Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 14(1): 21609, 2024 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-39294312

RESUMEN

Companion planting of white clover (Trifolium repens L.) with orchard grass (Dactylis glomerata L.), a famous hay grass, improves the forage quality of orchard grass. Microbiome profiling techniques can reveal the specific role of white clover companion planting with orchard grass. This study aimed to explore the microbiome distribution and gene functions of rhizosphere and non-rhizosphere soil via companion planting systems of white clover and orchard grass. From metagenomics sequencing analysis, we confirmed the significant role of white clover on soil environment modeling during companion planting with orchard grass. Twenty-eight biomarkers of rhizosphere soil organisms were identified during companion planting, including Proteobacteria, Betaproteobacteria, Flavobacteriia, and Caulobacterales. The number of gene functions of nitrogen and carbon fixation in companion planting was higher than that in single plants, indicating new functional flora for companion planting. We characterized specific rhizosphere effects, typical biomarker flora, and potential regulatory mechanisms for white clover-related companion planting by metagenomics analyses.


Asunto(s)
Microbiota , Rizosfera , Microbiología del Suelo , Trifolium , Trifolium/microbiología , Trifolium/genética , Trifolium/crecimiento & desarrollo , Microbiota/genética , Dactylis/genética , Dactylis/microbiología , Metagenómica/métodos , Bacterias/genética , Bacterias/clasificación , Biodiversidad
2.
Sci Total Environ ; 954: 176121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260487

RESUMEN

As a ubiquitous tire antioxidant, N-(1,3-Dimethyl-butyl)-N'-phenyl-p-phenylene- diamine (6PPD) exists widely in various environmental media and has been detected at high levels in the environment. However, the effects of 6PPD on plants are still poorly understood. In this study, a hydroponic experiment was carried out to investigate the response of white clover (Trifolium repens L.) stressed by 6PPD on physiology and metabolomics. The results indicated that the length of stem and root, as well as biomass were significantly reduced after 500 µg L-1 6PPD treatment. Photosynthetic performances including photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr) and chlorophyll content of leaves decreased in all treatments except 500 µg L-1 of 6PPD. The malondialdehyde (MDA) content in the shoot of white clover increased by 66.33 % when exposed to 500 µg L-1 of 6PPD compared to control group (CK). Hydrogen peroxide and superoxide anion presented a U-shape trend and began to increase at 500 µg L-1. Besides, peroxidase and catalase significantly decreased compared to CK after exposure to 500 µg L-1. Metabolic analysis of clover showed that 6PPD treatment induced changes in 10 metabolic pathways of white clover. Metabolites were significantly down-regulated after exposure to 500 µg L-1 in shoot, while significantly down-regulated in all treatment groups except 500 µg L-1 in root. These findings may provide a novel perspective for phytotoxicity assessment and phytoremediation of 6PPD.

3.
Ann Bot ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115051

RESUMEN

BACKGROUND AND AIMS: Leaf variegation is common in plants and confers diverse adaptive functions. However, its genetic underpinnings remain largely unresolved; this is particularly true for variegation that arises through modified leaf tissue structure that affects light reflection. White clover is naturally polymorphic for structure-based white leaf mark variegation. It therefore provides a useful system to examine the genetic basis of this phenotype, and to assess potential costs to photosynthetic efficiency resulting from modified leaf structures. This study sought to map the loci controlling the white leaf mark in white clover and evaluate the relationship between white leaf mark, leaf thickness, and photosynthetic efficiency. METHODS: We generated a high-density genetic linkage map from an F3 mapping population, employing reference genome-based SNP markers. White leaf mark was quantified through detailed phenotypic evaluations alongside leaf thickness to test how tissue thickness may affect the variegation phenotype. Quantitative trait locus (QTL) mapping was performed to characterize their genetic bases. Photosynthetic efficiency measurements were used to test for physiological trade-offs between variegation and photosynthetic output. KEY RESULTS: The V locus, a major gene responsible for the white leaf mark polymorphism, was mapped to the distal end of chromosome 5, and several modifier loci were also mapped that contribute additively to variegation intensity. The presence and intensity of white leaf mark was associated with greater leaf thickness; however, increased variegation did not detectably affect photosynthetic efficiency. CONCLUSIONS: We have successfully mapped the major locus governing the white leaf mark in white clover, along with several modifier loci, revealing a complex basis for this structure-based variegation. The apparent absence of compromised photosynthesis in variegated leaves challenges the notion that variegation creates fitness trade-offs between photosynthetic efficiency and other adaptive functions. This finding suggests that other factors may maintain the white leaf mark polymorphism in white clover.

4.
Viruses ; 16(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39205229

RESUMEN

Alfalfa mosaic virus (AMV) is one of the most widely distributed viruses; it often exhibits combined infection with white clover mosaic virus (WCMV). Even so, little is known about the effects of co-infection with AMV and WCMV on plants. To determine whether there is a synergistic effect of AMV and WCMV co-infection, virus co-infection was studied by electron microscopy, the double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), and real-time fluorescence quantitative PCR (RT-qPCR) of AMV and WCMV co-infection in Nicotiana benthamiana. Meanwhile, measurements were carried out on the photosynthetic pigments, photosynthetic gas exchange parameters, and chlorophyll fluorescence parameters. The results showed that the most severe disease development was induced by AMV and WCMV co-infection, and the disease grade was scale 7. N. benthamiana leaves induced mottled yellow-green alternating patterns, leaf wrinkling, and chlorosis, and chloroplasts were observed to be on the verge of disintegration. The relative accumulation of AMV CP and WCMV CP was significantly increased by 15.44-fold and 10.04-fold upon co-infection compared to that with AMV and WCMV single infection at 21 dpi. In addition, chlorophyll a, chlorophyll b, total chlorophyll, the net photosynthetic rate, the water use efficiency, the apparent electron transport rate, the PSII maximum photochemical efficiency, the actual photochemical quantum yield, and photochemical quenching were significantly reduced in leaves co-infected with AMV and WCMV compared to AMV- or WCMV-infected leaves and CK. On the contrary, the carotenoid content, transpiration rate, stomatal conductance, intercellular CO2 concentration, minimal fluorescence value, and non-photochemical quenching were significantly increased. These findings suggest that there was a synergistic effect between AMV and WCMV, and AMV and WCMV co-infection severely impacted the normal function of photosynthesis in N. benthamiana.


Asunto(s)
Virus del Mosaico de la Alfalfa , Clorofila , Cloroplastos , Nicotiana , Fotosíntesis , Enfermedades de las Plantas , Hojas de la Planta , Nicotiana/virología , Cloroplastos/virología , Cloroplastos/metabolismo , Enfermedades de las Plantas/virología , Virus del Mosaico de la Alfalfa/genética , Hojas de la Planta/virología , Clorofila/metabolismo , Coinfección/virología
5.
Plant Physiol Biochem ; 215: 109038, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39163651

RESUMEN

Anthocyanins and proanthocyanidins (PAs) are important secondary metabolites in plants, high contents of which are an important goal for quality breeding of white clover (Trifolium repens). However, the involvement of glutathione S-transferase (GST) in the transport of anthocyanins and PAs remains unexplored in white clover. This study identified 153 different TrGSTs in white clover. At the transcriptional level, compared to other TrGSTFs, TrGSTF10 and TrGSTF15 are highly expressed in the 'Purple' white clover, and they may work with the anthocyanin biosynthesis structural genes CHS and CHI to contribute to pigment buildup in white clover. Subcellular localization confirmed that TrGSTF10 and TrGSTF15 are located in the cytoplasm. Additionally, molecular docking experiments showed that TrGSTF10 and TrGSTF15 have similar binding affinity with two flavonoid monomers. Overexpression of TrGSTF15 complemented the deficiency of anthocyanin coloring and PA accumulation in the Arabidopsis tt19 mutant. The initial findings of this research indicate that TrGSTF15 encodes an important transporter of anthocyanin and PA in white clover, thus providing a new perspective for the further exploration of related transport and regulatory mechanisms.


Asunto(s)
Antocianinas , Glutatión Transferasa , Proteínas de Plantas , Proantocianidinas , Trifolium , Antocianinas/metabolismo , Antocianinas/genética , Trifolium/genética , Trifolium/metabolismo , Trifolium/enzimología , Proantocianidinas/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Transporte Biológico , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimología , Simulación del Acoplamiento Molecular , Plantas Modificadas Genéticamente
6.
BMC Biol ; 22(1): 165, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113037

RESUMEN

BACKGROUND: White clover (Trifolium repens) is a globally important perennial forage legume. This species also serves as an eco-evolutionary model system for studying within-species chemical defense variation; it features a well-studied polymorphism for cyanogenesis (HCN release following tissue damage), with higher frequencies of cyanogenic plants favored in warmer locations worldwide. Using a newly generated haplotype-resolved genome and two other long-read assemblies, we tested the hypothesis that copy number variants (CNVs) at cyanogenesis genes play a role in the ability of white clover to rapidly adapt to local environments. We also examined questions on subgenome evolution in this recently evolved allotetraploid species and on chromosomal rearrangements in the broader IRLC legume clade. RESULTS: Integration of PacBio HiFi, Omni-C, Illumina, and linkage map data yielded a completely de novo genome assembly for white clover (created without a priori sequence assignment to subgenomes). We find that white clover has undergone extensive transposon diversification since its origin but otherwise shows highly conserved genome organization and composition with its diploid progenitors. Unlike some other clover species, its chromosomal structure is conserved with other IRLC legumes. We further find extensive evidence of CNVs at the major cyanogenesis loci; these contribute to quantitative variation in the cyanogenic phenotype and to local adaptation across wild North American populations. CONCLUSIONS: This work provides a case study documenting the role of CNVs in local adaptation in a plant species, and it highlights the value of pan-genome data for identifying contributions of structural variants to adaptation in nature.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genoma de Planta , Trifolium , Adaptación Fisiológica/genética , Trifolium/genética
7.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000081

RESUMEN

Spermidine is well known to accumulate in plants exposed to drought, but the regulatory network associated with its biosynthesis and accumulation and the underlying molecular mechanisms remain unclear. Here, we demonstrated that the Trifolium repens TrMYB33 relayed the ABA signal to modulate drought-induced spermidine production by directly regulating the expression of TrSAMS1, which encodes an S-adenosylmethionine synthase. This gene was identified by transcriptome and expression analysis in T. repens. TrSAMS1 overexpression and its pTRV-VIGS-mediated silencing demonstrated that TrSAMS1 is a positive regulator of spermidine synthesis and drought tolerance. TrMYB33 was identified as an interacting candidate through yeast one-hybrid library screening with the TrSAMS1 promoter region as the bait. TrMYB33 was confirmed to bind directly to the predicted TAACCACTAACCA (the TAACCA MYB binding site is repeated twice in tandem) within the TrSAMS1 promoter and to act as a transcriptional activator. Additionally, TrMYB33 contributed to drought tolerance by regulating TrSAMS1 expression and modulating spermidine synthesis. Additionally, we found that spermidine accumulation under drought stress depended on ABA and that TrMYB33 coordinated ABA-mediated upregulation of TrSAMS1 and spermidine accumulation. This study elucidated the role of a T. repens MYB33 homolog in modulating spermidine biosynthesis. The further exploitation and functional characterization of the TrMYB33-TrSAMS1 regulatory module can enhance our understanding of the molecular mechanisms responsible for spermidine accumulation during drought stress.


Asunto(s)
Ácido Abscísico , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Espermidina , Trifolium , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Trifolium/genética , Trifolium/metabolismo , Espermidina/metabolismo , Espermidina/biosíntesis , Regiones Promotoras Genéticas , Estrés Fisiológico , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Transducción de Señal , Resistencia a la Sequía
8.
Mol Ecol ; 33(17): e17484, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39072878

RESUMEN

Species that repeatedly evolve phenotypic clines across environmental gradients have been highlighted as ideal systems for characterizing the genomic basis of local environmental adaptation. However, few studies have assessed the importance of observed phenotypic clines for local adaptation: conspicuous traits that vary clinally may not necessarily be the most critical in determining local fitness. The present study was designed to fill this gap, using a plant species characterized by repeatedly evolved adaptive phenotypic clines. White clover is naturally polymorphic for its chemical defence cyanogenesis (HCN release with tissue damage); climate-associated cyanogenesis clines have evolved throughout its native and introduced range worldwide. We performed landscape genomic analyses on 415 wild genotypes from 43 locations spanning much of the North American species range to assess the relative importance of cyanogenesis loci vs. other genomic factors in local climatic adaptation. We find clear evidence of local adaptation, with temperature-related climatic variables best describing genome-wide differentiation between sampling locations. The same climatic variables are also strongly correlated with cyanogenesis frequencies and gene copy number variations (CNVs) at cyanogenesis loci. However, landscape genomic analyses indicate no significant contribution of cyanogenesis loci to local adaptation. Instead, several genomic regions containing promising candidate genes for plant response to seasonal cues are identified - some of which are shared with previously identified QTLs for locally adaptive fitness traits in North American white clover. Our findings suggest that local adaptation in white clover is likely determined primarily by genes controlling the timing of growth and flowering in response to local seasonal cues. More generally, this work suggests that caution is warranted when considering the importance of conspicuous phenotypic clines as primary determinants of local adaptation.


Asunto(s)
Genotipo , Fenotipo , Temperatura , Trifolium , Trifolium/genética , Trifolium/crecimiento & desarrollo , Adaptación Fisiológica/genética , América del Norte , Variaciones en el Número de Copia de ADN , Genética de Población , Clima , Cianuro de Hidrógeno/metabolismo , Blanco
9.
Plant Cell Environ ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873953

RESUMEN

Allotetraploid white clover (Trifolium repens) formed during the last glaciation through hybridisation of two European diploid progenitors from restricted niches: one coastal, the other alpine. Here, we examine which hybridisation-derived molecular events may have underpinned white clover's postglacial niche expansion. We compared the transcriptomic frost responses of white clovers (an inbred line and an alpine-adapted ecotype), extant descendants of its progenitor species and a resynthesised white clover neopolyploid to identify genes that were exclusively frost-induced in the alpine progenitor and its derived subgenomes. From these analyses we identified galactinol synthase, the rate-limiting enzyme in biosynthesis of the cryoprotectant raffinose, and found that the extant descendants of the alpine progenitor as well as the neopolyploid white clover rapidly accumulated significantly more galactinol and raffinose than the coastal progenitor under cold stress. The frost-induced galactinol synthase expression and rapid raffinose accumulation derived from the alpine progenitor likely provided an advantage during early postglacial colonisation for white clover compared to its coastal progenitor.

10.
PeerJ ; 12: e17472, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827280

RESUMEN

Excessive aluminum (Al) in acidic soils is a primary factor that hinders plant growth. The objective of the present study was to investigate the effect and physiological mechanism of exogenous silicon (Si) in alleviating aluminum toxicity. Under hydroponic conditions, 4 mM Al significantly impeded the growth of white clover; however, pretreatments with 1 mM Si mitigated this inhibition, as evidenced by notable changes in growth indicators and physiological parameters. Exogenous silicon notably increased both shoot and root length of white clover and significantly decreased electrolyte leakage (EL) and malondialdehyde (MDA) content compared to aluminum treatments. This positive effect was particularly evident in the roots. Further analysis involving hematoxylin staining, scanning electron microscopy (SEM), and examination of organic acids (OAs) demonstrated that silicon relieved the accumulation of bioactive aluminum and ameliorated damage to root tissues in aluminum-stressed plants. Additionally, energy-dispersive X-ray (EDX) analysis revealed that additional silicon was primarily distributed in the root epidermal and cortical layers, effectively reducing the transport of aluminum and maintaining the balance of exchangeable cations absorption. These findings suggest that gradual silicon deposition in root tissues effectively prevents the absorption of biologically active aluminum, thereby reducing the risk of mineral nutrient deficiencies induced by aluminum stress, promoting organic acids exudation, and compartmentalizing aluminum in the outer layer of root tissues. This mechanism helps white clover alleviate the damage caused by aluminum toxicity.


Asunto(s)
Aluminio , Raíces de Plantas , Silicio , Trifolium , Trifolium/metabolismo , Trifolium/efectos de los fármacos , Silicio/farmacología , Aluminio/toxicidad , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Microscopía Electrónica de Rastreo , Malondialdehído/metabolismo
11.
BMC Plant Biol ; 24(1): 346, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684940

RESUMEN

BACKGROUND: White clover (Trifolium repens L.) is an excellent leguminous cool-season forage with a high protein content and strong nitrogen-fixing ability. Despite these advantages, its growth and development are markedly sensitive to environmental factors. Indole-3-acetic acid (IAA) is the major growth hormone in plants, regulating plant growth, development, and response to adversity. Nevertheless, the specific regulatory functions of Aux/IAA genes in response to abiotic stresses in white clover remain largely unexplored. RESULTS: In this study, we identified 47 Aux/IAA genes in the white clover genome, which were categorized into five groups based on phylogenetic analysis. The TrIAAs promoter region co-existed with different cis-regulatory elements involved in developmental and hormonal regulation, and stress responses, which may be closely related to their diverse regulatory roles. Collinearity analysis showed that the amplification of the TrIAA gene family was mainly carried out by segmental duplication. White clover Aux/IAA genes showed different expression patterns in different tissues and under different stress treatments. In addition, we performed a yeast two-hybrid analysis to investigate the interaction between white clover Aux/IAA and ARF proteins. Heterologous expression indicated that TrIAA18 could enhance stress tolerance in both yeast and transgenic Arabidopsis thaliana. CONCLUSION: These findings provide new scientific insights into the molecular mechanisms of growth hormone signaling in white clover and its functional characteristics in response to environmental stress.


Asunto(s)
Ácidos Indolacéticos , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Trifolium , Trifolium/genética , Trifolium/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Regiones Promotoras Genéticas/genética
12.
Plants (Basel) ; 13(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38256708

RESUMEN

White clover (Trifolium repens L.) is an allopolyploid plant and an excellent perennial legume forage. However, white clover is subjected to various stresses during its growth, with cold stress being one of the major limiting factors affecting its growth and development. Beta-amylase (BAM) is an important starch-hydrolyzing enzyme that plays a significant role in starch degradation and responses to environmental stress. In this study, 21 members of the BAM gene family were identified in the white clover genome. A phylogenetic analysis using BAMs from Arabidopsis divided TrBAMs into four groups based on sequence similarity. Through analysis of conserved motifs, gene duplication, synteny analysis, and cis-acting elements, a deeper understanding of the structure and evolution of TrBAMs in white clover was gained. Additionally, a gene regulatory network (GRN) containing TrBAMs was constructed; gene ontology (GO) annotation analysis revealed close interactions between TrBAMs and AMY (α-amylase) and DPE (4-alpha-glucanotransferase). To determine the function of TrBAMs under various tissues and stresses, RNA-seq datasets were analyzed, showing that most TrBAMs were significantly upregulated in response to biotic and abiotic stresses and the highest expression in leaves. These results were validated through qRT-PCR experiments, indicating their involvement in multiple gene regulatory pathways responding to cold stress. This study provides new insights into the structure, evolution, and function of the white clover BAM gene family, laying the foundation for further exploration of the functional mechanisms through which TrBAMs respond to cold stress.

13.
J Dairy Sci ; 107(4): 2129-2142, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37939834

RESUMEN

The objective of this study was to quantify the farm gate nitrogen (N) offset potential of perennial ryegrass (Lolium perenne L.; PRG) white clover (Trifolium repens L.; WC) swards by comparing the herbage and milk production from dairy farmlets that were simulations of full farming systems. A study was established where 120 cows were randomly assigned to 4 farmlets of 10.9 ha (stocking rate: 2.75 cow/ha), composed of 20 paddocks each. Cows were fed 526 kg of DM of concentrate on average each year. The 4 grazing treatments were PRG-only at 150 or 250 kg of N/ha and PRG-WC at 150 or 250 kg of N/ha. Cows remained in their treatment group for an entire grazing season and were re-randomized as they calved across treatments each year. As cows calved in the spring as standard practice in Ireland, they were rotationally grazed from early February both day and night (weather permitting) to mid-November, to a target postgrazing sward height of 4.0 cm. Mean sward WC content was 18.1% and 15.4% for the 150 and 250 kg of N/ha PRG-WC treatments, respectively over the 3-yr period. When WC was included, lowering the N rate did not reduce pregrazing yield, pregrazing height, or herbage removed, but those factors decreased significantly when WC was absent. Total annual herbage DM production was 13,771, 15,242, 14,721, and 15,667 kg of DM/ha for PRG-only swards receiving 150 or 250 kg of N/ha and PRG-WC swards receiving 150 or 250 kg of N/ha, respectively. In addition, when WC was present, compressed postgrazing sward heights were lower (4.10 vs. 4.21 cm) and herbage allowance (approximately 17 kg/cow feed allocation per cow per day) higher than the high-N control (+ 0.7 kg of DM/cow per day). There was a significant increase in milk production, both per cow and per hectare, when WC was included in PRG swards. Over the 3-yr study, cows grazing PRG-WC had greater milk (+304 kg) and milk solids (+31 kg of fat + protein) yields than cows grazing PRG-only swards. This significant increase in milk production suggests that the inclusion of WC in grazing systems can be effectively used to increase milk production per cow and per hectare and help offset nitrogen use. This result shows the potential to increase farm gate N use efficiency and reduce the N surplus compared with PRG-dominant sward grazing systems receiving 250 kg of N/ha, without negatively affecting milk solids yield or herbage production, thus increasing farm profit by €478/ha.


Asunto(s)
Lolium , Trifolium , Femenino , Bovinos , Animales , Leche/metabolismo , Lactancia , Nitrógeno/metabolismo , Alimentación Animal/análisis , Industria Lechera , Estaciones del Año , Medicago , Dieta/veterinaria
14.
Front Plant Sci ; 14: 1269082, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799556

RESUMEN

Biochar has been used to remediate contaminated-soil with heavy metals, however, less is known on how biochar interacts with planting density and nutrient fluctuation to affect the remediation. A pot experiment was conducted in the greenhouse to investigate the effects of biochar application (without vs. with 1% biochar, g/g substrate), nutrient fluctuation (constant vs. pulsed) and planting density (1-, 3- and 6-individuals per pot) on the growth, and cadmium (Cd) and nutrient uptake of Trifolium repens population. Our results found that the growth of T. repens population increased significantly with increasing planting density, and the increment decreased with increasing planting density. Both the Cd and nutrient uptake were higher at higher planting density (e.g., 3- and 6-individuals) than at lower planting density (e.g., 1-individual). Biochar application increased the biomass and shoot Cd uptake, but decreased the ratio of root to shoot and root Cd uptake of T. repens population, the effects of which were significantly influenced by planting density. Although nutrient fluctuation had no effect on the growth of T. repens population, but its interaction with planting density had significant effects on Cd uptake in tissues. Overall, the effects of biochar application and nutrient fluctuation on the growth and Cd uptake were both influenced by planting density in the present study. Our findings highlight that biochar application and constant nutrient supply at an appropriate planting density, such as planting density of 3-individuals per pot in the present study, could promote the growth, and Cd and nutrient uptake of T. repens population.

15.
Am J Bot ; 110(10): e16233, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37661820

RESUMEN

PREMISE: ß-Cyanoalanine synthase (ß-CAS) and alternative oxidase (AOX) play important roles in the ability of plants to detoxify and tolerate hydrogen cyanide (HCN). These functions are critical for all plants because HCN is produced at low levels during basic metabolic processes, and especially for cyanogenic species, which release high levels of HCN following tissue damage. However, expression of ß-CAS and Aox genes has not been examined in cyanogenic species, nor compared between cyanogenic and acyanogenic genotypes within a species. METHODS: We used a natural polymorphism for cyanogenesis in white clover to examine ß-CAS and Aox gene expression in relation to cyanogenesis-associated HCN exposure. We identified all ß-CAS and Aox gene copies present in the genome, including members of the Aox1, Aox2a, and Aox2d subfamilies previously reported in legumes. Expression levels were compared between cyanogenic and acyanogenic genotypes and between damaged and undamaged leaf tissue. RESULTS: ß-CAS and Aox2a expression was differentially elevated in cyanogenic genotypes, and tissue damage was not required to induce this increased expression. Aox2d, in contrast, appeared to be upregulated as a generalized wounding response. CONCLUSIONS: These findings suggest a heightened constitutive role for HCN detoxification (via elevated ß-CAS expression) and HCN-toxicity mitigation (via elevated Aox2a expression) in plants that are capable of cyanogenesis. As such, freezing-induced cyanide autotoxicity is unlikely to be the primary selective factor in the evolution of climate-associated cyanogenesis clines.


Asunto(s)
Cianuros , Trifolium , Trifolium/genética , Cianuro de Hidrógeno/metabolismo , Nitrilos
16.
PeerJ ; 11: e15610, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456899

RESUMEN

Background: White clover (Trifolium repens L) is a high-quality forage grass with a high protein content, but it is vulnerable to cold stress, which can negatively affect its growth and development. WRKY transcription factor is a family of plant transcription factors found mainly in higher plants and plays an important role in plant growth, development, and stress response. Although WRKY transcription factors have been studied extensively in other plants, it has been less studied in white clover. Methods and Results: In the present research, we have performed a genome-wide analysis of the WRKY gene family of white clover, in total, there were 145 members of WRKY transcription factors identified in white clover. The characterization of the TrWRKY genes was detailed, including conserved motif analysis, phylogenetic analysis, and gene duplication analysis, which have provided a better understanding of the structure and evolution of the TrWRKY genes in white clover. Meanwhile, the genetic regulation network (GRN) containing TrWRKY genes was reconstructed, and Gene Ontology (GO) annotation analysis of these function genes showed they contributed to regulation of transcription process, response to wounding, and phosphorylay signal transduction system, all of which were important processes in response to abiotic stress. To determine the TrWRKY genes function under cold stress, the RNA-seq dataset was analyzed; most of TrWRKY genes were highly upregulated in response to cold stress, particularly in the early stages of cold stress. These results were validated by qRT-PCR experiment, implying they are involved in various gene regulation pathways in response to cold stress. Conclusion: The results of this study provide insights that will be useful for further functional analyses of TrWRKY genes in response to biotic or abiotic stresses in white clover. These findings are likely to be useful for further research on the functions of TrWRKY genes and their role in response to cold stress, which is important to understand the molecular mechanism of cold tolerance in white clover and improve its cold tolerance.


Asunto(s)
Respuesta al Choque por Frío , Trifolium , Respuesta al Choque por Frío/genética , Filogenia , Trifolium/genética , Factores de Transcripción/genética , Medicago/metabolismo
17.
Front Plant Sci ; 14: 1195058, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426971

RESUMEN

Red clover (Trifolium pratense L.), a key perennial pastoral species used globally, can strengthen pastural mixes to withstand increasingly disruptive weather patterns from climate change. Breeding selections can be refined for this purpose by obtaining an in-depth understanding of key functional traits. A replicated randomized complete block glasshouse pot trial was used to observe trait responses critical to plant performance under control (15% VMC), water deficit (5% VMC) and waterlogged conditions (50% VMC) in seven red clover populations and compared against white clover. Twelve morphological and physiological traits were identified as key contributors to the different plant coping mechanisms displayed. Under water deficit, the levels of all aboveground morphological traits decreased, highlighted by a 41% decrease in total dry matter and 50% decreases in both leaf number and leaf thickness compared to the control treatment. An increase in root to shoot ratio indicated a shift to prioritizing root maintenance by sacrificing shoot growth, a trait attributed to plant water deficit tolerance. Under waterlogging, a reduction in photosynthetic activity among red clover populations reduced several morphological traits including a 30% decrease in root dry mass and total dry matter, and a 34% decrease in leaf number. The importance of root morphology for waterlogging was highlighted with low performance of red clover: there was an 83% decrease in root dry mass compared to white clover which was able to maintain root dry mass and therefore plant performance. This study highlights the importance of germplasm evaluation across water stress extremes to identify traits for future breeding programs.

18.
Int J Mol Sci ; 24(14)2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37511020

RESUMEN

White clover is a widely grown temperate legume forage with high nutritional value. Research on the functional genomics of white clover requires a stable and efficient transformation system. In this study, we successfully induced calluses from the cotyledons and leaves of 10 different white clover varieties. The results showed that the callus formation rate in the cotyledons did not vary significantly among the varieties, but the highest callus formation rate was observed in 'Koala' leaves. Subsequently, different concentrations of antioxidants and hormones were tested on the browning rate and differentiation ability of the calluses, respectively. The results showed that the browning rate was the lowest on MS supplemented with 20 mg L-1 AgNO3 and 25 mg L-1 VC, respectively, and the differentiation rate was highest on MS supplemented with 1 mg L-1 6-BA, 1 mg L-1 KT and 0.5 mg L-1 NAA. In addition, the transformation system for Agrobacterium tumefaciens-mediated transformation of 4-day-old leaves was optimized to some extent and obtained a positive callus rate of 8.9% using green fluorescent protein (GFP) as a marker gene. According to our data, by following this optimized protocol, the transformation efficiency could reach 2.38%. The results of this study will provide the foundation for regenerating multiple transgenic white clover from a single genetic background.


Asunto(s)
Trifolium , Trifolium/genética , Agrobacterium tumefaciens/genética , Genómica , Medicago
19.
3 Biotech ; 13(5): 150, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37131967

RESUMEN

White clover (Trifolium repens) is one of the most widely cultivated livestock forage plants whose persistence is severely affected by abiotic stresses. For the white clover, efficient regeneration systems is still a great necessity. In this study, inoculating 4-day-old cotyledons into MS media fortified with 0.4 mg·L-1 6-BA and 2 mg·L-1 2,4-D significantly increased the callus induction rate. Roots and cotyledons proved to be better explants, followed by hypocotyls, leaves, and petioles for callus induction. The development of differentiated structures occurred effectively on MS supplemented with 1 mg·L-1 6-BA and 0.1 mg·L-1 NAA. To increase transformation, we investigated various factors affecting the Agrobacterium tumefaciens transformation in white clover. The optimal conditions for root-derived callus and 4-day-old cotyledons were as follows: Agrobacterium suspension density with OD600 of 0.5, 20 mg·L-1 AS, and 4 days of co-cultivation duration. Subsequently, we developed two transformation protocols: transformation after callus induction from 4-day-old roots (Protocol A) and transformation before initiation of callus from cotyledons (Protocol B). The transformation frequencies varied from 1.92 to 3.17% in Protocol A and from 2.76 to 3.47% in Protocol B. We report the possibility to regenerate multiple transgenic white clover plants from a single genetic background. Our research may also contribute to successful genetic manipulation and genome editing in white clover. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03591-2.

20.
Plant Signal Behav ; 18(1): 2213924, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37202838

RESUMEN

Calcium-dependent protein kinases (CDPKs) are an important class of calcium-sensitive response proteins that play an important regulatory role in response to abiotic stresses. To date, little is known about the CDPK genes in white clover. White clover is a high-quality forage grass with high protein content, but it is susceptible to cold stress. Therefore, we performed a genome-wide analysis of the CDPK gene family in white clover and identified 50 members of the CDPK genes. Phylogenetic analysis using CDPKs from the model plant Arabidopsis divided the TrCDPK genes into four groups based on their sequence similarities. Motif analysis showed that TrCDPKs within the same group had similar motif compositions. Gene duplication analysis revealed the evolution and expansion of TrCDPK genes in white clover. Meanwhile, a genetic regulatory network (GRN) containing TrCDPK genes was reconstructed, and gene ontology (GO) annotation analysis of these functional genes showed that they contribute to signal transduction, cellular response to stimuli, and biological regulation, all of which are important processes in response to abiotic stresses. To determine the function of TrCDPK genes, we analyzed the RNA-seq dataset and found that most TrCDPK genes were highly up-regulated under cold stress, particularly in the early stages of cold stress. These results were validated by qRT-PCR experiments, implying that TrCDPK genes are involved in various gene regulatory pathways in response to cold stress. Our study may help to further investigate the function of TrCDPK genes and their role in response to cold stress, which is important for understanding the molecular mechanisms of cold tolerance in white clover and improving its cold tolerance.


Asunto(s)
Respuesta al Choque por Frío , Redes Reguladoras de Genes , Respuesta al Choque por Frío/genética , Filogenia , Calcio/metabolismo , Genoma de Planta/genética , Estrés Fisiológico/genética , Familia de Multigenes , Medicago/genética , Medicago/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA