Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Environ Sci Technol ; 55(13): 8561-8572, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34129328

RESUMEN

Light-absorptivity of organic aerosol may play an important role in visibility and climate forcing, but it has not been assessed as extensively as black carbon (BC) aerosol. Based on multiwavelength thermal/optical analysis and spectral mass balance, this study quantifies BC for the U.S. Interagency Monitoring of Protected Visual Environments (IMPROVE) network while developing a brownness index (γBr) for non-BC organic carbon (OC*) to illustrate the spatiotemporal trends of light-absorbing brown carbon (BrC) content. OC* light absorption efficiencies range from 0 to 3.1 m2 gC-1 at 405 nm, corresponding to the lowest and highest BrC content of 0 and 100%, respectively. BC, OC*, and γBr explain >97% of the variability of measured spectral light absorption (405-980 nm) across 158 IMPROVE sites. Network-average OC* light absorptions at 405 nm are 50 and 28% those for BC over rural and urban areas, respectively. Larger organic fractions of light absorption occur in winter, partially due to higher organic brownness. Winter γBr exhibits a dramatic regional/urban-rural contrast consistent with anthropogenic BrC emissions from residential wood combustion. The spatial differences diminish to uniformly low γBr in summer, suggesting effective BrC photobleaching over the midlatitudes. An empirical relationship between BC, ambient temperature, and γBr is established, which can facilitate the incorporation of organic aerosol absorptivity into climate and visibility models that currently assume either zero or static organic light absorption efficiencies.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Biomasa , Carbono/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Fotoblanqueo , Estaciones del Año , Estados Unidos
2.
Food Sci Nutr ; 8(1): 575-583, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31993181

RESUMEN

In this paper, rice husk (RH) was used as raw material to prepare white carbon black, and the key technological parameters of preparing white carbon black from RH were studied through single-factor test, orthogonal experiment, and response surface analysis. Meanwhile, the characteristic of white carbon black was also analyzed. Through orthogonal experiment analysis, it was confirmed that the order of factors affecting the purity of white carbon black was calcination temperature > alkali treatment time > final pH > surfactant. Based on the response surface optimization analysis, the optimum parameters for preparation of white carbon black were as follows: calcination temperature 610°C, alkali treatment time of 2.3 hr, final pH of 10, CTMAB was used as the surfactant. Under this condition, the purity of silica prepared could be reached to 99.39%, and the particle size was uniform, spherical, and well dispersed, which satisfied the requirements of GB/T 34698-2017 standard.

3.
Mycobiology ; 42(1): 59-65, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24808736

RESUMEN

Entomopathogenic fungi are promising pest-control agents but their industrial applicability is limited by their thermosusceptibility. With an aim to increase the thermotolerance of Isaria fumosorosea SFP-198, moisture absorbents were added to dried conidial powder, and the relationship between its water potential and thermotolerance was investigated. Mycotized rice grains were dried at 10℃, 20℃, 30℃, and 40℃ and the drying effect of each temperature for 24, 48, 96, and 140 hr was determined. Drying for 48 hr at 10℃ and 20℃ reduced the moisture content to < 5% without any significant loss of conidial thermotolerance, but drying at 30℃ and 40℃ reduced both moisture content and conidial thermotolerance. To maintain thermotolerance during storage, moisture absorbents, such as calcium chloride, silica gel, magnesium sulfate, white carbon, and sodium sulfate were individually added to previously dried-conidial powder at 10% (w/w). These mixtures was then stored at room temperature for 30 days and subjected to 50℃ for 2 hr. The white carbon mixture had the highest conidial thermotolerance, followed by silica gel, magnesium sulfate, and then the other absorbents. A significant correlation between the water potential and conidial thermotolerance was observed in all conidia-absorbent mixtures tested in this study (r = -0.945). Conidial thermotolerance in wet conditions was evaluated by adding moisturized white carbon (0~20% H2O) to conidia to mimic wet conditions. Notably, the conidia still maintained their thermotolerance under these conditions. Thus, it is evident that conidial thermotolerance can be maintained by drying mycotized rice grains at low temperatures and adding a moisture absorbent, such as white carbon.

4.
Mycobiology ; : 59-65, 2014.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-730020

RESUMEN

Entomopathogenic fungi are promising pest-control agents but their industrial applicability is limited by their thermosusceptibility. With an aim to increase the thermotolerance of Isaria fumosorosea SFP-198, moisture absorbents were added to dried conidial powder, and the relationship between its water potential and thermotolerance was investigated. Mycotized rice grains were dried at 10degrees C, 20degrees C, 30degrees C, and 40degrees C and the drying effect of each temperature for 24, 48, 96, and 140 hr was determined. Drying for 48 hr at 10degrees C and 20degrees C reduced the moisture content to < 5% without any significant loss of conidial thermotolerance, but drying at 30degrees C and 40degrees C reduced both moisture content and conidial thermotolerance. To maintain thermotolerance during storage, moisture absorbents, such as calcium chloride, silica gel, magnesium sulfate, white carbon, and sodium sulfate were individually added to previously dried-conidial powder at 10% (w/w). These mixtures was then stored at room temperature for 30 days and subjected to 50degrees C for 2 hr. The white carbon mixture had the highest conidial thermotolerance, followed by silica gel, magnesium sulfate, and then the other absorbents. A significant correlation between the water potential and conidial thermotolerance was observed in all conidia-absorbent mixtures tested in this study (r = -0.945). Conidial thermotolerance in wet conditions was evaluated by adding moisturized white carbon (0~20% H2O) to conidia to mimic wet conditions. Notably, the conidia still maintained their thermotolerance under these conditions. Thus, it is evident that conidial thermotolerance can be maintained by drying mycotized rice grains at low temperatures and adding a moisture absorbent, such as white carbon.


Asunto(s)
Cloruro de Calcio , Carbono , Grano Comestible , Hongos , Sulfato de Magnesio , Gel de Sílice , Sodio , Esporas Fúngicas , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA