Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Genome Biol ; 25(1): 204, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090757

RESUMEN

BACKGROUND: DNA methylation in the form of 5-methylcytosine (5mC) is the most abundant base modification in animals. However, 5mC levels vary widely across taxa. While vertebrate genomes are hypermethylated, in most invertebrates, 5mC concentrates on constantly and highly transcribed genes (gene body methylation; GbM) and, in some species, on transposable elements (TEs), a pattern known as "mosaic". Yet, the role and developmental dynamics of 5mC and how these explain interspecies differences in DNA methylation patterns remain poorly understood, especially in Spiralia, a large clade of invertebrates comprising nearly half of the animal phyla. RESULTS: Here, we generate base-resolution methylomes for three species with distinct genomic features and phylogenetic positions in Annelida, a major spiralian phylum. All possible 5mC patterns occur in annelids, from typical invertebrate intermediate levels in a mosaic distribution to hypermethylation and methylation loss. GbM is common to annelids with 5mC, and methylation differences across species are explained by taxon-specific transcriptional dynamics or the presence of intronic TEs. Notably, the link between GbM and transcription decays during development, alongside a gradual and global, age-dependent demethylation in adult stages. Additionally, reducing 5mC levels with cytidine analogs during early development impairs normal embryogenesis and reactivates TEs in the annelid Owenia fusiformis. CONCLUSIONS: Our study indicates that global epigenetic erosion during development and aging is an ancestral feature of bilateral animals. However, the tight link between transcription and gene body methylation is likely more important in early embryonic stages, and 5mC-mediated TE silencing probably emerged convergently across animal lineages.


Asunto(s)
Envejecimiento , Metilación de ADN , Epigénesis Genética , Animales , Envejecimiento/genética , Anélidos/genética , Filogenia , Epigenoma , 5-Metilcitosina/metabolismo , Elementos Transponibles de ADN , Evolución Molecular
2.
Zool Res ; 45(5): 1013-1026, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39147716

RESUMEN

DNA methylation plays a crucial role in environmental adaptations. Here, using whole-genome bisulfite sequencing, we generated comprehensive genome-wide DNA methylation profiles for the high-altitude Yunnan snub-nosed monkey ( Rhinopithecus bieti) and the closely related golden snub-nosed monkey ( R. roxellana). Our findings indicated a slight increase in overall DNA methylation levels in golden snub-nosed monkeys compared to Yunnan snub-nosed monkeys, suggesting a higher prevalence of hypermethylated genomic regions in the former. Comparative genomic methylation analysis demonstrated that genes associated with differentially methylated regions were involved in membrane fusion, vesicular formation and trafficking, hemoglobin function, cell cycle regulation, and neuronal differentiation. These results suggest that the high-altitude-related epigenetic modifications are extensive, involving a complete adaptation process from the inhibition of single Ca 2+ channel proteins to multiple proteins collaboratively enhancing vesicular function or inhibiting cell differentiation and proliferation. Functional assays demonstrated that overexpression or down-regulation of candidate genes, such as SNX10, TIMELESS, and CACYBP, influenced cell viability under stress conditions. Overall, this research suggests that comparing DNA methylation across closely related species can identify novel candidate genomic regions and genes associated with local adaptations, thereby deepening our understanding of the mechanisms underlying environmental adaptations.


Asunto(s)
Altitud , Metilación de ADN , Epigénesis Genética , Animales , Adaptación Fisiológica/genética , Colobinae/genética , Colobinae/fisiología
3.
Front Plant Sci ; 15: 1407700, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978517

RESUMEN

Rubber tree (Hevea brasiliensis) is reproduced by bud grafting for commercial planting, but significant intraclonal variations exist in bud-grafted clones. DNA methylation changes related to grafting may be partly responsible for intraclonal variations. In the current study, whole-genome DNA methylation profiles of grafted rubber tree plants (GPs) and their donor plants (DPs) were evaluated by whole-genome bisulfite sequencing. Data showed that DNA methylation was downregulated and DNA methylations in CG, CHG, and CHH sequences were reprogrammed in GPs, suggesting that grafting induced the reprogramming of DNA methylation. A total of 5,939 differentially methylated genes (DMGs) were identified by comparing fractional methylation levels between GPs and DPs. Transcriptional analysis revealed that there were 9,798 differentially expressed genes (DEGs) in the DP and GP comparison. A total of 1,698 overlapping genes between DEGs and DMGs were identified. These overlapping genes were markedly enriched in the metabolic pathway and biosynthesis of secondary metabolites by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Global DNA methylation and transcriptional analyses revealed that reprogramming of DNA methylation is correlated with gene expression in grafted rubber trees. The study provides a whole-genome methylome of rubber trees and an insight into the molecular mechanisms underlying the intraclonal variations existing in the commercial planting of grafted rubber trees.

4.
Methods Mol Biol ; 2842: 353-382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39012605

RESUMEN

The analysis of genome-wide epigenomic alterations including DNA methylation and hydroxymethylation has become a subject of intensive research for many biological and clinical questions. DNA methylation analysis bears the particular promise to supplement or replace biochemical and imaging-based tests for the next generation of personalized medicine. Whole-genome bisulfite sequencing (WGBS) using next-generation sequencing technologies is currently considered the gold standard for a comprehensive and quantitative analysis of DNA methylation throughout the genome. However, bisulfite conversion does not allow distinguishing between cytosine methylation and hydroxymethylation requiring an additional chemical or enzymatic step to identify hydroxymethylated cytosines. Here, we provide a detailed protocol based on a commercial kit for the preparation of sequencing libraries for the comprehensive whole-genome analysis of DNA methylation and/or hydroxymethylation. The protocol is based on the construction of sequencing libraries from limited amounts of input DNA by ligation of methylated adaptors to the fragmented DNA prior to bisulfite conversion. For analyses requiring a quantitative distinction between 5-methylcytosine and 5-hydroxymethylcytosines levels, an oxidation step is included in the same workflow to perform oxidative bisulfite sequencing (OxBs-Seq). In this case, two sequencing libraries will be generated and sequenced: a classic methylome following bisulfite conversion and analyzing modified cytosines (not distinguishing between methylated and hydroxymethylated cytosines) and a methylome analyzing only methylated cytosines, respectively. Hydroxymethylation levels are deduced from the differences between the two reactions. We also provide a step-by-step description of the data analysis using publicly available bioinformatic tools. The described protocol has been successfully applied to different human and plant samples and yields robust and reproducible results.


Asunto(s)
5-Metilcitosina , Metilación de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Sulfitos , Secuenciación Completa del Genoma , Sulfitos/química , Secuenciación Completa del Genoma/métodos , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/análisis , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Epigenómica/métodos , Análisis de Secuencia de ADN/métodos , Epigénesis Genética
5.
Methods Mol Biol ; 2842: 383-390, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39012606

RESUMEN

Whole-genome bisulfite sequencing (WGBS) enables the detection of DNA methylation at a single base-pair resolution. The treatment of DNA with sodium bisulfite allows the discrimination of methylated and unmethylated cytosines, but the power of this technology can be limited by the input amounts of DNA and the length of DNA fragments due to DNA damage caused by the desulfonation process. Here, we describe a WGBS library preparation protocol that minimizes the loss and damage of DNA, generating high-quality libraries amplified with fewer polymerase chain reaction (PCR) cycles, and hence data with fewer PCR duplicates, from lower amounts of input material. Briefly, genomic DNA is sheared, end-repaired, 3'-adenylated, and ligated to adaptors with fewer clean-up steps in between, minimizing DNA loss. The adapter-ligated DNA is then treated with sodium bisulfite and amplified with a few PCR cycles to reach the yield needed for sequencing.


Asunto(s)
Metilación de ADN , Reacción en Cadena de la Polimerasa , Sulfitos , Secuenciación Completa del Genoma , Sulfitos/química , Secuenciación Completa del Genoma/métodos , Humanos , Reacción en Cadena de la Polimerasa/métodos , ADN/genética , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Epigenoma , Islas de CpG
6.
Methods Mol Biol ; 2842: 391-403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39012607

RESUMEN

DNA methylation is a covalent modification of DNA that plays important roles in processes such as the regulation of gene expression, transcription factor binding, and suppression of transposable elements. The use of whole-genome bisulfite sequencing (WGBS) enables the genome-wide identification and quantification of DNA methylation patterns at single-base resolution and is the gold standard for the analysis of DNA methylation. However, the computational analysis of WGBS data can be particularly challenging, as many computationally intensive steps are required. Here, we outline step-by-step an approach for the analysis and interpretation of WGBS data. First, sequencing reads must be trimmed, quality-checked, and aligned to the genome. Second, DNA methylation levels are estimated at each cytosine position using the aligned sequence reads of the bisulfite-treated DNA. Third, regions of differential cytosine methylation between samples can be identified. Finally, these data need to be visualized and interpreted in the context of the biological question at hand.


Asunto(s)
Metilación de ADN , Sulfitos , Secuenciación Completa del Genoma , Sulfitos/química , Secuenciación Completa del Genoma/métodos , Humanos , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biología Computacional/métodos , Programas Informáticos , Islas de CpG , ADN/genética , ADN/química , Genómica/métodos
7.
J Exp Bot ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836523

RESUMEN

DNA methylation is environment-sensitive and can mediate stress responses. In long-lived trees, changing environments might cumulatively shape the methylome landscape over their lifetime. However, because high-resolution methylome studies usually focus on single environmental cues, it remains unclear to what extent the methylation responses are generic or stress-specific, and how this relates to their long-term stability. Here, we studied the methylome plasticity of a Populus nigra cv. 'Italica' clone that is widespread across Europe. Adult trees from a variety of geographic locations were clonally propagated in a common garden experiment, and the ramets were exposed to cold, heat, drought, herbivory, rust infection, and salicylic acid treatments. Through comprehensive whole-genome bisulfite sequencing, we analyzed stress-induced and naturally occurring DNA methylation variants. Stress-induced methylation changes predominantly targeted transposable elements. When occurring in CG/CHG contexts, the same regions were often affected by multiple stresses, suggesting a generic response of the methylome. Drought stress caused a distinct CHH hypermethylation response in transposable elements, affecting entire TE superfamilies near drought-responsive genes. Methylation differences in CG/CHG contexts that were induced by stress treatments showed striking overlap with methylation differences observed between trees from distinct geographical locations. Thus, we revealed genomic hotspots of methylation change that are not stress-specific and that contribute to natural DNA methylation variation, and we identified specific transposable element superfamilies that respond to a specific stress with possible functional consequences. Our results underscore the importance of studying the effects of multiple stressors in a single experiment for recognizing general versus stress-specific methylome responses.

8.
BMC Pregnancy Childbirth ; 24(1): 433, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886689

RESUMEN

OBJECTIVIES: Pregnancy induced hypertension (PIH) syndrome is a disease that unique to pregnant women and is associated with elevated risk of offspring cardiovascular diseases (CVDs) and neurodevelopmental disorders in their kids. Previous research on cord blood utilizing the Human Methylation BeadChip or EPIC array revealed that PIH is associated with specific DNA methylation site. Here, we investigate the whole genome DNA methylation landscape of cord blood from newborns of PIH mother. METHODS: Whole-genome bisulfite sequencing (WGBS) was used to examine the changes in whole genome DNA methylation in the umbilical cord blood of three healthy (NC) and four PIH individuals. Using methylKit, we discovered Hypo- and hyper- differentially methylated probes (DMPs) or methylated regions (DMRs) in the PIH patients' cord blood DNA. Pathway enrichments were assessed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment assays. DMPs or DMRs relevant to the immunological, neurological, and circulatory systems were also employed for enrichment assay, Metascape analysis and PPI network analysis. RESULTS: 520 hyper- and 224 hypo-DMPs, and 374 hyper- and 186 hypo-DMRs between NC and PIH group, respectively. Both DMPs and DMRs have enhanced pathways for cardiovascular, neurological system, and immune system development. Further investigation of DMPs or DMRs related to immunological, neurological, and circulatory system development revealed that TBK1 served as a hub gene for all three developmental pathways. CONCLUSION: PIH-associated DMPs or DMRs in umbilical cord blood DNA may play a role in immunological, neurological, and circulatory system development. Abnormal DNA methylation in the immune system may also contribute to the development of CVDs and neurodevelopment disorders.


Asunto(s)
Metilación de ADN , Sangre Fetal , Hipertensión Inducida en el Embarazo , Humanos , Femenino , Embarazo , Sangre Fetal/química , Recién Nacido , Hipertensión Inducida en el Embarazo/genética , Hipertensión Inducida en el Embarazo/sangre , Adulto , Epigenoma , Epigénesis Genética , Estudios de Casos y Controles , Secuenciación Completa del Genoma/métodos
9.
Sci Total Environ ; 942: 173427, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38797400

RESUMEN

The recurring appearance of Ulva prolifera green tides has become a pressing environmental issue, especially for marine transportation, tourism, and aquaculture in the stage of decomposition. An abundance of decaying U. prolifera leads to water acidification, hypoxia and pathogenic microorganism proliferation, threatening marine germplasm resources, particularly benthic organisms with weak escape ability. Epigenetic modification is considered to be one of the molecular mechanisms involved in the plastic adaptive response to environmental changes. However, few studies concerning the specific impact of decaying green tide on benthic animals at the epigenetic level. In this study, decomposing algal effluents of U. prolifera, sediments containing uncorrupted U. prolifera, pathogenic microorganism were considered as impact factors, to reveal the effect of decaying U. prolifera on marine economic benthic species, Paralichthys olivaceus, using both field and laboratory simulation experiments. Field simulation experiment showed higher mortality rates and serious histopathological damage than the laboratory simulation experiment. And both the decaying U. prolifera and the sediment containing U. prolifera were harmful to P. olivaceus. Genome-wide DNA methylation and transcription correlation analyses showed that the response of P. olivaceus to green tide stress and bacterial infection was mainly mediated by immune signaling pathways such as PI3K-Akt signaling pathway. DNA methylation regulates the expression of immune-related genes involved in the PI3K-Akt signaling pathway, which enables P. olivaceus to adapt to the adverse environmental stresses by resisting apoptosis. In summary, this research analyzed the potential role of P. olivaceus in decaying U. prolifera, which is of great significance for understanding the impact of decaying green tide on marine commercial fish and also provides some theoretical guidance for the proliferation and release of fish seedlings.


Asunto(s)
Metilación de ADN , Ulva , Animales , Peces Planos/genética , Expresión Génica , Enfermedades de los Peces/microbiología
10.
Int J Biol Macromol ; 266(Pt 2): 131380, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580022

RESUMEN

Modifications within the epigenome of an organism in response to external environmental conditions allow it to withstand the hostile stress factors. Drought in chickpea is a severely limiting abiotic stress factor which is known to cause huge yield loss. To analyse the methylome of chickpea in response to drought stress conditions and how it affects gene expression, we performed whole-genome bisulfite sequencing (WGBS) and RNA-seq of two chickpea genotypes which contrast for drought tolerance. It was observed that the mCHH was most variable under drought stress and the drought tolerant (DT) genotype exhibited substantial genome-wide hypomethylation as compared to the drought sensitive (DS) genotype. Specifically, there was substantial difference in gene expression and methylation for the ribosomal genes for the tolerant and sensitive genotypes. The differential expression of these genes was in complete agreement with earlier reported transcriptomes in chickpea. Many of these genes were hypomethylated (q < 0.01) and downregulated under drought stress (p < 0.01) in the sensitive genotype. The gene RPS6 (ribosomal protein small subunit) was found to be downregulated and hypomethylated in the drought sensitive genotype which could possibly lead to reduced ribosomal biosynthesis. This study provides novel insights into regulation of drought-responsive genes in chickpea.


Asunto(s)
Cicer , Metilación de ADN , Sequías , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Cicer/genética , Metilación de ADN/genética , Estrés Fisiológico/genética , Genotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica
11.
Insect Mol Biol ; 33(5): 493-502, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38668923

RESUMEN

DNA methylation in insects is generally low in abundance, and its role is not well understood. It is often localised in protein coding regions and associated with the expression of 'housekeeping' genes. Few studies have explored DNA methylation dynamics during lifecycle stage transitions in holometabolous (metamorphosing) insects. Using targeted mass spectrometry, we have found a significant difference in global DNA methylation levels between larvae, pupae and adults of Helicoverpa armigera (Lepidoptera: Noctuidae) Hübner, a polyphagous pest of agricultural importance. Whole-genome bisulfite sequencing confirmed these observations and pointed to non-CG context being the primary explanation for the difference observed between pupa and adult. Non-CG methylation was enriched in genes specific to various signalling pathways (Hippo signalling, Hedgehog signalling and mitogen-activated protein kinase (MAPK) signalling) and ATP-dependent chromatin remodelling. Understanding the function of this epigenetic mark could be a target in future studies focusing on integrated pest management.


Asunto(s)
Metilación de ADN , Mariposas Nocturnas , Pupa , Animales , Mariposas Nocturnas/genética , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/metabolismo , Pupa/crecimiento & desarrollo , Pupa/genética , Pupa/metabolismo , Larva/crecimiento & desarrollo , Larva/genética , Larva/metabolismo , Epigénesis Genética , Metamorfosis Biológica/genética , Helicoverpa armigera
12.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38256191

RESUMEN

DNA methylation is widely found in higher plants and can control gene expression by regulation without changing the DNA sequence. In this study, the whole-genome methylation map of sugar beet was constructed by WGBS (whole-genome bisulfite sequencing) technology, and the results of WGBS were verified by bisulfite transformation, indicating that the results of WGBS technology were reliable. In addition, 12 differential methylation genes (DMGs) were identified, which were related to carbohydrate and energy metabolism, pollen wall development, and endogenous hormone regulation. Quantitative real-time PCR (qRT-PCR) showed that 75% of DMG expression levels showed negative feedback with methylation level, indicating that DNA methylation can affect gene expression to a certain extent. In addition, we found hypermethylation inhibited gene expression, which laid a foundation for further study on the molecular mechanism of DNA methylation at the epigenetic level in sugar beet male sterility.


Asunto(s)
Beta vulgaris , Metilación de ADN , Sulfitos , Beta vulgaris/genética , Infertilidad Vegetal/genética , Verduras , Azúcares
13.
J Biol Chem ; 300(1): 105562, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38097189

RESUMEN

Extensive epigenetic reprogramming occurs during preimplantation embryonic development. However, the impact of DNA methylation in plateau yak preimplantation embryos and how epigenetic reprogramming contributes to transcriptional regulatory networks are unclear. In this study, we quantified gene expression and DNA methylation in oocytes and a series of yak embryos at different developmental stages and at single-cell resolution using single-cell bisulfite-sequencing and RNA-seq. We characterized embryonic genome activation and maternal transcript degradation and mapped epigenetic reprogramming events critical for embryonic development. Through cross-species transcriptome analysis, we identified 31 conserved maternal hub genes and 39 conserved zygotic hub genes, including SIN3A, PRC1, HDAC1/2, and HSPD1. Notably, by combining single-cell DNA methylation and transcriptome analysis, we identified 43 candidate methylation driver genes, such as AURKA, NUSAP1, CENPF, and PLK1, that may be associated with embryonic development. Finally, using functional approaches, we further determined that the epigenetic modifications associated with the histone deacetylases HDAC1/2 are essential for embryonic development and that the deubiquitinating enzyme USP7 may affect embryonic development by regulating DNA methylation. Our data represent an extensive resource on the transcriptional dynamics of yak embryonic development and DNA methylation remodeling, and provide new insights into strategies for the conservation of germplasm resources, as well as a better understanding of mammalian early embryonic development that can be applied to investigate the causes of early developmental disorders.


Asunto(s)
Blastocisto , Metilación de ADN , Embrión de Mamíferos , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Análisis de Expresión Génica de una Sola Célula , Sulfitos , Animales , Bovinos , Femenino , Embarazo , Blastocisto/metabolismo , Desarrollo Embrionario/genética , Epigénesis Genética , Perfilación de la Expresión Génica , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Sulfitos/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Embrión de Mamíferos/embriología , Embrión de Mamíferos/enzimología
14.
BMC Genom Data ; 24(1): 77, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097986

RESUMEN

BACKGROUND: Goat products have played a crucial role in meeting the dietary demands of people since the Neolithic era, giving rise to a multitude of goat breeds globally with varying characteristics and meat qualities. The primary objective of this study is to pinpoint the pivotal genes and their functions responsible for regulating muscle fiber growth in the longissimus dorsi muscle (LDM) through DNA methylation modifications in Hainan black goats and hybrid goats. METHODS: Whole-genome bisulfite sequencing (WGBS) was employed to scrutinize the impact of methylation on LDM growth. This was accomplished by comparing methylation differences, gene expression, and their associations with growth-related traits. RESULTS: In this study, we identified a total of 3,269 genes from differentially methylated regions (DMR), and detected 189 differentially expressed genes (DEGs) through RNA-seq analysis. Hypo DMR genes were primarily enriched in KEGG terms associated with muscle development, such as MAPK and PI3K-Akt signaling pathways. We selected 11 hub genes from the network that intersected the gene sets within DMR and DEGs, and nine genes exhibited significant correlation with one or more of the three LDM growth traits, namely area, height, and weight of loin eye muscle. Particularly, PRKG1 demonstrated a negative correlation with all three traits. The top five most crucial genes played vital roles in muscle fiber growth: FOXO3 safeguarded the myofiber's immune environment, FOXO6 was involved in myotube development and differentiation, and PRKG1 facilitated vasodilatation to release more glucose. This, in turn, accelerated the transfer of glucose from blood vessels to myofibers, regulated by ADCY5 and AKT2, ultimately ensuring glycogen storage and energy provision in muscle fibers. CONCLUSION: This study delved into the diverse methylation modifications affecting critical genes, which collectively contribute to the maintenance of glycogen storage around myofibers, ultimately supporting muscle fiber growth.


Asunto(s)
Cabras , Fosfatidilinositol 3-Quinasas , Animales , Humanos , Cabras/genética , Fibras Musculares Esqueléticas , Glucosa , Glucógeno , Factores de Transcripción Forkhead
15.
Curr Issues Mol Biol ; 45(12): 9656-9673, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38132449

RESUMEN

DNA methylation is a pivotal process that regulates gene expression and facilitates rapid adaptation to challenging environments. The pinewood nematode (PWN; Bursaphelenchus xylophilus), the causative agent of pine wilt disease, survives at low temperatures through third-stage dispersal juvenile, making it a major pathogen for pines in Asia. To comprehend the impact of DNA methylation on the formation and environmental adaptation of third-stage dispersal juvenile, we conducted whole-genome bisulfite sequencing and transcriptional sequencing on both the third-stage dispersal juvenile and three other propagative juvenile stages of PWN. Our findings revealed that the average methylation rate of cytosine in the samples ranged from 0.89% to 0.99%. Moreover, we observed significant DNA methylation changes in the third-stage dispersal juvenile and the second-stage propagative juvenile of PWN, including differentially methylated cytosine (DMCs, n = 435) and regions (DMRs, n = 72). In the joint analysis of methylation-associated transcription, we observed that 23 genes exhibited overlap between differentially methylated regions and differential gene expression during the formation of the third-stage dispersal juvenile of PWN. Further functional analysis of these genes revealed enrichment in processes related to lipid metabolism and fatty acid synthesis. These findings emphasize the significance of DNA methylation in the development of third-stage dispersal juvenile of PWN, as it regulates transcription to enhance the probability of rapid expansion in PWN.

16.
Mol Reprod Dev ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37882215

RESUMEN

With the widespread application of embryo cryopreservation in assisted reproductive techniques, it is necessary to assess the safety of long-term cryopreservation of human embryos and it is unclear whether storage time has an impact on the DNA methylation profiles of human embryos. Nine women who received IVF treatment were recruited for this study. The retrieved eight-cell human embryos were classified into three groups including fresh embryos, cryopreserved embryos stored for 3 years, and cryopreserved embryos stored for 8 years. Single-cell whole-genome bisulfite sequencing (scWGBS) was conducted. The genome-wide methylation pattern of the fresh and two cryopreserved groups were similar. In addition, the methylation level in different genomic regions showed comparable patterns and no significant differences were observed in the methylation level of imprinted genes among the three groups. A total of 587 differentially methylated regions (DMRs) in the 3-year group and 540 DMRs in the 8-year group were identified comparing to fresh group. However, they were not enriched in promoters and had a similar genome-wide distributions, suggesting that these DMRs may not contribute to the changes in corresponding gene expressions. Our study illustrated that long-term cryopreservation will not affect the DNA methylation profiles of human eight-cell embryos at single-cell level.

17.
Front Genet ; 14: 1269084, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900177

RESUMEN

Background: Oral squamous cell carcinoma (OSCC) is one of the most common types of cancer worldwide. Although overall losses of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) have been previously observed, a genome-wide, single-base-resolution, and simultaneous mapping of 5mC and 5hmC in OSCC is still unaccomplished. Similarly, the mechanism of how 5mC and 5hmC collectively lead to abnormal gene expression in OSCC is largely unexplored. Using parallel whole-genome bisulfite sequencing (WGBS) and whole-genome oxidative bisulfite sequencing (oxWGBS), we characterized 5mC- and 5hmC-profiles at single-nucleotide resolution in paired primary OSCC samples and their normal adjacent tissues (NATs). We also analyzed the effect of 5mC- and 5hmC-modifications on differential gene expression in OSCC using multi-omics analysis. Results: An overall reduction of both 5mC and 5hmC in various genomic regions have been observed in OSCC samples. At promoter regions, a total of 6,921 differentially methylated regions and 1,024 differentially hydroxymethylated regions were identified in OSCC. Interestingly, compared to bidirectional modification with 5mC and 5hmC, unidirectional modification with 5mC and 5hmC at the promoters is associated with bigger change in the gene expression. Additionally, genes bearing unidirectional modification with 5mC and 5hmC at the promoters are enriched in signaling pathways like cell proliferation, cell differentiation, and receptor tyrosine kinase pathway that are essential for the tumorigenesis. Finally, the grouped expression signature of top 20 genes bearing promoter-unidirectional-modification with 5mC and 5hmC tends to correlate with the clinical outcome of certain subtypes of head and neck squamous cell carcinoma. Conclusion: Using parallel WGBS and oxWGBS analyses, we observed an overall reduction of 5mC- and 5hmC-modifications at various genomic regions in OSCC. Unidirectional modification with 5mC and 5hmC at the promoters is associated with enhanced changes in gene expression in OSCC tissues. Furthermore, such differentially expressed genes bearing unidirectional modifications with 5mC and 5hmC at the promoters might have clinical relevance to the outcome of OSCC.

18.
Hum Genomics ; 17(1): 92, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803336

RESUMEN

BACKGROUND: Congenital heart defects (CHDs) affect approximately half of individuals with Down syndrome (DS), but the molecular reasons for incomplete penetrance are unknown. Previous studies have largely focused on identifying genetic risk factors associated with CHDs in individuals with DS, but comprehensive studies of the contribution of epigenetic marks are lacking. We aimed to identify and characterize DNA methylation differences from newborn dried blood spots (NDBS) of DS individuals with major CHDs compared to DS individuals without CHDs. METHODS: We used the Illumina EPIC array and whole-genome bisulfite sequencing (WGBS) to quantitate DNA methylation for 86 NDBS samples from the California Biobank Program: (1) 45 DS-CHD (27 female, 18 male) and (2) 41 DS non-CHD (27 female, 14 male). We analyzed global CpG methylation and identified differentially methylated regions (DMRs) in DS-CHD versus DS non-CHD comparisons (both sex-combined and sex-stratified) corrected for sex, age of blood collection, and cell-type proportions. CHD DMRs were analyzed for enrichment in CpG and genic contexts, chromatin states, and histone modifications by genomic coordinates and for gene ontology enrichment by gene mapping. DMRs were also tested in a replication dataset and compared to methylation levels in DS versus typical development (TD) WGBS NDBS samples. RESULTS: We found global CpG hypomethylation in DS-CHD males compared to DS non-CHD males, which was attributable to elevated levels of nucleated red blood cells and not seen in females. At a regional level, we identified 58, 341, and 3938 CHD-associated DMRs in the Sex Combined, Females Only, and Males Only groups, respectively, and used machine learning algorithms to select 19 Males Only loci that could distinguish CHD from non-CHD. DMRs in all comparisons were enriched for gene exons, CpG islands, and bivalent chromatin and mapped to genes enriched for terms related to cardiac and immune functions. Lastly, a greater percentage of CHD-associated DMRs than background regions were differentially methylated in DS versus TD samples. CONCLUSIONS: A sex-specific signature of DNA methylation was detected in NDBS of DS-CHD compared to DS non-CHD individuals. This supports the hypothesis that epigenetics can reflect the variability of phenotypes in DS, particularly CHDs.


Asunto(s)
Síndrome de Down , Cardiopatías Congénitas , Humanos , Masculino , Recién Nacido , Femenino , Síndrome de Down/genética , Epigenómica , Metilación de ADN/genética , Epigénesis Genética , Cardiopatías Congénitas/genética , Islas de CpG/genética , Cromatina
19.
AoB Plants ; 15(5): plad060, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37680204

RESUMEN

Heritable cytosine methylation plays a role in shaping plant phenotypes; however, no information is available about DNA methylation in cultivated lettuce (Lactuca sativa), one of the most important leafy vegetables. Whole-genome bisulfite sequencing (WGBS) performed on seeds of 95 accessions from eight morphologically distinct horticultural types (Batavia, butterhead, iceberg, Latin, leaf, oilseed, romaine and stem) revealed a high level of methylation in lettuce genome with an average methylation of 90.6 % in the CG context, 72.9 % in the CHG context and 7.5 % in the CHH context. Although WGBS did not show substantial differences in overall methylation levels across eight horticultural types, 350 differentially methylated regions (DMR) were identified. Majority of the 41 pivotal DMR overlapped with genomic features predicted or confirmed to be involved in plant growth and development. These results provide the first insight into lettuce DNA methylation and indicate a potential role for heritable variation in cytosine methylation in lettuce morphology. The results reveal that differences in methylation profiles of morphologically distinct horticultural types are already detectable in seeds. Identified DMR can be a focus of the future functional studies.

20.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37762347

RESUMEN

Through whole-genome bisulfite sequencing and RNA-seq, we determined the potential impact of autophagy in regulating DNA methylation in Arabidopsis, providing a solid foundation for further understanding the molecular mechanism of autophagy and how plants cope with nitrogen deficiency. A total of 335 notable differentially expressed genes (DEGs) were discovered in wild-type Arabidopsis (Col-0-N) and an autophagic mutant cultivated under nitrogen starvation (atg5-1-N). Among these, 142 DEGs were associated with hypomethylated regions (hypo-DMRs) and were upregulated. This suggests a correlation between DNA demethylation and the ability of Arabidopsis to cope with nitrogen deficiency. Examination of the hypo-DMR-linked upregulated DEGs indicated that the expression of MYB101, an ABA pathway regulator, may be regulated by DNA demethylation and the recruitment of transcription factors (TFs; ERF57, ERF105, ERF48, and ERF111), which may contribute to the growth arrest induced by abscisic acid (ABA). Additionally, we found that DNA methylation might impact the biosynthesis of salicylic acid (SA). The promoter region of ATGH3.12 (PBS3), a key enzyme in SA synthesis, was hypomethylated, combined with overexpression of PBS3 and its potential TF AT3G46070, suggesting that autophagy defects may lead to SA-activated senescence, depending on DNA demethylation. These findings suggest that DNA hypomethylation may impact the mechanism by which Arabidopsis autophagy mutants (atg5-1) respond to nitrogen deficiency, specifically in relation to ABA and SA regulation. Our evaluation of hormone levels verified that these two hormones are significantly enriched under nitrogen deficiency in atg5-1-N compared to Col-0-N.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA