Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Environ Sci Technol ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259020

RESUMEN

Electrostatic precipitators (ESPs) may enable high particle collection efficiency with minimal pressure drop in HVAC systems. However, studies of pathogen collection and inactivation in ESPs at medium to higher flow rates are limited. Here, a single-stage, wire-plate ESP operated at flow rates of 51 and 85 m3 h-1 was used to study the removal of virus-laden aerosol particles for three different airborne viruses: (1) bovine coronavirus (BCoV), (2) influenza A virus (IAV), and (3) porcine reproductive and respiratory virus (PRRSV). Size-resolved measurements of collection efficiency were obtained using Andersen cascade impactors (ACI) sampling upstream and downstream of the ESP. All measurements were analyzed based on three distinctive but complementary methods: (1) fluorimetry to assess physical collection, (2) RT-qPCR to assess viral RNA concentrations and (3) virus titration to assess virus viability. In general, log reductions by virus titration were highest followed by those from RT-qPCR, and last fluorimetry, suggesting that a portion of virus may be potentially inactivated in flight in the ESP. An effective migration (deposition) velocity ranging from 3.10 to 10.05 cm s-1 was also determined using the spatially resolved measurements of virus collection on the ESP plates.

2.
Sci Rep ; 14(1): 18317, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112656

RESUMEN

Hailstorms, characterized by their intensity, are often accompanied by strong winds and heavy rain, posing significant destructive potential. Data indicate that the economic losses caused by hail to buildings, particularly solar panels, have been increasing annually. However, research on the hail resistance of photovoltaic panels has predominantly focused on the isolated effects of hail impacts and wind loads, neglecting the coupling effects between wind and hail. In this study, a device was designed to couple both wind and hail. The effects of turbulence, hail size, and velocity on hail impact behavior were systematically studied and quantified. A predictive formula for the peak load of hail impact on structures was established. The results indicate that the impact of turbulence on hail is significant. When turbulence intensity varies with hail velocity, hail impact force increases as turbulence decreases and hail velocity increases. When both turbulence and hail diameter vary, the impact force of smaller hailstones shows less variation with increasing turbulence. According to variance analysis, hail velocity is the most significant factor affecting hail impact, followed by hail diameter and finally turbulence. The regression equation is given by F = - 0.624 I u + 5116.25 D + 7.85 V hail - 259.709 , where F represents the peak impact force in Newtons (N), I u denotes the turbulence intensity, D is the hail diameter in meters (m), and V hail is the hail velocity in meters per second (m/s).

3.
J Hazard Mater ; 478: 135516, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39181002

RESUMEN

This study presents the comprehensive design and performance validation of a wind tunnel specifically developed for advanced investigations into respirable dust deposition pertinent to coal mining environments. The design integrates a constant particle delivery system engineered to maintain uniform particle dispersion, which is critical for replicating real-world conditions in coal mines. Our methodology involved using ANSYS Fluent for the design and optimization of a blowing-type wind tunnel, with a focus on controlling turbulence levels and minimizing pressure drops, which are crucial for accurate dust behaviour simulation. The core of our research emphasizes the deployment of the Aerosol Lung Deposition Apparatus (ALDA) alongside a custom dust injection system to measure particle distributions within the test section. This setup enabled us to simulate the inhalation of coal dust particles, providing a realistic scenario for assessing potential hazards to miners. Validation of the tunnel's performance was achieved through extensive testing with dust sensors and a hot-wire anemometer, which verified the airflow velocity and turbulence against the initial design specifications. The findings affirm the wind tunnel's capability to effectively model dust deposition and its impacts, thereby offering opportunities for enhancing miner safety and health standards.

4.
Insects ; 15(8)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39194830

RESUMEN

BACKGROUND: Food security is an increasingly pressing global issue, and by 2050, food production will not be sufficient to feed the growing population. Part of global food insecurity can be attributed to post-harvest losses, including quantity and quality losses caused by stored-product pests like insects. It is thus timely to find management strategies to mitigate these losses and counteract food insecurity. The red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), a global stored-product pest with a wide range of food sources, was used in this study to assess repellency to a selection of essential oils. METHODS: Multiple behaviorally relevant methods were used to determine the efficacy of the essential oils in assays to pinpoint the most promising repellents. Experiments were used to assess individual and group behaviors with or without airflow and examined the behavioral variation in distance moved and the time spent away from the oil. RESULTS: It was found that exposure to essential oils and conditions of experimentation considerably influenced T. castaneum's behavioral response, but a clear candidate for repellency could not be chosen based on the collected data. CONCLUSIONS: Follow-up research is needed to pinpoint repellents for integrated pest management practices to protect grains from stored-product pests and to justify their use in and around commodities.

5.
Sci Rep ; 14(1): 16539, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020107

RESUMEN

Chemical warfare agents (CWAs) pose a threat as gaseous substances and as liquid aerosols, necessitating chemical warfare-protective clothing for soldiers. The paramount consideration lies in the effectiveness of the clothing as a barrier against the pertinent CWAs. This paper presents a dynamic swatch test method aimed at evaluating the performance of such clothing against liquid-phase aerosol penetration. Central to the methodology is a specialized test cell designed to rotate to the left and right, integrated within a laboratory wind tunnel, replicating mission-relevant conditions with varying wind speeds. Utilizing di(2-ethylhexyl) sebacate particles as liquid aerosols, tests were conducted at wind speeds of 1.0, 3.0, and 5.0 m/s. Penetration assessment relied on analyzing particle counts downstream and upstream of the fabric, with preliminary studies showing that higher wind speeds and fabric air permeabilities increase penetration at an equivalent face velocity of 5.0 cm/s. Interestingly, penetration decreased when fabric samples were subjected to rotation. The system and methodology devised demonstrated consistent and repeatable results, offering valuable insights into optimizing the effectiveness of chemical warfare-protective clothing. This research contributes to advancing methodologies for testing protective clothing, crucial for ensuring the safety of military personnel in hazardous environments.

6.
Materials (Basel) ; 17(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39063867

RESUMEN

The design of an aircraft's internal structure, and therefore the appropriate choice of material type, is a direct function of the performed tasks and the magnitude and type of the acting loads. The design of a durable aircraft structure with appropriate stiffness and lightness requires knowledge of the loads that will be applied to the structure. Therefore, this paper presents the results of an aerodynamic experimental test and numerical analysis of a newly designed jet-propelled aerial target. The experimental tests were carried out in a low-speed wind tunnel for a wide range of angles of attack and sideslips. Moreover, they were performed for various configurations of the airplane model. In addition, the results of the experimental test were supplemented with the results of the numerical analysis performed using computational fluid dynamics methods. During numerical analysis, specialized software based on solving partial differential equations using the Finite Volumes Method was used. This article presents the methodology of the conducted research. The results of the aerodynamic analysis are presented in the form of diagrams showing the aerodynamic force and moment components as a function of the angle of attack and sideslip. In addition, qualitative results of the flow around the plane have been presented. The results obtained prove that the adopted methods are sufficient to solve these types of problem. The aerial system was positively verified during the qualification tests of the system at the Polish Air Force training range and finally received the type certificate.

7.
J Appl Physiol (1985) ; 137(3): 616-628, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39024409

RESUMEN

In laboratory settings, human locomotion encounters minimal opposition from air resistance. However, moving in nature often requires overcoming airflow. Here, the drag force exerted on the body by different headwind or tailwind speeds (between 0 and 15 m·s-1) was measured during walking at 1.5 m·s-1 and running at 4 m·s-1. To our knowledge, the biomechanical effect of drag in human locomotion has only been evaluated by simulations. Data were collected on eight male subjects using an instrumented treadmill placed in a wind tunnel. From the ground reaction forces, the drag and external work done to overcome wind resistance and to sustain the motion of the center of mass of the body were measured. Drag increased with wind speed: a 15 m·s-1 headwind exerted a drag of ∼60 N in walking and ∼50 N in running. The same tailwind exerted -55 N of drag in both gaits. At this wind speed, the work done to overcome the airflow represented ∼80% of the external work in walking and ∼50% in running. Furthermore, in the presence of fast wind speeds, subjects altered their drag area (CdA) by adapting their posture to limit the increase in air friction. Moving in the wind modified the ratio between positive and negative external work performed. The modifications observed when moving with a head- or tailwind have been compared with moving uphill or downhill. The present findings may have implications for optimizing aerodynamic performance in competitive running, whether in sprints or marathons.NEW & NOTEWORTHY This is the first study to assess the biomechanical adaptations to a wide range of wind speeds inside a wind tunnel. Humans increase their mechanical work and alter their drag area (CdA) by adapting their posture when walking and running against increasing head and tailwinds. The observed drag force applied to the subject is different between walking and running at similar headwind speeds.


Asunto(s)
Carrera , Caminata , Viento , Humanos , Masculino , Fenómenos Biomecánicos/fisiología , Adulto , Caminata/fisiología , Carrera/fisiología , Adulto Joven , Marcha/fisiología , Locomoción/fisiología , Postura/fisiología
8.
Biomimetics (Basel) ; 9(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38921193

RESUMEN

Deployable hind wings of beetles led to a bio-inspired idea to design deployable micro aerial vehicles (MAVs) to meet the requirement of miniaturization. In this paper, a bionic deployable wing (BD-W) model is designed based on the folding mechanism and elliptical wing vein structure of the Protaetia brevitarsis hindwing, and its structural static and aerodynamic characteristics are analyzed by using ANSYS Workbench. Finally, the 3D-printed bionic deployable wing was tested in a wind tunnel and compared with simulation experiments to explore the effects of different incoming velocity, flapping frequency, and angle of attack on its aerodynamic characteristics, which resulted in the optimal combination of the tested parameters, among which, the incoming velocity is 3 m/s, the flapping frequency is 10 Hz, the angle of attack is 15°, and the lift-to-drag ratio of this parameter combination is 4.91. The results provide a theoretical basis and technical reference for the further development of bionic flapping wing for MAV applications.

9.
Biomimetics (Basel) ; 9(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38921216

RESUMEN

The vibrissae of harbor seals exhibit a distinct three-dimensional structure compared to circular cylinders, resulting in a wave-shaped configuration that effectively reduces drag and suppresses vortex shedding in the wake. However, this unique cylinder design has not yet been applied to wind power technologies. Therefore, this study applies this concept to the design of downwind wind turbines and employs wind tunnel testing to compare the wake flow characteristics of a single-cylinder model while also investigating the output power and wake performance of the model wind turbine. Herein, we demonstrate that in the single-cylinder test, the bionic case shows reduced turbulence intensity in its wake compared to that observed with the circular cylinder case. The difference in the energy distribution in the frequency domain behind the cylinder was mainly manifested in the near-wake region. Moreover, our findings indicate that differences in power coefficient are predominantly noticeable with high tip speed ratios. Furthermore, as output power increases, this bionic cylindrical structure induces greater velocity deficit and higher turbulence intensity behind the rotor. These results provide valuable insights for optimizing aerodynamic designs of wind turbines towards achieving enhanced efficiency for converting wind energy.

10.
Biomimetics (Basel) ; 9(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38921233

RESUMEN

A series of wind tunnel tests were performed to investigate the effect of turbulent inflows on the aerodynamic characteristics of variously modified trough incident leading-edge-protuberanced (LEP) wing configurations at various turbulence intensities. A self-developed passive grid made of parallel arrays of round bars was placed at different locations of the wind tunnel to generate desired turbulence intensity. The aerodynamic forces acting over the trough incidence LEP wing configuration where obtained from surface pressure measurements made over the wing at different turbulence intensities using an MPS4264 Scanivalve simultaneous pressure scanner corresponding to a sampling frequency of 700 Hz. All the test models were tested at a wide range of angles of attack ranging between 0°≤α≤90° at turbulence intensities varying between 5.90% ≤ TI ≤ 10.54%. Results revealed that the time-averaged mean coefficient of lift (CL) increased with the increase in the turbulence intensity associated with smooth stall characteristics rendering the modified LEP test models advantageous. Furthermore, based on the surface pressure coefficients, the underlying dynamics behind the stall delay tendency were discussed. Additionally, attempts were made to statistically quantify the aerodynamic forces using standard deviation at both the pre-stall and the post-stall angles.

11.
Sensors (Basel) ; 24(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38931579

RESUMEN

Investigating aircraft flight dynamics often requires dynamic wind tunnel testing. This paper proposes a non-contact, off-board instrumentation method using vision-based techniques. The method utilises a sequential process of Harris corner detection, Kanade-Lucas-Tomasi tracking, and quaternions to identify the Euler angles from a pair of cameras, one with a side view and the other with a top view. The method validation involves simulating a 3D CAD model for rotational motion with a single degree-of-freedom. The numerical analysis quantifies the results, while the proposed approach is analysed analytically. This approach results in a 45.41% enhancement in accuracy over an earlier direction cosine matrix method. Specifically, the quaternion-based method achieves root mean square errors of 0.0101 rad/s, 0.0361 rad/s, and 0.0036 rad/s for the dynamic measurements of roll rate, pitch rate, and yaw rate, respectively. Notably, the method exhibits a 98.08% accuracy for the pitch rate. These results highlight the performance of quaternion-based attitude estimation in dynamic wind tunnel testing. Furthermore, an extended Kalman filter is applied to integrate the generated on-board instrumentation data (inertial measurement unit, potentiometer gimbal) and the results of the proposed vision-based method. The extended Kalman filter state estimation achieves root mean square errors of 0.0090 rad/s, 0.0262 rad/s, and 0.0034 rad/s for the dynamic measurements of roll rate, pitch rate, and yaw rate, respectively. This method exhibits an improved accuracy of 98.61% for the estimation of pitch rate, indicating its higher efficiency over the standalone implementation of the direction cosine method for dynamic wind tunnel testing.

12.
Pest Manag Sci ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38895885

RESUMEN

Adjuvants are included in many pesticide spray mixtures to enhance the performance of the applied chemical. Many adjuvants which modify the emulsion or extensional viscosity of the tank-mixture have been found to offer benefits in drift management, primarily by eliminating or reducing the 'Fine' droplets included in the spray with diameters <100-200 µm that can move off-target in unfavorable conditions during ground, airblast and aerial pesticide applications. Among wind tunnel and field studies conducted around the world, there is consensus that while some adjuvants are effective for drift management, the performance varies on a case-by-case basis, requiring verification for each adjuvant which could be achieved through a programme such as certification based on showing a reduction in Fine droplets and/or a reduction in airborne drift. These can be measured in wind tunnel studies according to international standards. This article provides a review of the current science in this subject area, from the approaches to data collection to a review of existing data and regulatory application for encouraging and rewarding the use of appropriate adjuvants that have been demonstrated to reduce airborne spray drift potential and therefore the size of no-spray buffer zones appropriate to protect nontarget sensitive areas from drift exposure. Some adjuvants can offer the same reduction in drift as offered by hooded sprayer retrofits. A drift reduction programme based on adjuvant use could include testing candidate adjuvants for their effect on droplet size and reduction in Fine droplets when sprayed through reference nozzles and compared against sprays without the adjuvant. Testing could also be based alternatively on measurements of drift potential on collectors such as monofilament line in wind tunnel or field studies. Once shown to be effective in reducing 'Fines' or spray drift, adjuvants could be certified and then referenced on pesticide labels and/or regulatory or best management practice schemes to encourage their use and offer reductions in use restrictions or no-spray buffer zone sizes based on drift management. Studies have shown that some adjuvants can reduce pesticide leaching into soils and contamination of groundwater, as well as runoff of active ingredients from plants into the environment. Performance depends on the adjuvant type, the pesticide with which it is used, the soil or plant type, the timing and mass of water input from rainfall and climatic factors. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

13.
Braz J Microbiol ; 55(3): 2453-2461, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38922531

RESUMEN

Aerosol emission by wind erosion in the arid and semi-arid areas of the world, is of environmental and health significance. Different methods have been used to mitigate aerosol emission among which the biological methods may be the most efficient ones. Although previously investigated, more research is essential to determine how the use of exopolysaccharide (biocrust)-producing cyanobacteria may affect soil physical properties. The objective was to investigate the effects of the cyanobacteria, Microcoleus vaginatus ATHK43 (identified and registered by the NCBI accession number MW433686), on soil physical properties of a sandy soil 15, 30, 60, and 90 d after inoculation. The effects of cyanobacterial biocrust on soil properties including shear strength, soil resistance, aggregate stability (mean weight diameter (MWD) and geometric mean diameter (GMD)), and wind erosion were determined in trays using a wind tunnel. Cyanobacterial inoculation significantly increased MWD (0-1 cm depth, from 0.12 mm to 0.47 mm) and GMD (from 0.3 to 0.5 mm) after a period of 90 d. Biocrust production significantly decreased soil erosion from 55.7 kgm- 2 to 0.3 kgm- 2 (wind rate of 50 kmh- 1), and from 116.42 kgm- 2 to 0.6 kgm- 2 (wind rate of 90 kmh- 1) after 90 d. In conclusion, cyanobacterial biocrust can significantly improve soil physical properties in different parts of the world including the deserts, and reduce aerosol emission by mitigating the destructive effects of wind erosion on soil physical properties.


Asunto(s)
Aerosoles , Cianobacterias , Microbiología del Suelo , Suelo , Suelo/química , Aerosoles/análisis , Cianobacterias/metabolismo , Cianobacterias/crecimiento & desarrollo , Viento
14.
Sci Rep ; 14(1): 14622, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918480

RESUMEN

Although pesticide-free techniques have been developed in agriculture, pesticides are still routinely used against weeds, pests, and pathogens worldwide. These agrochemicals pollute the environment and can negatively impact human health, biodiversity and ecosystem services. Acetamiprid, an approved neonicotinoid pesticide in the EU, may exert sub-lethal effects on pollinators and other organisms. However, our knowledge on the scope and severity of such effects is still incomplete. Our experiments focused on the effects of the insecticide formulation Mospilan (active ingredient: 20% acetamiprid) on the peripheral olfactory detection of a synthetic floral blend and foraging behaviour of buff-tailed bumblebee (Bombus terrestris) workers. We found that the applied treatment did not affect the antennal detection of the floral blend; however, it induced alterations in their foraging behaviour. Pesticide-treated individuals started foraging later, and the probability of finding the floral blend was lower than that of the control bumblebees. However, exposed bumblebees found the scent source faster than the controls. These results suggest that acetamiprid-containing Mospilan may disrupt the activity and orientation of foraging bumblebees. We hypothesize that the observed effects of pesticide exposure on foraging behaviour could be mediated through neurophysiological and endocrine mechanisms. We propose that future investigations should clarify whether such sub-lethal effects can affect pollinators' population dynamics and their ecosystem services.


Asunto(s)
Flores , Insecticidas , Neonicotinoides , Odorantes , Animales , Abejas/efectos de los fármacos , Abejas/fisiología , Insecticidas/farmacología , Flores/química , Odorantes/análisis , Neonicotinoides/farmacología , Polinización/efectos de los fármacos
15.
Data Brief ; 54: 110467, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38725548

RESUMEN

This data article provides high-quality turbulent inflow boundary data with a high spatial and temporal resolution of a very rough atmospheric boundary layer (ABL) wind tunnel, which can be applied as the large eddy simulation (LES) inflow condition on the Michelstadt test cases. A high-quality LES of the WOTAN wind tunnel of the Environmental Wind Tunnel Laboratory (EWTL) was conducted using OpenFOAM software, and data is stored at a plane at 1000Hz frequency at the end of the roughness elements. This data serves as the turbulent inflow boundary condition, offering computational fluid dynamics (CFD) researchers a cost-effective means to simulate the benchmark Michelstadt test cases for LES validation. This data will be utilized to perform high-quality LES, which are pivotal in bridging the research gap in understanding the intricate nature of wind dynamics in a realistic urban environment.

16.
Micromachines (Basel) ; 15(2)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38398926

RESUMEN

This study details the development and validation of a graphene-based ice detection system, designed to enhance flight safety by monitoring ice accumulation on aircraft surfaces. The system employs a semiconductive polymer (PEDOT:PSS) with graphene electrodes, interpreting resistance changes to detect water impact and ice formation in real time. The sensor's performance was rigorously tested in a wind tunnel under various temperature and airflow conditions, focusing on resistance signal dependency on air temperature and phase change. The results demonstrate the sensor's ability to distinguish water droplet impacts from ice formation, with a notable correlation between resistance signal amplitude and water droplet impacts leading to ice accretion. Further analysis shows a significant relationship between air temperature and the resistance signal amplitude, particularly at lower temperatures beneficial to ice formation. This underlines the sensor's precision in varied atmospheric conditions. The system's compact design and accurate detection highlight its potential for improving aircraft ice monitoring, offering a path toward a robust and reliable ice detection system.

17.
Pest Manag Sci ; 80(2): 473-497, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37794582

RESUMEN

BACKGROUND: We designed an umbrella wind-field-type anti-drift spraying device to improve droplet deposit in the fruit tree canopy, reduce spray drift between fruit tree rows, and avoid uneven droplet deposit in the canopy. RESULTS: We used Computational Fluid Dynamics combined with wind field tests to optimize the parameters of the anti-drift spray device, and the results showed that airflow velocity at the outlet of the device after optimization was 24.5 m s-1 , which is 48% higher than that before optimization (16.5 m s-1 ) airflow velocity. We designed wind tunnel tests and field tests to analyze the anti-drift characteristics of the anti-drift spraying device. Wind tunnel test results showed that the side airflow velocity, outlet diameter, spray distance, and spray drift ratio were correlated. The mathematical models established by vertical and horizontal multifactor orthogonal tests were significant (P < 0.05, R2 0.947, 0.878, respectively). The results of the field tests showed that side airflow, velocity spray pressure and outlet diameter had significant effects on the droplet deposit characteristics (in descending order: the side airflow velocity, spray pressure, and outlet diameter). The maximum droplet deposit was 6.34 µL cm-2 when the side airflow velocity was 2 m s-1 , the spray pressure was 0.4 MPa, and the outlet diameter was 70 mm2 . When the side airflow velocity exceeded 2 m s-1 , the outlet diameter and spray pressure had to be reduced to ensure better droplet deposit. CONCLUSION: The results indicated that the umbrella wind field could reduce spray drift and ineffective deposit in off-target areas and provides a reference for the comprehensive analysis of the spray drift deposit law. © 2023 Society of Chemical Industry.


Asunto(s)
Mariposas Nocturnas , Plaguicidas , Animales , Agricultura/métodos , Tamaño de la Partícula , Modelos Teóricos , Plaguicidas/análisis
18.
Environ Int ; 183: 108402, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38150804

RESUMEN

Choosing a suitable bioaerosol sampler for atmospheric microbial monitoring has been a challenge to researchers interested in environmental microbiology, especially during a pandemic. However, a comprehensive and integrated evaluation method to fully assess bioaerosol sampler performance is still lacking. Herein, we constructed a customized wind tunnel operated at 2-20 km/h wind speed to systematically and efficiently evaluate the performance of six frequently used samplers, where various aerosols, including Arizona test dust, bacterial spores, gram-positive and gram-negative bacteria, phages, and viruses, were generated. After 10 or 60 min of sampling, the physical and biological sampling efficiency and short or long-term sampling capabilities were determined by performing aerodynamic particle size analysis, live microbial culturing, and a qPCR assay. The results showed that AGI-30 and BioSampler impingers have good physical and biological sampling efficiencies for short-term sampling. However, their ability to capture aerosols at low concentrations is restricted. SASS 2300 and BSA-350 wet-wall cyclones had excellent enrichment ratios and high microbial cultivability in both short-term and long-term sampling; however, they were not suitable for quantitative studies of aerosols. Polycarbonate filter samplers showed outstanding performance in physical and long-term sampling but lacked the ability to maintain microbial activity, which can be improved by gelatin filter samplers. However, limitations remain for some fragile microorganisms, such as E. coli phage PhiX174 and coronavirus GX_P2V. In addition, the effects of wind speed and direction should be considered when sampling particles larger than 4 µm. This study provides an improved strategy and guidance for the characterization and selection of a bioaerosol sampler for better measurement and interpretation of collected ambient bioaerosols.


Asunto(s)
Exposición Profesional , Exposición Profesional/análisis , Escherichia coli , Antibacterianos/análisis , Monitoreo del Ambiente/métodos , Bacterias Gramnegativas , Bacterias Grampositivas , Aerosoles/análisis , Tamaño de la Partícula
19.
Data Brief ; 52: 109856, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38146293

RESUMEN

This data article provides temporally and spatially high-resolution datasets of the indoor velocity fields for cross-ventilation models of two-layered simplified buildings separated by a second floor at the middle height with an opening using wind-tunnel experiments. The datasets are based on the research article entitled "Quantifying natural cross-ventilation flow of a two-layered model used for terraced houses in tropical zones by particle image velocimetry" by Ali et al. [1]. Two cases are considered based on the positions of the inlet and outlet openings on each floor. The measurements were conducted using hot-wire anemometry (HWA) with 10,000 Hz and particle image velocimetry (PIV) with 1000 Hz for a sufficiently long period to determine reliable statistics of the mean, variances, and covariances. In addition, the article provides the instantaneous datasets of two velocity components determined by PIV for the cross-ventilation models. The datasets can be used for both computational fluid dynamics (CFD) validation and further investigation of turbulent flow nature of the multi-layer cross ventilation flow.

20.
J Environ Radioact ; 272: 107363, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160503

RESUMEN

Release rate estimation is a vital means of revealing the emission process of radionuclides and assessing the environmental consequences in an emergency. Inverse modeling is widely used in emergency cases, but is vulnerable to plume biases in atmospheric dispersion modeling. One promising solution is a model called "Simultaneously Estimates the Release rate And Corrects both the plume range and Transport pattern" (SERACT). This study investigates the feasibility and behavior of SERACT based on four wind tunnel experiments replicating complex dispersion scenarios with both dense buildings and heterogeneous topography. SERACT's performance is compared with that of Tikhonov-regularized inversion and its predecessor. The results demonstrate that SERACT successfully corrects the modeled plume biases and simultaneously improves the release rate estimations in all four complex local-scale scenarios. The release rates retrieved by SERACT provide better agreement with the true release rates than those given by the other methods for all scenarios, with an average deviation of only 5.83%. After correction, the simulated plume reproduces the concentrations at all sites and achieves the best Pearson correlation coefficient (1.00) and fraction of simulations within a factor of 2 of the measurements (1.00); these values are 7.33 and 2.09 times higher, respectively, than those of simulations using release rates obtained using Tikhonov-regularized inversion.


Asunto(s)
Contaminantes Radiactivos del Aire , Monitoreo de Radiación , Modelos Teóricos , Monitoreo de Radiación/métodos , Contaminantes Radiactivos del Aire/análisis , Radioisótopos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA