Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38473514

RESUMEN

Raman microlasers form on-chip versatile light sources by optical pumping, enabling numerical applications ranging from telecommunications to biological detection. Stimulated Raman scattering (SRS) lasing has been demonstrated in optical microresonators, leveraging high Q factors and small mode volume to generate downconverted photons based on the interaction of light with the Stokes vibrational mode. Unlike redshifted SRS, stimulated anti-Stokes Raman scattering (SARS) further involves the interplay between the pump photon and the SRS photon to generate an upconverted photon, depending on a highly efficient SRS signal as an essential prerequisite. Therefore, achieving SARS in microresonators is challenging due to the low lasing efficiencies of integrated Raman lasers caused by intrinsically low Raman gain. In this work, high-Q whispering gallery microresonators were fabricated by femtosecond laser photolithography assisted chemo-mechanical etching on thin-film lithium niobate (TFLN), which is a strong Raman-gain photonic platform. The high Q factor reached 4.42 × 106, which dramatically increased the circulating light intensity within a small volume. And a strong Stokes vibrational frequency of 264 cm-1 of lithium niobate was selectively excited, leading to a highly efficient SRS lasing signal with a conversion efficiency of 40.6%. And the threshold for SRS was only 0.33 mW, which is about half the best record previously reported on a TFLN platform. The combination of high Q factors, a small cavity size of 120 µm, and the excitation of a strong Raman mode allowed the formation of SARS lasing with only a 0.46 mW pump threshold.

2.
ACS Appl Mater Interfaces ; 16(9): 12042-12051, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38382003

RESUMEN

Rapid detection of pathogens and analytes at the point of care offers an opportunity for prompt patient management and public health control. This paper reports an open microfluidic platform coupled with active whispering gallery mode (WGM) microsphere resonators for the rapid detection of influenza viruses. The WGM microsphere resonators, precoated with influenza A polyclonal antibodies, are mechanically trapped in the open micropillar array, where the evaporation-driven flow continuously transports a small volume (∼µL) of sample to the resonators without auxiliaries. Selective chemical modification of the pillar array changes surface wettability and flow pattern, which enhances the detection sensitivity of the WGM resonator-based virus sensor. The optofluidic sensing platform is able to specifically detect influenza A viruses within 15 min using a few microliters of sample and displays a linear response to different virus concentrations.


Asunto(s)
Técnicas Biosensibles , Humanos , Microesferas
3.
ACS Appl Mater Interfaces ; 16(4): 5067-5074, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38231197

RESUMEN

We report a whispering gallery mode resonator on a pillar using inkjet printing combined with traditional microfabrication techniques. This approach enables several different polymers on the same chip for sensing applications. However, polymers inherently exhibit sensitivity to multiple stimuli. To mitigate temperature sensitivity, careful selection of design parameters is crucial. By precisely tuning the undercut-to-radius ratio of the resonator, a linear dependence in temperature sensitivity ranging from -41.5 pm/°C to 23.4 pm/°C, with a zero-crossing point at 47.6% is achieved. Consequently, it is feasible to fabricate sensing devices based on undercut microdroplets with minimal temperature sensitivity. The lowest measured temperature sensitivity obtained was 5.9 pm/°C, for a resonator with an undercut-to-radius ratio of 53%.

4.
Proc Natl Acad Sci U S A ; 121(4): e2314884121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38232279

RESUMEN

Mechanical properties of biological tissues fundamentally underlie various biological processes and noncontact, local, and microscopic methods can provide fundamental insights. Here, we present an approach for quantifying the local mechanical properties of biological materials at the microscale, based on measuring the spectral shifts of the optical resonances in droplet microcavities. Specifically, the developed method allows for measurements of deformations in dye-doped oil droplets embedded in soft materials or biological tissues with an error of only 1 nm, which in turn enables measurements of anisotropic stress inside tissues as small as a few pN/µm2. Furthermore, by applying an external strain, Young's modulus can be measured in the range from 1 Pa to 35 kPa, which covers most human soft tissues. Using multiple droplet microcavities, our approach could enable mapping of stiffness and forces in inhomogeneous soft tissues and could also be applied to in vivo and single-cell experiments. The developed method can potentially lead to insights into the mechanics of biological tissues.


Asunto(s)
Vibración , Humanos , Módulo de Elasticidad
5.
ACS Appl Mater Interfaces ; 15(46): 53264-53272, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37934693

RESUMEN

Tactile sensors with high softness and multisensory functions are highly desirable for applications in humanoid robotics, smart prosthetics, and human-machine interfaces. Here, we report a soft biomimetic fiber-optic tactile (SBFT) sensor that offers skin-like tactile sensing abilities to perceive and discriminate temperature and pressure. The SBFT sensor is fabricated by encapsulating a macrobent fiber Bragg grating (FBG) in an elastomeric droplet-shaped structure that results in two optical resonances associated with the FBG and excited whispering gallery modes (WGMs) propagating along the bent region. Benefiting from the different thermo-optic and stress-optic effects of FBG and WGM resonances, the pressure and temperature can be fully decoupled with a high precision of 0.2 °C and 0.8 mN, respectively. To achieve a compact system for signal demodulation, a single-cavity dual-comb fiber laser is developed to interrogate the SBFT sensor based on dual-comb spectroscopy, which enables fast spectral sampling with a single photodiode. We show that the SBFT sensor is capable of perceiving pressure, temperature, and hardness in touching soft tissues and human skins, demonstrating great promise for soft tissue palpation and human-like robotic perception.

6.
Sensors (Basel) ; 23(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37960400

RESUMEN

Optical microresonators have proven to be especially useful for sensing applications. In most cases, the sensing mechanism is dispersive, where the resonance frequency of a mode shifts in response to a change in the ambient index of refraction. It is also possible to conduct dissipative sensing, in which absorption by an analyte causes measurable changes in the mode linewidth and in the throughput dip depth. If the mode is overcoupled, the dip depth response can be more sensitive than the linewidth response, but overcoupling is not always easy to achieve. We have recently shown theoretically that using multimode input to the microresonator can enhance the dip-depth sensitivity by a factor of several thousand relative to that of single-mode input and by a factor of nearly 100 compared to the linewidth sensitivity. Here, we experimentally confirm these enhancements using an absorbing dye dissolved in methanol inside a hollow bottle resonator. We review the theory, describe the setup and procedure, detail the fabrication and characterization of an asymmetrically tapered fiber to produce multimode input, and present sensing enhancement results that agree with all the predictions of the theory.

7.
Micromachines (Basel) ; 14(9)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37763960

RESUMEN

The generation of coherent light based on inelastic stimulated Raman scattering in photonic microresonators has been attracting great interest in recent years. Tellurite glasses are promising materials for such microdevices since they have large Raman gain and large Raman frequency shift. We experimentally obtained Raman lasing at a wavelength of 1.8 µm with a frequency shift of 27.5 THz from a 1.54 µm narrow-line pump in a 60 µm tellurite glass microsphere with a Q-factor of 2.5 × 107. We demonstrated experimentally a robust, simple, and cheap way of thermo-optically controlled on/off switching of Raman lasing in a tellurite glass microsphere by an auxiliary laser diode. With a permanently operating narrow-line pump laser, on/off switching of the auxiliary 405 nm laser diode led to off/on switching of Raman generation. We also performed theoretical studies supporting the experimental results. The temperature distribution and thermal frequency shifts in eigenmodes in the microspheres heated by the thermalized power of an auxiliary diode and the partially thermalized power of a pump laser were numerically simulated. We analyzed the optical characteristics of Raman generation in microspheres of different diameters. The numerical results were in good agreement with the experimental ones.

8.
Nanomaterials (Basel) ; 13(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37764582

RESUMEN

The coupling between the quantum dots (QDs) and silicon-based microdisk resonator facilitates enhancing the light-matter interaction for the novel silicon-based light source. However, the typical circular microdisks embedded with Ge QDs still have several issues, such as wide spectral bandwidth, difficult mode selection, and low waveguide coupling efficiency. Here, by a promising structural modification based on the mature nanosphere lithography (NSL), we fabricate a large area hexagonal microdisk array embedded with Ge QDs in order to enhance the near-infrared light emissions by a desired whispering gallery modes (WGMs). By comparing circular microdisks with comparable sizes, we found the unique photoluminescence enhancement effect of hexagonal microdisks for certain modes. We have confirmed the WGMs which are supported by the microdisks and the well-correlated polarized modes for each resonant peak observed in experiments through the Finite Difference Time Domain (FDTD) simulation. Furthermore, the unique enhancement of the TE5,1 mode in the hexagonal microdisk is comparatively analyzed through the simulation of optical field distribution in the cavity. The larger enhanced region of the optical field contains more effectively coupled QDs, which significantly enhances the PL intensity of Ge QDs. Our findings offer a promising strategy toward a distinctive optical cavity that enables promising mode manipulation and enhancement effects for large-scale, cost-effective photonic devices.

9.
Nano Lett ; 23(14): 6512-6519, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37405910

RESUMEN

In this work, the impact of metallic and dielectric conducting substrates, gold and indium tin oxide (ITO)-coated glass, on the whispering gallery modes (WGMs) of semiconductor π-conjugated polymer microspheres is investigated. Hyperspectral mapping was performed to obtain the excitation-position-dependent emission spectra of the microspheres. Substrate-dependent quenching of WGMs sensitive to mode polarization was observed and explained. On a glass substrate, both transverse-electric (TE) and transverse-magnetic (TM) WGMs are quenched due to frustrated total internal reflection. On a gold substrate, however, only the TM WGMs are allowed in symmetry to leak into surface plasmons. An atomically flat gold substrate with subwavelength slits was used to experimentally verify the leakage of WGMs into the surface plasmon polaritons (SPPs). This work provides insight into the damping mechanisms of WGMs in microspheres on metallic and dielectric substrates.

10.
Micromachines (Basel) ; 14(4)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37420967

RESUMEN

Microbottle resonators (MBR) are bottle-like structures fabricated by varying the radius of an optical fiber. MBRs can support whispering gallery modes (WGM) by the total internal reflection of the light coupled into the MBRs. MBRs have a significant advantage in sensing and other advanced optical applications due to their light confinement abilities in a relatively small mode volume and having high Q factors. This review starts with an introduction to MBRs' optical properties, coupling methods, and sensing mechanisms. The sensing principle and sensing parameters of MBRs are discussed here as well. Then, practical MBRs fabrication methods and sensing applications are presented.

11.
ACS Sens ; 8(7): 2440-2470, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37390481

RESUMEN

Optical biosensors are frontrunners for the rapid and real-time detection of analytes, particularly for low concentrations. Among them, whispering gallery mode (WGM) resonators have recently attracted a growing focus due to their robust optomechanical features and high sensitivity, measuring down to single binding events in small volumes. In this review, we provide a broad overview of WGM sensors along with critical advice and additional "tips and tricks" to make them more accessible to both biochemical and optical communities. Their structures, fabrication methods, materials, and surface functionalization chemistries are discussed. We propose this reflection under a pedagogical approach to describe and explain these biochemical sensors with a particular focus on the most recent achievements in the field. In addition to highlighting the advantages of WGM sensors, we also discuss and suggest strategies to overcome their current limitations, leaving room for further development as practical tools in various applications. We aim to provide new insights and combine different knowledge and perspectives to advance the development of the next generation of WGM biosensors. With their unique advantages and compatibility with different sensing modalities, these biosensors have the potential to become major game changers for biomedical and environmental monitoring, among many other relevant target applications.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Microesferas
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122736, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37062118

RESUMEN

For the first time, we report the enhancement of the Raman scattering signal of monolayer graphene films (MGFs) on Cu foils using a single optical microsphere-assisted Raman microscopic (SOMRM) technique. Initially, the Raman scattering spectra of MGF on Cu foil are recorded using the conventional Raman microscopic (CRM) technique, where the excitation laser is directly focused on the MGFs with the help of a different microscopic objective lens. The obtained spectra are observed to consist of only the low-intensity G and 2D bands but not the D band, known as the disorder or defect band. However, the intensity of all three bands is enhanced significantly using the SOMRM technique. Finally, the numerical investigation is performed on the SOMRM technique to understand the origin of the enhancement of the Raman scattering signal of MGF on the Cu substrates. The role of the substrate for MGF and the radius of the microsphere on the enhancement of the Raman scattering signal of MGFs is also investigated numerically in detail.

13.
Nanomaterials (Basel) ; 13(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36903756

RESUMEN

One-state and two-state lasing is investigated experimentally and through numerical simulation as a function of temperature in microdisk lasers with Stranski-Krastanow InAs/InGaAs/GaAs quantum dots. Near room temperature, the temperature-induced increment of the ground-state threshold current density is relatively weak and can be described by a characteristic temperature of about 150 K. At elevated temperatures, a faster (super-exponential) increase in the threshold current density is observed. Meanwhile, the current density corresponding to the onset of two-state lasing was found to decrease with increasing temperature, so that the interval of current density of pure one-state lasing becomes narrower with the temperature increase. Above a certain critical temperature, ground-state lasing completely disappears. This critical temperature drops from 107 to 37 °C as the microdisk diameter decreases from 28 to 20 µm. In microdisks with a diameter of 9 µm, a temperature-induced jump in the lasing wavelength from the first excited-state to second excited-state optical transition is observed. A model describing the system of rate equations and free carrier absorption dependent on the reservoir population provides a satisfactory agreement with experimental results. The temperature and threshold current corresponding to the quenching of ground-state lasing can be well approximated by linear functions of saturated gain and output loss.

14.
Nano Lett ; 23(7): 2502-2510, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36926974

RESUMEN

Self-propelled micro/nanomotors are emergent intelligent sensors for analyzing extracellular biomarkers in circulating biological fluids. Conventional luminescent motors are often masked by a highly dynamic and scattered environment, creating challenges to characterize biomarkers or subtle binding dynamics. Here we introduce a strategy to amplify subtle signals by coupling strong light-matter interactions on micromotors. A smart whispering-gallery-mode microlaser that can self-propel and analyze extracellular biomarkers is demonstrated through a liquid crystal microdroplet. Lasing spectral responses induced by cavity energy transfer were employed to reflect the abundance of protein biomarkers, generating exclusive molecular labels for cellular profiling of exosomes derived from 3D multicellular cancer spheroids. Finally, a microfluidic biosystem with different tumor-derived exosomes was employed to elaborate its sensing capability in complex environments. The proposed autonomous microlaser exhibits a promising method for both fundamental biological science and applications in drug screening, phenotyping, and organ-on-chip applications.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Luminiscencia , Microfluídica
15.
Sensors (Basel) ; 23(2)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36679514

RESUMEN

In recent years, the use of optical methods for temperature measurements has been attracting increased attention. High-performance miniature sensors can be based on glass microspheres with whispering gallery modes (WGMs), as their resonant frequencies shift in response to the ambient parameter variations. In this work, we present a systematic comprehensive numerical analysis of temperature microsensors with a realistic design based on standard silica fibers, as well as commercially available special soft glass fibers (GeO2, tellurite, As2S3, and As2Se3). Possible experimental implementation and some practical recommendations are discussed in detail. We developed a realistic numerical model that takes into account the spectral and temperature dependence of basic glass characteristics in a wide parameter range. To the best of our knowledge, spherical temperature microsensors based on the majority of the considered glass fibers have been investigated for the first time. The highest sensitivity dλ/dT was obtained for the chalcogenide As2Se3 and As2S3 microspheres: for measurements at room temperature conditions at a wavelength of λ = 1.55 µm, it was as high as 57 pm/K and 36 pm/K, correspondingly, which is several times larger than for common silica glass (9.4 pm/K). Importantly, dλ/dT was almost independent of microresonator size, WGM polarization and structure; this is a practically crucial feature showing the robustness of the sensing devices of the proposed design.


Asunto(s)
Dióxido de Silicio , Dióxido de Silicio/química , Temperatura , Microesferas
16.
Materials (Basel) ; 15(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36556534

RESUMEN

Whispering gallery mode (WGM) ZnO microlasers gain attention due to their high Q-factors and ability to provide low-threshold near-UV lasing. However, a detailed understanding of the optical gain mechanisms in such structures has not yet been achieved. In this work, we study the mechanisms of stimulated emission (SE) in hexagonal ZnO microrods, demonstrating high-performance WGM lasing with thresholds down to 10-20 kW/cm2 and Q-factors up to ~3500. The observed SE with a maximum in the range of 3.11-3.17 eV at room temperature exhibits a characteristic redshift upon increasing photoexcitation intensity, which is often attributed to direct recombination in the inverted electron-hole plasma (EHP). We show that the main contribution to room-temperature SE in the microrods studied, at least for near-threshold excitation intensities, is made by inelastic exciton-electron scattering rather than EHP. The shape and perfection of crystals play an important role in the excitation of this emission. At lower temperatures, two competing gain mechanisms take place: exciton-electron scattering and two-phonon assisted exciton recombination. The latter forms emission with a maximum in the region near ~3.17 eV at room temperature without a significant spectral shift, which was observed only from weakly faceted ZnO microcrystals in this study.

17.
Sensors (Basel) ; 22(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36501857

RESUMEN

We present a theoretical analysis of the refractometric sensitivity of a spherical microresonator coated with a porous sensing layer performed for different whispering gallery modes. The effective refractive index of the modes is also calculated. The calculations are also made for a system which has an additional high-refractive index layer sandwiched between the microsphere and the porous sensing layer. The results of the calculation are discussed in regards to the applicability of the studied systems for gas sensor construction.

18.
Sensors (Basel) ; 22(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36366010

RESUMEN

A novel micron-range displacement sensor based on a whispering-gallery mode (WGM) microcapillary resonator filled with a nematic liquid crystal (LC) and a magnetic nanoparticle- coated fiber half-taper is proposed and experimentally demonstrated. In the proposed device, the tip of a fiber half-taper coated with a thin layer of magnetic nanoparticles (MNPs) moves inside the LC-filled microcapillary resonator along its axis. The input end of the fiber half-taper is connected to a pump laser source and due to the thermo-optic effect within the MNPs, the fiber tip acts as point heat source increasing the temperature of the LC material in its vicinity. An increase in the LC temperature leads to a decrease in its effective refractive index, which in turn causes spectral shift of the WGM resonances monitored in the transmission spectrum of the coupling fiber. The spectral shift of the WGMs is proportional to the displacement of the MNP-coated tip with respect to the microcapillary's light coupling point. The sensor's operation is simulated considering heat transfer in the microcapillary filled with a LC material having a negative thermo-optic coefficient. The simulations are in a good agreement with the WGMs spectral shift observed experimentally. A sensitivity to displacement of 15.44 pm/µm and a response time of 260 ms were demonstrated for the proposed sensor. The device also shows good reversibility and repeatability of response. The proposed micro-displacement sensor has potential applications in micro-manufacturing, precision measurement and medical instruments.

19.
Micromachines (Basel) ; 13(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36295969

RESUMEN

The investigation of optical microcavity solitons is in demand both for applications and basic science. Despite the tremendous progress in the study of microresonator solitons, there is still no complete understanding of all features of their nonlinear dynamics in various regimes. Controlling soliton properties is also of great interest. We proposed and investigated experimentally and theoretically a simple and easily reproducible way to generate Raman solitons with controllable spectral width in an anomalous dispersion region in a functionalized silica microsphere with whispering gallery modes (WGMs) driven in a normal dispersion regime. To functionalize the microsphere, coating (TiO2 + graphite powder) was applied at the pole. The coating is used for effective thermalization of the radiation of an auxiliary laser diode launched through the fiber stem holding the microsphere to control detuning of the pump frequency from exact resonance due to the thermo-optical shift of the WGM frequencies. We demonstrated that the thermo-optical control by changing the power of an auxiliary diode makes it possible to switch on/off the generation of Raman solitons and control their spectral width, as well as to switch Raman generation to multimode or single-mode. We also performed a detailed theoretical analysis based on the Raman-modified Lugiato-Lefever equation and explained peculiarities of intracavity nonlinear dynamics of Raman solitons. All experimental and numerically simulated results are in excellent agreement.

20.
Sensors (Basel) ; 22(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36298181

RESUMEN

This study experimentally and numerically validates the commonly employed technique of laser-induced heating of a material in optical temperature sensing studies. Furthermore, the Er3+-doped glass microspheres studied in this work can be employed as remote optical temperature sensors. Laser-induced self-heating is a useful technique commonly employed in optical temperature sensing research when two temperature-dependent parameters can be correlated, such as in fluorescence intensity ratio vs. interferometric calibration, allowing straightforward sensor characterization. A frequent assumption in such experiments is that thermal homogeneity within the sensor volume, that is, a sound hypothesis when dealing with small volume to surface area ratio devices such as microresonators, but has never been validated. In order to address this issue, we performed a series of experiments and simulations on a microsphere supporting whispering gallery mode resonances, laser heating it at ambient pressure and medium vacuum while tracking the resonance wavelength shift and comparing it to the shift rate observed in a thermal bath. The simulations were done starting only from the material properties of the bulk glass to simulate the physical phenomena of laser heating and resonance of the microsphere glass. Despite the simplicity of the model, both measurements and simulations are in good agreement with a highly homogeneous temperature within the resonator, thus validating the laser heating technique.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA