Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Biol Macromol ; 268(Pt 2): 131660, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636766

RESUMEN

The synergistic effects of phosphorylated zein nanoparticles (PZNP) and cellulose nanocrystals (CNC) in enhancing the wetting and barrier properties of chitosan hydrochloride (CHC)-based coating are investigated characterized by Fourier Transform Infrared Spectra (FTIR), X-ray Diffraction (XRD), atomic force microscopy and by investigating the mechanical properties, etc., with the aim of reducing cherry rain cracking. FTIR and XRD showed dual nanoparticles successfully implanted into CHC, CHC-PZNP-CNC combined moderate ductility (elongation at break: 7.8 %), maximum tensile strength (37.5 MPa). The addition of PZNP alone significantly improved wetting performance (Surface Tension, CHC: 55.3 vs. CHC-PZNP: 48.9 mN/m), while the addition of CNC alone led to a notable improvement in the water barrier properties of CHC (water vapor permeability, CHC: 6.75 × 10-10 vs. CHC-CNC: 5.76 × 10-10 gm-1 Pa-1 s-1). The final CHC-PZNP-CNC coating exhibited enhanced wettability (51.2 mN/m) and the strongest water-barrier property (5.32 × 10-10 gm-1 Pa-1 s-1), coupled with heightened surface hydrophobicity (water contact angle: 106.4°). Field testing demonstrated the efficacy of the CHC-PZNP-CNC coating in reducing cherry rain-cracking (Cracking Index, Control, 42.3 % vs. CHC-PZNP-CNC, 19.7 %; Cracking Ratio, Control, 34.6 % vs. CHC-PZNP-CNC, 15.8 %). The CHC-PZNP-CNC coating is a reliable option for preventing rain-induced cherry cracking.


Asunto(s)
Quitosano , Nanopartículas , Humectabilidad , Quitosano/química , Nanopartículas/química , Celulosa/química , Lluvia/química , Zeína/química , Resistencia a la Tracción , Agua/química , Prunus avium/química , Permeabilidad
2.
ACS Appl Mater Interfaces ; 15(29): 35674-35683, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37431993

RESUMEN

Interfaces between a water droplet and a network of pillars produce eventually superhydrophobic, self-cleaning properties. Considering the surface fraction of the surface in interaction with water, it is possible to tune precisely the contact angle hysteresis (CAH) to low values, which is at the origin of the poor adhesion of water droplets, inducing their high mobility on such a surface. However, if one wants to move and position a droplet, the lower the CAH, the less precise will be the positioning on the surface. While rigid surfaces limit the possibilities of actuation, smart surfaces have been devised with which a stimulus can be used to trigger the displacement of a droplet. Light, electron beam, mechanical stimulation like vibration, or magnetism can be used to induce a displacement of droplets on surfaces and transfer them from one position to the targeted one. Among these methods, only few are reversible, leading to anisotropy-controlled orientation of the structured interface with water. Magnetically driven superhydrophobic surfaces are the most promising reprogramming surfaces that can lead to the control of wettability and droplet guidance.

3.
Polymers (Basel) ; 15(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37177278

RESUMEN

Low-density polyethylene (LDPE) films are widely used in packaging, insulation and many other commodity applications due to their excellent mechanical and chemical properties. However, the water-wetting and water-repellant properties of these films are insufficient for certain applications. In this study, bare LDPE and textured LDPE (T-LDPE) films were subjected to low-pressure plasmas, such as carbon tetrafluoride (CF4) and hydrogen (H2), to see the effect of plasma treatment on the wetting properties of LDPE films. In addition, the surface of the LDPE film was textured to improve the hydrophobicity through the lotus effect. The LDPE and T-LDPE films had contact angle (θ) values of 98.6° ± 0.6 and 143.6° ± 1.0, respectively. After CF4 plasma treatments, the θ values of the surfaces increased for both surfaces, albeit within the standard deviation for the T-LDPE film. On the other hand, the contact angle values after H2 plasma treatment decreased for both surfaces. The surface energy measurements supported the changes in the contact angle values: exposure to H2 plasma decreased the contact angle, while exposure to CF4 plasma increased the contact angle. Kinetic friction force measurements of water drops on LDPE and T-LDPE films showed a decrease in friction after the CF4 plasma treatment, consistent with the contact angle and surface energy measurements. Notably, the kinetic friction force measurements proved to be more sensitive compared to the contact angle measurements in differentiating the wetting properties of the T-LDPE versus 3× CF4-plasma-treated LDPE films. Based on Atomic Force Microscopy (AFM) images of the flat LDPE samples, the 3× CF4 plasma treatment did not significantly change the surface morphology or roughness. However, in the case of the T-LDPE samples, Scanning Electron Microscopy (SEM) images showed noticeable morphological changes, which were more significant at sharp edges of the surface structures.

4.
Molecules ; 27(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36235302

RESUMEN

Improving the utilization rate of pesticides is key to achieve a reduction and synergism, and adding appropriate surfactant to pesticide preparation is an effective way to improve pesticide utilization. Fluorinated surfactants have excellent surface activity, thermal and chemical stability, but long-chain linear perfluoroalkyl derivatives are highly toxic, obvious persistence and high bioaccumulation in the environment. Therefore, new strategies for designing fluorinated surfactants which combine excellent surface activity and environmental safety would be useful. In this study, four non-ionic gemini surfactants with short fluorocarbon chains were synthesized. The surface activities of the resulting surfactants were assessed on the basis of equilibrium surface tension, dynamic surface tension, and contact angle. Compared with their monomeric counterparts, the gemini surfactants had markedly lower critical micelle concentrations and higher diffusivities, as well as better wetting abilities. We selected a single-chain surfactant and a gemini surfactant with good surface activities as synergists for the glyphosate water agent. Both surfactants clearly improved the efficacy of the herbicide, but the gemini surfactant had a significantly greater effect than the single-chain surfactant. An acute toxicity test indicated that the gemini surfactant showed slight toxicity to rats.


Asunto(s)
Fluorocarburos , Herbicidas , Animales , Micelas , Sinergistas de Plaguicidas , Ratas , Soluciones , Tensoactivos , Agua
5.
Environ Sci Pollut Res Int ; 29(54): 81713-81725, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35739450

RESUMEN

To better understand the effects of nonionic silicones and polymers on the wetting and foaming properties of anionic and nonionic hydrocarbon surfactants and different forces between molecules, nonionic silicone surfactant (GT-248), polymer (HPMC), anionic surfactant (AES), and nonionic surfactants (APG0810) were selected. The CMC ratio is used as a reference to determine the concentration ratio of the APG0810/GT-248 and AES/GT-248 compound solutions, after which HPMC was added to form a compound solution to test the wetting and foaming properties of the compound solution. The results showed that GT-248 obtained a high density of methyl groups on the surface of the solution due to its excellent spreadability and good flexibility of the siloxane chain, effectively reduces the surface tension and wetting time of AES and APG0810 solutions. But in terms of foam performance, after adding GT-248 to solution, the foam stability of AES solution is enhanced, the foam height of AES solution was reduced by 33.7%, the foam stability of APG0810 solution is weakened a lot, and the foam height of APG0810 solution was reduced by 85.4%. Mainly because of the difference in electronegativity between the AES and APG0810 head groups, the strong electronegativity between the AES head groups resulted in a smaller number of GT-248 insertions in the liquid film, which weakened the defoaming effect of GT-248. The weak interaction between the head groups of APG0810 resulted in a higher amount of GT-248 in the liquid film, and thus, the foam performance was greatly reduced. After the AES/GT-248 compound solution was preferred, by comparing the viscosity, surface tension, and the half-life of the foam, it was found that the addition of low concentration of polymer effectively improved the half-life of the foam without affecting the foaming properties, and the final choice of 4:1(AES/GT-248) + 1mgHPMC and 2:1(AES/GT-248) + 1mgHPMC composite solutions can be used as a superior dust suppression material.


Asunto(s)
Polímeros , Siliconas , Siloxanos , Tensoactivos/farmacología , Aniones , Hidrocarburos , Polvo
6.
Materials (Basel) ; 15(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35009540

RESUMEN

In this work, a copper coating is developed on a carbon steel substrate by exploiting the superwetting properties of liquid copper. We characterize the surface morphology, chemical composition, roughness, wettability, ability to release a copper ion from surfaces, and antibacterial efficacy (against Escherichia coli and Staphylococcus aureus). The coating shows a dense microstructure and good adhesion, with thicknesses of approximately 20-40 µm. X-ray diffraction (XRD) analysis reveals that the coated surface structure is composed of Cu, Cu2O, and CuO. The surface roughness and contact angle measurements suggest that the copper coating is rougher and more hydrophobic than the substrate. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurements reveal a dissolution of copper ions in chloride-containing environments. The antibacterial test shows that the copper coating achieves a 99.99% reduction of E. coli and S. aureus. This study suggests that the characteristics of the copper-coated surface, including the chemical composition, high surface roughness, good wettability, and ability for copper ion release, may result in surfaces with antibacterial properties.

7.
Adv Mater ; 34(46): e2107891, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34894376

RESUMEN

Separation plays a critical role in a broad range of industrial applications. Developing advanced separation materials is of great significance for the future development of separation technology. Collagen fibers (CFs), the typical structural proteins, exhibit unique structural hierarchy, amphiphilic wettability, and versatile chemical reactivity. These distinctive properties provide infinite possibilities for the rational design of advanced separation materials. During the past 2 decades, many progressive achievements in the development of CFs-derived advanced separation materials have been witnessed already. Herein, the CFs-based separation materials are focused on and the recent progresses in this topic are reviewed. CFs widely existing in animal skins display unique hierarchically fibrous structure, amphiphilicity-enabled surface wetting behaviors, multi-functionality guaranteed covalent/non-covalent reaction versatility. These outstanding merits of CFs bring great opportunities for realizing rational design of a variety of advanced separation materials that were capable of achieving high-performance separations to diverse specific targets, including oily pollutants, natural products, metal ions, anionic contaminants and proteins, etc. Besides, the important issues for the further development of CFs-based advanced separation materials are also discussed.


Asunto(s)
Animales , Humectabilidad , Aceites/química , Colágeno
8.
Pest Manag Sci ; 77(11): 5120-5128, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34240529

RESUMEN

BACKGROUND: The wettability of the target surfaces affects the wetting and deposition of pesticides on them. The properties of leaf surfaces change after infestation by Tetranychus urticae Koch. Studying the surface wettability of T. urticae and the changes in leaf wettability after infestation is important to guide the use of acaricides. RESULTS: The body surface of T. urticae is an ellipsoidal crown covered with dense cuticle striations and hairs arranged in different directions, which makes the surface of T. urticae rough and hydrophobic. The abaxial surfaces of the leaves are rougher and more hydrophobic than the adaxial surfaces. After infestation by T. urticae, the faded spots were sunken on the adaxial surface and raised on the abaxial surface, where they had formed new wide peaks and valleys. The adaxial surface became obviously rougher and more hydrophobic, while the roughness of the abaxial surface became slightly larger, and the change in hydrophobicity was not obvious. The contact angles of the studied commercial acaricide on these surfaces were greater than 65° and were affected by the infestation. Reducing the surface tension can allow for better wetting of these surfaces and eliminate changes in leaf wettability. CONCLUSION: The surfaces of kidney bean leaves became more hydrophobic after infestation by T. urticae with hydrophobic surface. The wettability of the acaricide solution should be adjusted according to the changes in leaf wettability. This study has important theoretical guiding significance for improving effective deposition of acaricide.


Asunto(s)
Acaricidas , Phaseolus , Tetranychidae , Animales , Hojas de la Planta , Propiedades de Superficie
9.
Molecules ; 26(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33921948

RESUMEN

Clove essential oil (CEO) is known for having excellent antioxidant and antimicrobial properties, but the poor stability of its components to light and temperature compromise this activity. The aim of this study is to evaluate the textural, antioxidant, antimicrobial and microstructural properties of matrixes produced with representative natural waxes and CEO. Thus, waxy emulsifiers, such as beeswax, candelilla wax, carnauba wax, and ozokerite wax, were employed to create such matrixes. The thermal, microstructural, textural, wetting, antioxidant, antimicrobial and infrared characteristics of the matrixes were then studied. The diverse chemical composition (long-chain wax esters in carnauba wax and short-chain fatty acids and hydrocarbons in beeswax and ozokerite wax, respectively) explained the differences in wetting, texture, melting, and crystallization characteristics. Crystal forms of these matrix systems varied from grainy, oval, to needle-like shape, but keeping an orthorhombic allomorph. The alignment and reorganization of beeswax and ozokerite wax into needle-like crystals increased the matrix strength and adhesion force compared to those of carnauba and candelilla matrixes, which showed weak strength and grainy morphology. The former two waxes and their matrixes also showed the largest plasticity. These lipidic matrixes show potential use for topical applications having acceptable antioxidant and textural properties.


Asunto(s)
Aceite de Clavo/química , Aceite de Clavo/farmacología , Lípidos/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Fenómenos Químicos , Fenómenos Mecánicos , Estructura Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad , Ceras/química , Difracción de Rayos X
10.
Materials (Basel) ; 13(22)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187216

RESUMEN

The performance of solution-processed organic light emitting diodes (OLEDs) is often limited by non-uniform contacts. In this work, we introduce Ni-containing solution-processed metal oxide (MO) interfacial layers inserted between indium tin oxide (ITO) and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) to improve the bottom electrode contact for OLEDs using the poly(p-phenylene vinylene) (PPV) derivative Super-Yellow (SY) as an emission layer. For ITO/Ni-containing MO/PEDOT:PSS bottom electrode structures we show enhanced wetting properties that result in an improved OLED device efficiency. Best performance is achieved using a Cu-Li co-doped spinel nickel cobaltite [(Cu-Li):NiCo2O4], for which the current efficiency and luminous efficacy of SY OLEDs increased, respectively, by 12% and 11% from the values obtained for standard devices without a Ni-containing MO interface modification between ITO and PEDOT:PSS. The enhanced performance was attributed to the improved morphology of PEDOT:PSS, which consequently increased the hole injection capability of the optimized ITO/(Cu-Li):NiCo2O4/PEDOT:PSS electrode.

11.
Materials (Basel) ; 11(12)2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30486345

RESUMEN

Superhydrophobic and oleophilic polyurethane foams were obtained by spray-coating their surfaces with solutions of thermoplastic polyurethane and hydrophobic silicon oxide nanoparticles. The developed functionalized foams were exploited as reusable oil absorbents from stable water-in-oil emulsions. These foams were able to remove oil efficiently from a wide range of emulsions with oil contents from 10 to 80 v.%, stabilized using Span80. The modified foams could reach oil absorption capacities up to 29 g/g, becoming a suitable candidate for water-in-oil stable emulsions separation.

12.
Nano Lett ; 18(12): 7509-7514, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30365888

RESUMEN

Surfaces that stay clean when immersed in water are important for an enormous range of applications from ships and buildings to marine, medical, and other equipment. Up until now the main strategy for designing self-cleaning surfaces has been to combine hydrophilic/hydrophobic coatings with a high aspect ratio structuring (typically micron scale pillars) to trap a (semi)static water/air layer for drag and adhesion reduction. However, such coating and structuring can distort optical properties and get damaged in harsh environments, and contamination, i.e., particles, oil droplets, and biofouling, can get trapped and aggregate in the structure. Here we present a radically different strategy for self-cleaning surface design: We show that a surface can be made self-cleaning by structuring with a pattern of very low aspect ratio pillars ("pancakes"). Now the water is not trapped. It can flow freely around the pancakes thus creating a dynamic water layer. We have applied the new pancake design to sapphire windows and made the first surfaces that are self-cleaning through structuring alone without the application of any coating. An offshore installation has now been running continuously with structured windows for more than one year. The previous uptime for unstructured windows was 7 days.

13.
Sensors (Basel) ; 18(9)2018 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-30205591

RESUMEN

A potassium bromide (KBr) material, which has been widely used as the key element in Fourier spectrometers and as the output window of the IR-lasers, was studied via applying carbon nanotubes in order to modify the potassium bromide surface. The laser-oriented deposition method was used to place the carbon nanotubes at the matrix material surface in the vertical position at different electric fields varying from 100 to 600 V × cm-1. The main idea of the improvement of the spectral properties of the potassium bromide structure is connected with the fact that the refractive index of the carbon nanotubes is substantially less than the refractive index of the studied material, and the small diameter of the carbon nanotubes allows one to embed these nano-objects in the voids of the lattice of the model matrix systems. Moreover, the mechanical characteristics and wetting features of potassium bromide structures have been investigated under the condition mentioned above. Analytical and quantum-chemical simulations have supported the experimental results.

14.
Macromol Rapid Commun ; 38(11)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28394488

RESUMEN

Nonreactive additives are widely applied to enhance polymer properties but can leach out of the material over time. In this work, two essentially different fluorinated additives bearing a triazolinedione moiety are synthesized and grafted on several polydiene backbones (acrylonitrile-butadiene-styrene, styrene-butadiene, and styrene-isoprene-styrene (SIS) copolymers), either by dip-coating or by reaction in solution. The resulting polymers are analyzed by contact angle goniometry, size exclusion chromatography, and NMR, infrared, and X-ray photoelectron spectroscopy. Independent of the modification procedure, the fluorophilic perfluoroalkyl additive is found at the material surface, thereby yielding a more hydrophobic surface. For SIS thermoplastic elastomers, for example, contact angles up to 125° can be obtained.


Asunto(s)
Técnicas de Química Analítica/métodos , Halogenación , Acrilonitrilo , Espectroscopía de Fotoelectrones , Polímeros , Estireno , Propiedades de Superficie
15.
ACS Appl Mater Interfaces ; 9(8): 7036-7043, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28164693

RESUMEN

Fuel-cell systems are of interest for a wide range of applications, in part for their utility in power generation from nonfossil-fuel sources. However, the generation of these alternative fuels, through electrochemical means, is a relatively inefficient process due to gas passivation of the electrode surfaces. Uniform microstructured nickel surfaces were prepared by photolithographic techniques as a systematic approach to correlating surface morphologies to their performance in the electrochemically driven oxygen evolution reaction (OER) in alkaline media. Hexagonal arrays of microstructured Ni cylinders were prepared with features of proportional dimensions to the oxygen bubbles generated during the OER process. Recessed and pillared features were investigated relative to planar Ni electrodes for their influence on OER performance and, potentially, bubble release. The arrays of cylindrical recesses were found to exhibit an enhanced OER efficiency relative to planar nickel electrodes. These microstructured electrodes had twice the current density of the planar electrodes at an overpotential of 100 mV. The results of these studies have important implications to guide the preparation of more-efficient fuel generation by water electrolysis and related processes.

16.
J Colloid Interface Sci ; 457: 72-7, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26160733

RESUMEN

Here we report for the time, the use of Staudinger-Vilarrasa reaction for fast surface functionalization. Using poly(3,4-ethylenedioxythiophene) nanofibrous surfaces bearing azido groups, this reaction allows for the functionalization of surfaces with amide linker in just 3 h. The functionalization by long alkyl chains induces the formation of highly hydrophobic surfaces while the surface structures are preserved. This reaction can be a key pathway for fast surface modification for a large range of applications such as in cell or bacterial adhesion, for example.

17.
Angew Chem Int Ed Engl ; 54(31): 8975-9, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26083324

RESUMEN

Solid deposition, such as the formation of ice on outdoor facilities, the deposition of scale in water reservoirs, the sedimentation of fat, oil, and grease (FOG) in sewer systems, and the precipitation of wax in petroleum pipelines, cause a serious waste of resources and irreversible environmental pollution. Inspired by fish and pitcher plants, we present a self-replenishable organogel material which shows ultra-low adhesion to solidified paraffin wax and crude oil by absorption of low-molar-mass oil from its crude-oil environment. Adhesion of wax on the organogel surface was over 500 times lower than adhesion to conventional material surfaces and the wax was found to slide off under the force of gravity. This design concept of a gel with decreased adhesion to wax and oil can be extended to deal with other solid deposition problems.


Asunto(s)
Materiales Biomiméticos/química , Dimetilpolisiloxanos/química , Geles/química , Contaminantes Ambientales/química , Estructura Molecular , Industria del Petróleo y Gas/métodos , Petróleo
18.
J Exp Bot ; 66(13): 4013-21, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25948708

RESUMEN

The impact of cold radiofrequency air plasma on the wetting properties and water imbibition of beans (Phaseolus vulgaris) was studied. The influence of plasma on wetting of a cotyledon and seed coat (testa) was elucidated. It was established that cold plasma treatment leads to hydrophilization of the cotyledon and tissues constituting the testa when they are separately exposed to plasma. By contrast, when the entire bean is exposed to plasma treatment, only the external surface of the bean is hydrophilized by the cold plasma. Water imbibition by plasma-treated beans was studied. Plasma treatment markedly accelerates the water absorption. The crucial role of a micropyle in the process of water imbibition was established. It was established that the final percentage of germination was almost the same in the cases of plasma-treated, untreated, and vacuum-pumped samples. However, the speed of germination was markedly higher for the plasma-treated samples. The influence of the vacuum pumping involved in the cold plasma treatment on the germination was also clarified.


Asunto(s)
Phaseolus/efectos de los fármacos , Gases em Plasma/farmacología , Ondas de Radio , Semillas/efectos de los fármacos , Absorción Fisiológica , Adsorción , Germinación/efectos de los fármacos , Phaseolus/ultraestructura , Semillas/ultraestructura , Vacio , Agua , Humectabilidad
19.
Artículo en Coreano | WPRIM (Pacífico Occidental) | ID: wpr-12558

RESUMEN

PURPOSE: To compare the corneal wetting properties of balanced salt solution (BSS) and ophthalmic viscosurgical device (OVD) during cataract surgery. METHODS: The patients with senile cataract were randomly assigned to receive either BSS or viscous dispersive OVD for maintaining optical clarity during phacoemulsification. Intraoperative factors (VAS pain score, occurrence of corneal punctate epithelial erosions (PEE)) and postoperative factors (visual acuity, Oxford staining score, changes in endothelial cell counts, corneal thickness and volume) were compared. RESULTS: Twenty-two eyes were assigned to the BSS group and; 33 eyes were assigned to the OVD group. There were no significant differences in demographic variable between the 2 groups. Intraoperative PEE was observed in 6 eyes in the BSS group and in 2 eyes in the OVD group. The incidence of PEE in the OVD group was significantly lower than in the BSS group (p = 0.045). There were no significant differences in other parameters (VAS pain score, postoperative factors). CONCLUSIONS: Corneal wetting with OVD (Discovisc(R)) provides better surgical view and reduces mechanical damage to the corneal surface without additional material or cost than BSS.


Asunto(s)
Humanos , Catarata , Células Endoteliales , Ojo , Incidencia , Facoemulsificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA