Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 340-349, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35500045

RESUMEN

The effects of wet brewers grains (WBG) on fermentation quality, chemical composition and in vitro ruminal digestibility of mixed silages prepared with corn stalk, dried apple pomace and sweet potato peel were evaluated. A mixture of corn stalk, sweet potato peel and dried apple pomace (50/30/20) was ensiled with 0, 10%, 20% and 30% WBG on a fresh weight (FW) basis for 1, 3, 5, 7, 14 and 30 days respectively. The results showed that the application of WBG increased (p < 0.05) lactic acid, acetic acid and total volatile fatty acids contents, and decreased (p < 0.05) pH, dry matter, water-soluble carbohydrates content and ammonia-nitrogen/total nitrogen during ensiling. The pH in all silages was below 4.03 during ensiling. Treating with WBG increased (p < 0.05) crude protein content, and decreased (p < 0.05) neutral detergent fibre, acid detergent fibre, cellulose and hemicellulose content after 30 days of ensiling. After 72 h of incubation, cumulative gas production, potential gas production and in vitro crude protein digestibility increased (p < 0.05) with the increasing proportions of WBG. However, in vitro digestibility of dry matter and neutral detergent fibre, and metabolisable energy were similar in all silages. The 20% and 30% WBG-treated silages showed better fermentation quality and greater or higher in vitro digestibility, which were indicated by greater or higher (p < 0.05) lactic acid content, in vitro crude protein digestibility, and lower (p < 0.05) pH, ammonia-nitrogen/total nitrogen ratio as compared with the control. Therefore, ensiling agro-food by-products with at least 20% WBG were recommended for improving fermentation quality.


Asunto(s)
Ipomoea batatas , Malus , Animales , Ensilaje/análisis , Zea mays/química , Amoníaco/metabolismo , Fermentación , Detergentes/metabolismo , Carbohidratos , Ácido Láctico/metabolismo , Nitrógeno/metabolismo , Proteínas/metabolismo
2.
Animals (Basel) ; 10(9)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32916916

RESUMEN

The objective of this research was to examine the effect of sodium formate (SF) and calcium propionate (CAP) on the fermentation characteristics and microbial community of wet brewers grains (WBG) after short-term storage. In the laboratory environment, fresh WBG was ensiled with (1) no additive (CON), (2) sodium formate (SF, 3 g/kg fresh weight), and (3) calcium propionate (CAP, 3 g/kg fresh weight) for 20 days. After opening, fermentation characteristics, chemical composition, rumen effective degradability, and the microbial community of ensiled WBG were analyzed. The addition of CAP had no effect on pH and lactic acid concentration and increased the concentrations of propionic acid; the SF group had the lowest pH and acetic acid, butyric acid, and ammonia nitrogen contents and the highest lactic acid concentration. After fermentation, the SF group had the highest contents of dry matter (DM), water-soluble carbohydrates (WSCs), and neutral detergent fiber (NDF). The contents of the three nutrients in the CAP group were significantly higher than those in the CON group. The addition of the two additives had little influence on the crude protein (CP) and acid detergent fiber (ADF) contents of the ensiled WBG. Two additives elevated in situ effective degradability of DM and NDF compared with the parameters detected in the CON group; WBG ensiled with SF had higher effective in situ CP degradability than that in the CON and CAP groups. The results of the principal component analysis indicate that the SF group and two other groups had notable differences in bacterial composition. The analysis of the genus level of the bacterial flora showed that the content of Lactobacillus in the SF group was significantly higher than that in the two other treatment groups, while the content of Clostridium was significantly lower than that in the two other treatment groups. Therefore, the addition of sodium formate can suppress the undesirable microorganisms, improve the fermentation qualities, and ensure that WBG is well preserved after 20 days of ensiling.

3.
Asian-Australas J Anim Sci ; 27(6): 832-40, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25050021

RESUMEN

This study aimed to investigate the effects of storage duration and temperature on the characteristics of wet brewers grains (WBG) as feeds for ruminant animals. Four storage temperatures (5°C, 15°C, 25°C, and 35°C) and four durations (0, 1, 2, and 3 d) were arranged in a 4×4 factorial design. Surface spoilage, chemical composition and microorganism density were analyzed. An in vitro gas test was also conducted to determine the pH, ammonia-nitrogen and volatile fatty acid (VFA) concentrations after 24 h incubation. Surface spoilage was apparent at higher temperatures such as 25°C and 35°C. Nutrients contents decreased concomitantly with prolonged storage times (p<0.01) and increasing temperatures (p<0.01). The amount of yeast and mold increased (p<0.05) with increasing storage times and temperatures. As storage temperature increased, gas production, in vitro disappearance of organic matter, pH, ammonia nitrogen and total VFA from the WBG in the rumen decreased (p<0.01). Our results indicate that lower storage temperature promotes longer beneficial use period. However, when storage temperature exceeds 35°C, WBG should be used within a day to prevent impairment of rumen fermentation in the subtropics such as Southeast China, where the temperature is typically above 35°C during summer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA