide new insights for further improving climate change impact studies and agricultural drought defense capabilities adapting to continuous environmental change.


Asunto(s)
Cambio Climático , Sequías , Estaciones del Año , Triticum , Triticum/fisiología , Triticum/crecimiento & desarrollo , China , Transpiración de Plantas/fisiología , Productos Agrícolas/crecimiento & desarrollo , Agricultura/métodos
20.
Front Plant Sci ; 15: 1374453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040512

RESUMEN

Background: The Haihe Plain plays an important role in wheat production and food security in China and has experienced continuous cultivar replacement since the 1950s.This study assessed the evolution of the yield and grain-filling characteristics of the main winter wheat cultivars in the Haihe Plain over the last seven decades (1950s to date). Methods: Cultivar characterization indicated that the increase in yield was negatively affected by spike number and positively affected by the number of kernels per spike before the 2000s and kernel weight after the 2000s. Field trials were conducted across two ecological zones over two consecutive wheatgrowing seasons. The results showed that genetic gains in grain yield, spike number, and kernel weight during 1955 to 2021 were 0.629%, 0.574%, and 0.332% year-1 on a relative basis or 39.12 kg ha-1, 24,350 hm-2, and 0.15 g year-1 on an absolute basis, respectively. However, the increase in the kernel number per spike was not significant. Moreover, cultivar replacement explained 25.6%, 12.8%, and 37.5% of the total variance in grain yield, spike number, and kernel weight, respectively. In summary, during the initial grain-filling stage, wheat cultivar replacement led to the shortening of grain-filling duration and rapid grain-filling rate. However, a longer active grain-filling duration was produced by prolonged durations of rapid and late grain-filling. Additionally, the experimental year had a greater effect on the kernel number, which explained 53.2% of the total variance. Ultimately, modern wheat cultivars had a greater kernel weight. Results: Although the increase in kernel weight has affected grain yield during cultivar replacements in the Haihe Plain, the potential for further yield increase through kernel weight enhancement alone is limited. Consequently, future breeding efforts and cultivation practices should focus on improving spike traits and canopy architecture to enhance productivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA