RESUMEN
Advanced high-strength steels (AHSSs) are designed for meeting strict requirements, especially in the automotive industry, as a means to directly influence the reduction in the carbon footprint. As rotary friction welding (RFW) has many important advantages over other welding technologies, it plays an important role in the automotive sector. On the above basis, in this work, combinations of the first (complex phase (CP)), second (TWIP (TW)), and third (quenched and partitioned (Q&P)) generations of similar and dissimilar high-alloyed advanced steels have been joined by the RFW process. Having a specific microstructure, rods of CP/CP, Q&P/Q&P, CP/TW, and Q&P/TW steels were welded by employing a homemade adaptation machine under fixed parameters. Microstructural characterization has allowed us to corroborate the metallic bonding of all the tested advanced steels and to identify the different zones formed after welding. Results indicate that the welding zone widens in the center of the workpiece, and under the current friction action, the intermixing region shows the redistribution of solute elements, mostly in the dissimilarly welded steels. Furthermore, because of their complex chemistry and the different mechanical properties of the used steels, dissimilarly welded steels present the most noticeable differences in hardness. The TWIP steel has the lower hardness values, whilst the CP and Q&P steels have the higher ones. As a direct effect of the viscoplastic behavior of the steels established by the thermomechanical processing, interlayers and oxidation products were identified, as well as some typical RFW defects. The electrochemical response of the welded steels has shown that the compositional and microstructural condition mostly affect the corrosion trend. This means that the dissimilarly welded steels are more susceptible to corrosion, especially at the TWIP-steel interface, which is attributed to the energy that is stored in the distorted microstructure of each steel plate as a consequence of the thermomechanical processing during RFW.
RESUMEN
Resumen Objetivo Comparar dos procedimientos de soldadura convencionales empleando una aleación de Cr-Co, para conectar barras coladas seccionadas a ser fijadas sobre implantes. Materiales y métodos A partir de un modelo maestro que representa un maxilar desdentado con cuatro implantes, se confeccionaron veinte (n=20) probetas seccionadas en tres partes. Se conformaron dos grupos, cada uno con diez (n=10) ejemplares. Una vez acondicionadas, fueron atornilladas al modelo maestro. Su desajuste inicial se analizó utilizando una lupa estereoscópica, con una cámara incorporada y un software. Las partes fueron soldadas empleando un procedimiento diferente para cada grupo. Las correspondientes al Grupo I se invistieron en un block refractario a base de sílico-fosfato. Las del Grupo II se montaron en una estructura metálica Clever Spider. El desajuste fue mensurado y los resultados procesados estadísticamente. El nivel de significación fue establecido en p<0,05. Resultados El Grupo I tuvo un desajuste inicial de 97,30±13,81μm y el Grupo II de 98,53±11,24μm. Luego de la soldadura, el Grupo I registró 98,53±17,17μm, 1,23μm mayor respecto al inicial. En el Grupo II se observó 103,13±17,61μm, 4,60μm por encima del original. Se analizaron mediante prueba t de Student; en ambos casos el resultado fue de p>0,05. Al comparar entre sí los grupos I y II, por medio de la prueba t y de comprobación no paramétrica de Mann-Whitney, se observaron diferencias no significativas, p=0,41 y p=0,38 respectivamente. Conclusiones Bajo las condiciones de este estudio, se observó que los dos métodos de soldadura analizados fueron confiables para unir supraestructurasos metálicas sin que se afecte su ajuste final.
Abstract Aim Compare two conventional welding procedures using a Cr-Co alloy, to connect sectioned cast bars to be fixed on implants. Materials and methods From a master model representing a toothless jaw with four implants, twenty (n=20) specimens sectioned into three parts were made. Two groups were formed, each with ten (n=10) specimens. Once conditioned, they were screwed to the master model. Its initial mismatch was analyzed using a stereoscopic magnifier, with a built-in camera and a software. The parts were welded using a different procedure for each group. Those corresponding to Group I were invested in a refractory block based on silyl-phosphate. Those of Group II were mounted on a Clever Spider metal structure. The mismatch was measured, and the results processed statistically. The level of significance was established at p<0.05. Results Group I had an initial mismatch of 97.30 ±13.81μm, and Group II of 98.53±11.24μm. After welding, Group I registered 98.53±17.17μm, 1.23μm higher than the initial one. In Group II, 103.13±17.61μm was observed, 4.60μm above the original. They were analyzed using Student's t test; in both cases the result was p>0.05. When comparing groups I and II, using the t-test and the Mann-Whitney nonparametric verification, non-significant differences were observed, p=0.41 and p=0.38 respectively. Conclusions Under the conditions of this study, it was observed that the two welding methods analyzed were reliable for joining metallic superstructures without affecting their final fit.
RESUMEN
Resumen Objetivo Comparar dos procedimientos de soldadura convencionales empleando una aleación de Cr-Co, para conectar barras coladas seccionadas a ser fijadas sobre implantes. Materiales y métodos A partir de un modelo maestro que representa un maxilar desdentado con cuatro implantes, se confeccionaron veinte (n=20) probetas seccionadas en tres partes. Se conformaron dos grupos, cada uno con diez (n=10) ejemplares. Una vez acondicionadas, fueron atornilladas al modelo maestro. Su desajuste inicial se analizó utilizando una lupa estereoscópica, con una cámara incorporada y un software. Las partes fueron soldadas empleando un procedimiento diferente para cada grupo. Las correspondientes al Grupo I se invistieron en un block refractario a base de sílico-fosfato. Las del Grupo II se montaron en una estructura metálica Clever Spider. El desajuste fue mensurado y los resultados procesados estadísticamente. El nivel de significación fue establecido en p<0,05. Resultados El Grupo I tuvo un desajuste inicial de 97,30±13,81μm y el Grupo II de 98,53±11,24μm. Luego de la soldadura, el Grupo I registró 98,53±17,17μm, 1,23μm mayor respecto al inicial. En el Grupo II se observó 103,13±17,61μm, 4,60μm por encima del original. Se analizaron mediante prueba t de Student; en ambos casos el resultado fue de p>0,05. Al comparar entre sí los grupos I y II, por medio de la prueba t y de comprobación no paramétrica de Mann-Whitney, se observaron diferencias no significativas, p=0,41 y p=0,38 respectivamente. Conclusiones Bajo las condiciones de este estudio, se observó que los dos métodos de soldadura analizados fueron confiables para unir supraestructurasos metálicas sin que se afecte su ajuste final.
Abstract Aim Compare two conventional welding procedures using a Cr-Co alloy, to connect sectioned cast bars to be fixed on implants. Materials and methods From a master model representing a toothless jaw with four implants, twenty (n=20) specimens sectioned into three parts were made. Two groups were formed, each with ten (n=10) specimens. Once conditioned, they were screwed to the master model. Its initial mismatch was analyzed using a stereoscopic magnifier, with a built-in camera and a software. The parts were welded using a different procedure for each group. Those corresponding to Group I were invested in a refractory block based on silyl-phosphate. Those of Group II were mounted on a Clever Spider metal structure. The mismatch was measured, and the results processed statistically. The level of significance was established at p<0.05. Results Group I had an initial mismatch of 97.30 ±13.81μm, and Group II of 98.53±11.24μm. After welding, Group I registered 98.53±17.17μm, 1.23μm higher than the initial one. In Group II, 103.13±17.61μm was observed, 4.60μm above the original. They were analyzed using Student's t test; in both cases the result was p>0.05. When comparing groups I and II, using the t-test and the Mann-Whitney nonparametric verification, non-significant differences were observed, p=0.41 and p=0.38 respectively. Conclusions Under the conditions of this study, it was observed that the two welding methods analyzed were reliable for joining metallic superstructures without affecting their final fit.
RESUMEN
Objetivo: Comparar dos procedimientos de soldadura convencionales empleando una aleación de Cr-Co, para co- nectar barras coladas seccionadas a ser fijadas sobre implantes. Materiales y métodos: A partir de un modelo maes- tro que representa un maxilar desdentado con cuatro implan- tes, se confeccionaron veinte (n=20) probetas seccionadas en tres partes. Se conformaron dos grupos, cada uno con diez (n=10) ejemplares. Una vez acondicionadas, fueron atornilla- das al modelo maestro. Su desajuste inicial se analizó utili- zando una lupa estereoscópica, con una cámara incorporada y un software. Las partes fueron soldadas empleando un pro- cedimiento diferente para cada grupo. Las correspondientes al Grupo I se invistieron en un block refractario a base de sílico-fosfato. Las del Grupo II se montaron en una estructu- ra metálica Clever Spider. El desajuste fue mensurado y los resultados procesados estadísticamente. El nivel de significa- ción fue establecido en p<0,05. Resultados: El Grupo I tuvo un desajuste inicial de 97,30±13,81µm y el Grupo II de 98,53±11,24µm. Luego de la soldadura, el Grupo I registró 98,53±17,17µm, 1,23µm mayor respecto al inicial. En el Grupo II se observó 103,13±17,61µm, 4,60µm por encima del original. Se analizaron mediante prue- ba t de Student; en ambos casos el resultado fue de p>0,05. Al comparar entre sí los grupos I y II, por medio de la prueba t y de comprobación no paramétrica de Mann-Whitney, se ob- servaron diferencias no significativas, p=0,41 y p=0,38 res- pectivamente (AU)
Aim: Compare two conventional welding procedures us- ing a Cr-Co alloy, to connect sectioned cast bars to be fixed on implants. Materials and methods: From a master model representing a toothless jaw with four implants, twenty (n=20) specimens sectioned into three parts were made. Two groups were formed, each with ten (n=10) specimens. Once conditioned, they were screwed to the master mod- el. Its initial mismatch was analyzed using a stereoscop- ic magnifier, with a built-in camera and a software. The parts were welded using a different procedure for each group. Those corresponding to Group I were invested in a refractory block based on silyl-phosphate. Those of Group II were mounted on a Clever Spider metal structure. The mismatch was measured, and the results processed statisti- cally. The level of significance was established at p<0.05. Results: Group I had an initial mismatch of 97.30 ±13.81µm, and Group II of 98.53±11.24µm. After welding, Group I registered 98.53±17.17µm, 1.23µm higher than the initial one. In Group II, 103.13±17.61µm was observed, 4.60µm above the original. They were analyzed using Stu- dent's t test; in both cases the result was p>0.05. When com- paring groups I and II, using the t-test and the Mann-Whitney nonparametric verification, non-significant differences were observed, p=0.41 and p=0.38 respectively. Conclusions: Under the conditions of this study, it was ob- served that the two welding methods analyzed were reliable for joining metallic superstructures without affecting their final fit (AU)
Asunto(s)
Soldadura Dental , Retención de Prótesis Dentales/métodos , Ajuste de Prótesis/métodos , Prótesis Dental de Soporte Implantado/métodos , Interpretación Estadística de Datos , Aleaciones de Cromo/síntesis química , Prótesis de RecubrimientoRESUMEN
The development of techniques to improve the welding of super duplex steels is necessary in order to ensure that the phase balance and properties of the material are not affected during this process. Hybrid arc-laser welding is a perfect combination of the advantages of both processes, producing deeper weld beads with more balanced phases than the pulsed laser process. Here, the objective was to improve the corrosion resistance of UNS S32750 weld beads by increasing the volumetric austenite percentage in the fusion zone (FZ) with a hybrid process of GTAW (gas tungsten arc welding) and pulsed laser Nd-YAG (neodymium-doped yttrium aluminum garnet). Welds were performed in bead on plate conditions with fixed laser parameters and a varying heat input introduced through the GTAW process. Additionally, welds within a nitrogen atmosphere were performed. After base metal characterization, an analysis of the FZ and heat affected zone were performed with optical microscopy, scanning electron microscopy and critical pitting tests (CPT). The synergy between the thermal input provided by the hybrid process and austenite-promoting characteristic of nitrogen led to a balanced volumetric austenite/ferrite fraction. Consequently, the results obtained in CPT tests were better than conventional welding processes, such as laser or GTAW solely.
RESUMEN
Welding fumes are classified as carcinogenic to humans. The aim of the present study was to measure buccal micronucleus cytome assay biomarkers and to evaluate their association with inorganic elements and genetic polymorphisms (XRCC1, OGG1, XRCC3, GSTM1, and GSTT1) in welders (n = 98) and control individuals (n = 100). Higher levels of DNA damage and cell death were observed in the exposed group. Also, a significant correlation between the frequency of micronuclei and Na, Si, Cl, Ti, Cr, Zn and Mg concentrations. The formation of micronuclei, binucleated cells, cell death was associated with polymorphisms in repair pathways. The OGG1Ser326Cys and XRCC3 241Thr/Met genotypes were associated with cell death. Individuals with GSTM1 null genotype had a higher frequency of micronuclei. These results demonstrate that the deleterious effects of exposure to welding fumes are exacerbated by lifestyle habits, and genetic polymorphisms can influence DNA damage and cell death.
Asunto(s)
Obreros Metalúrgicos , Exposición Profesional , Humanos , Exposición Profesional/efectos adversos , Pruebas de Micronúcleos , Polimorfismo Genético , Daño del ADN , Biomarcadores , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos XRESUMEN
Fumes generated in the welding process are composed of micrometric and nanometric particles that form when metal fumes condense. The International Agency for Research on Cancer established that many compounds derived from the welding process are carcinogenic to humans. Still, there are few studies related to the role of genetic polymorphisms. This work aimed to analyze the influence of OGG1 Ser326Cys, XRCC1 Arg280His, XRCC1 Arg194Thr, XRCC1 Arg399Gln, XRCC3 Thr241Met, GSTM1, and GSTT1 gene polymorphisms on DNA damage of 98 subjects occupationally exposed to welding fumes and 100 non exposed individuals. The results showed that individuals exposed to welding fumes with XRCC3 Thr241Thr, XRCC3 Thr241Met, and GSTM1 null genotypes demonstrated a significantly higher micronucleus frequency in lymphocytes. In contrast, individuals with XRCC1 Arg399Gln and XRCC1 Gln399Gln genotypes had significant levels of NPBs. OGG1 326 Ser/Cys, OGG1 326 Cys/Cys, XRCC1 194Arg/Thr, XRCC1 194Thr/Thr, and GSTT1 null genotypes exhibited significantly higher apoptotic values. Also, XRCC1 194Arg/Trp, XRCC1 194Thr/Thr, and GSTM1 null genotype carriers had higher necrotic levels compared to XRCC1 194Arg/Arg and GSTM1 nonnull carriers. Compositional analysis revealed the presence of iron, manganese, silicon as well as particles smaller than 2 µm that adhere to each other and form agglomerates. These results may be associated with a mixture of components, such as nitrogen dioxide, carbon monoxide, and metallic fumes, leading to significant DNA damage and cell death processes. These findings demonstrated the importance of the association between individual susceptibility and DNA damage levels due to occupational exposure to welding fumes; and constitute one of the first studies carried out in exposed workers from Colombia.
Asunto(s)
Citocinesis , Daño del ADN , Obreros Metalúrgicos , Exposición Profesional , Colombia , ADN Glicosilasas/genética , Reparación del ADN , Proteínas de Unión al ADN/genética , Genotipo , Glutatión Transferasa/genética , Humanos , Exposición Profesional/efectos adversos , Polimorfismo Genético , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genéticaRESUMEN
The effect of two different heat inputs, 1.2 and 0.8 kJ/ mg, on the microstructure associated with a welded high hardness armor (HHA) steel was investigated by ballistic tests. A novel way of comparing the ballistic performance between fusion zone (FZ), heat-affected zone (HAZ), and base metal (BM) of the HHA joint plate was applied by using results of the limit velocity V50. These results of V50 were combined with those of ballistic absorbed impact energy, microhardness, and Charpy and tensile strength revealing that the higher ballistic performance was attained for the lower heat input. Indeed, the lower heat input was associated with a superior performance of the HAZ, by reaching a V50 projectile limit velocity of 668 m/s, as compared to V50 of 622 m/s for higher heat input as well as to both FZ and BM, with 556 and 567 m/s, respectively. Another relevant result, which is for the first time disclosed, refers to the comparative lower microhardness of the HAZ (445 HV) vs. BM (503 HV), in spite of the HAZ superior ballistic performance. This apparent contradiction is attributed to the HAZ bainitic microstructure with a relatively greater toughness, which was found more determinant for the ballistic resistance than the harder microstructure of the BM tempered martensite.
RESUMEN
SUMMARY: The studies of the properties of vascular structures and tissues during electric welding, in particular direct morphological changes in the blood vessel walls in the areas of welding processes, are of interest. Perforating veins, femoral veins, abdominal aorta, vena cava and porcine perforating veins of the limbs were used in this study. We performed end-to-end electric welding of the aorta, venous end-to-side electric welding, vein end-to-artery side arterial and venous welding, venous end-to-end electric welding, as well as arterial and venous lumen sealing.The results of histological studies showed the formation of a coagulated acellular protein matrix, represented by unorganized denatured protein fibrous structures. In the area of vascular tissue coagulation, lacunes were formed as a result of water evaporation from the biological tissue. In the perifocal area of the welded junction, cell reduction occurred without necrosis or charring. The data obtained confirm the safety of high frequency electric welding of the main vessels and the prospectfor clinical use of the studied techniques.
RESUMEN: Los estudios de las propiedades de las estructuras y tejidos vasculares durante la soldadura eléctrica son relevantes, en particular los cambios morfológicos directos en las paredes de los vasos sanguíneos en las áreas de los procesos de soldadura. En este estudio se utilizaron venas perforantes, venas femorales, parte abdominal de la aorta, vena cava y venas perforantes porcinas de los miembros. Realizamos soldadura eléctrica de extremo a extremo de la parte abdominal de la aorta, soldadura eléctrica de extremo a lado venosa, soldadura arterial y venosa de extremo a arteria del lado venoso, soldadura eléctrica de extremo a extremo venoso, así como lumen arterial y venoso. Los resultados de los estudios histológicos mostraron la formación de una matriz de proteína acelular coagulada, representada por estructuras fibrosas de proteínas desnaturalizadas no organizadas. Se formaron lagunas como resultado de la evaporación del agua del tejido biológico en el área de la coagulación del tejido vascular, En el área perifocal de la unión soldada, la reducción celular ocurrió sin necrosis ni carbonización. Los datos obtenidos confirman la seguridad de la soldadura eléctrica de alta frecuencia de los vasos principales y la perspectiva de uso clínico de estas técnicas.
Asunto(s)
Animales , Procedimientos Quirúrgicos Vasculares/métodos , Anastomosis Quirúrgica/métodos , Electrocirugia/métodos , Porcinos , Coagulación Sanguínea , Vasos Sanguíneos/anatomía & histologíaRESUMEN
OBJECTIVE: To compare the mechanical strength of joints made by conventional soldering with those made by alternative, more biocompatible, methods (spot, tungsten inert gas [TIG] and laser welding), and to compare the microstructural morphology of wires welded with these techniques. DESIGN: In vitro, laboratory study. METHODS: Forty stainless-steel wire segments with 0.8-mm diameter were joined by silver soldering, spot, laser and TIG welding. Ten specimens were produced for each one. Tensile strength test was performed 24 h after welding on the Emic DL2000™ universal testing machine, using a load cell of 1000 N with a crosshead speed of 10 mm/min. RESULTS: The highest tensile strength mean values were obtained with silver soldering (532 N), next were laser (420 N), spot (301 N) and TIG (296 N) welding. Statistically significant differences were observed between the groups; the Dunn post-hoc test revealed differences between laser and spot welding (p=0.046), laser and TIG (p = 0.016), spot and silver (p <0.001), and silver and TIG (p <0.001). CONCLUSION: Laser welding strength is high, and comparable to silver welding. Spot and TIG techniques present comparable and significantly lower strengths. The four methods presented resistance values compatible with orthodontic use. The microstructural morphology is different for each technique. The association between the mechanical performance and the microstructure evaluation shows that laser presented the highest quality joint.
Asunto(s)
Soldadura Dental , Soldadura , Humanos , Ensayo de Materiales , Acero Inoxidable , Resistencia a la Tracción , TungstenoRESUMEN
During the welding activities many compounds are released, several of these cause oxidative stress and inflammation and some are considered carcinogenic, in fact the International Agency for Research on Cancer established that welding fumes are carcinogenic to humans. The aim of the present study was to analyze the cytotoxic and genotoxic potential of exposure to welding fumes and to determine concentrations of metals in blood and urine of occupationally exposed workers. We included 98 welders and 100 non-exposed individuals. Our results show significant increase in the frequency of micronuclei (MN), nucleoplasmic bridges (NPB), nuclear buds (NBUD) and necrotic cells (NECR) in cytokinesis-block micronucleus cytome (CBMN-Cyt) assay, as well as in the telomere length (TL) of the exposed individuals with respect to the non-exposed group. In the analysis of the concentrations of inorganic elements using PIXE method, were found higher concentrations of Cr, Fe and Cu in the urine, and Cr, Fe, Mg, Al, S, and Mn in the blood in the exposed group compared to the non-exposed group. A significant correlation was observed between MN and age and between NPB and years of exposure. Additionally, we found a significant correlation for TL in relation to MN, NPB, age and years of exposure in the exposed group. Interestingly, a significant correlation between MN and the increase in the concentration of Mg, S, Fe and Cu in blood samples of the exposed group, and between MN and Cr, Fe, Ni and Cu in urine. Thus, our findings may be associated with oxidative and inflammatory damage processes generated by the components contained in welding fumes, suggesting a high occupational risk in welding workers.
Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Bioensayo , Pruebas de Micronúcleos/métodos , Exposición Profesional/análisis , Telómero , Biomarcadores/análisis , Citocinesis , Daño del ADN , Humanos , Linfocitos , Estrés Oxidativo , SoldaduraRESUMEN
Dual Phase steels are one of the most used advanced high-strength materials in the industry, due to its combination of a ductile ferritic matrix and disperse hard martensite islands, which provide outstanding mechanical properties for components to be cold stamped. This work investigated fiber laser welding applicability in Dual Phase 600 1.6 mm thick steel sheets, evaluating potential welding impacts on properties of the material for industrial applications. A first set of bead-on-plate welds was generated to define best parameters for subsequent tests. A second set was prepared, consisting of butt joints welded in the optimized condition. Weld microstructure was characterized as 100% martensitic at fusion zone (FZ), with growing fractions of ferrite at Heat Affected Zone (HAZ) as one moves away from fusion line. Hardness is around 60% higher at FZ than at BM, being maximum at supercritical HAZ due to its highly refined microstructure and HAZ softening was not observed. Tensile and Erichsen cupping tests presented similar strength results between welded and non-welded specimens, with slight ductility reduction. Finally, numeric simulations based on Finite Element Analysis were carried out to estimate temperature evolution, phase proportions, residual stresses and distortion levels, achieving excellent agreement with experimental results.
RESUMEN
A novel manufacturing approach was used to fabricate metallic scaffolds. A calibration of the laser cutting process was performed using the kerf width compensation in the calculations of the tool trajectory. Welding defects were studied through X-ray microtomography. Penetration depth and width resulted in relative errors of 9.4%, 1.0%, respectively. Microhardness was also measured, and the microstructure was studied in the base material. The microhardness values obtained were 400 HV, 237 HV, and 215 HV for the base material, HAZ, and fusion zone, respectively. No significant difference was found between the microhardness measurement along with different height positions of the scaffold. The scaffolds' dimensions and porosity were measured, their internal architecture was observed with micro-computed tomography. The results indicated that geometries with dimensions under 500 µm with different shapes resulted in relative errors of ~2.7%. The fabricated scaffolds presented an average compressive modulus ~13.15 GPa, which is close to cortical bone properties. The proposed methodology showed a promising future in bone tissue engineering applications.
RESUMEN
Continuous drive friction welding is a solid-state welding process that has been experimentally proven to be a fast and reliable method. This is a complex process; deformations in the viscosity of a material alter the friction between the surfaces of the pieces. All these dynamics cause changes in the vibration signals; the interpretation of these signals can reveal important information. The vibration signals generated during the friction and forging stages are measured on the stationary part of the structure to determine the influence of the manipulated variables on the time domain statistical characteristics (root mean square, peak value, crest factor, and kurtosis). In the frequency domain, empirical mode decomposition is used to characterize frequencies. It was observed that it is possible to identify the effects of the manipulated variables on the calculated statistical characteristics. The results also indicate that the effect of manipulated variables is stronger on low-frequency signals.
RESUMEN
In order to provide a better understanding of the phenomena that define the weld bead penetration and melting rate of consumables in underwater welding, welds were developed with a rutile electrode in air welding conditions and at the simulated depths of 5 and 10 m with the use of a hyperbaric chamber and a gravity feeding system. In this way, voltage and current signals were acquired. Data processing involved the welding voltage, determination of the sum of the anodic and cathodic drops, calculation of the short-circuit factor, and determination of the melting rate. Cross-sectional samples were also taken from the weld bead to assess bead geometry. As a result, the collected data show that the generation of energy in the arc-electrode connection in direct polarity (direct current electrode negative-DCEN) is affected by the hydrostatic pressure, causing a loss of fusion efficiency, a drop of operating voltage, decreased arc length, and increased number of short-circuit events. The combination of these characteristics kept the weld bead geometry unchanged, compared to dry weld conditions. With the positive electrode (direct current electrode positive-DCEP), radial losses were derived from greater arc lengths resulting from increasing hydrostatic pressure, which led to a decrease in weld penetration.
RESUMEN
This paper presents high quality (2048â¯×â¯1532 pixels) Light Microscope steel images sampled from the welding fusion zone. The microstructure images were acquired from the Design of Experiments (22 full factorial design) planned to compare two different arc welding processes at two different arc welding energies [1]. The 400 raw images appear as they were captured by the microscope and they are categorized into four groups: that acquired from the Flux Cored Arc Welding process and that acquired from the Shielded Metal Arc Welding process; both of them run for high and low levels of arc energy. For the Flux Cored Arc Welding process, ASME SFA 5.20 E71T-5C(M) tubular wire was used, with a nominal diameter of 1.2â¯mm. For the Shielded Metal Arc Welding process, AWS E7018 coated electrodes were used, with nominal diameters of 3.25â¯mm (for the low energy level) and 5.00â¯mm (for the high energy level). The deposition of the beads was run on AISI 1010 steel plates in the flat position (bead-on-plate). Different proportions of primary grain boundary ferrite; polygonal ferrite; acicular ferrite; nonaligned side-plate ferrite and aligned side-plate ferrite can be observed in each image. This image dataset is ready to visual and automatic microstructure recognition and quantification. It can be a useful resource for computational intelligence research teams, e.g. [2], by offering images for handling as filtering, feature extraction, training, validation and testing in pattern recognition and machine learning techniques.
RESUMEN
One of the most important operations during the manufacturing process of a pressure vessel is welding. The result of this operation has a great impact on the vessel integrity; thus, welding inspection procedures must detect defects that could lead to an accident. This paper introduces a computer vision system based on structured light for welding inspection of liquefied petroleum gas (LPG) pressure vessels by using combined digital image processing and deep learning techniques. The inspection procedure applied prior to the welding operation was based on a convolutional neural network (CNN), and it correctly detected the misalignment of the parts to be welded in 97.7% of the cases during the method testing. The post-welding inspection procedure was based on a laser triangulation method, and it estimated the weld bead height and width, with average relative errors of 2.7% and 3.4%, respectively, during the method testing. This post-welding inspection procedure allows us to detect geometrical nonconformities that compromise the weld bead integrity. By using this system, the quality index of the process was improved from 95.0% to 99.5% during practical validation in an industrial environment, demonstrating its robustness.
RESUMEN
High entropy alloys (HEAs) emerged in the beginning of XXI century as novel materials to "keep-an-eye-on". In fact, nowadays, 16 years after they were first mentioned, a lot of research has been done regarding the properties, microstructure, and production techniques for the HEAs. Moreover, outstanding properties and possibilities have been reported for such alloys. However, a way of jointing these materials should be considered in order to make such materials suitable for engineering applications. Welding is one of the most common ways of jointing materials for engineering applications. Nevertheless, few studies concerns on efforts of welding HEAs. Therefore, it is mandatory to increase the investigation regarding the weldability of HEAs. This work aims to present a short review about what have been done in recent years, and what are the most common welding techniques that are used for HEAs. It also explores what are the measured properties of welded HEAs as well as what are the main challenges that researchers have been facing. Finally, it gives a future perspective for this research field.
RESUMEN
OBJECTIVES: Quantify metal ion release in the saliva, considering that orthodontic appliances with soldered or welded parts may suffer corrosion and release metal ions into saliva, which can trigger adverse effects, such as hypersensitivity. METHODS: Sixty-four patients were distributed into four groups: G1 (control), G2 (silver-soldered lingual arch), G3 (laser-welded lingual arch), and G4 (TIG-welded lingual arch). Saliva samples were collected at four different points and were analyzed for ion release with ICP-MS. RESULTS: For Cr, Fe, Cu, and Sn ion concentrations among groups, there was no difference along collections and no statistically significant difference throughout collections for any group (P > 0.05, with release values between 3.3 and 4.2 µg/L for Cr, 201 and 314.8 µg/L for Fe, 23.1 and 40.7 µg/L for Cu, and 13 and 27.7 µg/L for Sn). For Ni, G4 showed an increased ion release at T2 (14.3 µg/L) and T4 (34.5 µg/L), values with an interaction effect (P < 0.001) comparing the groups and the points of collection. For Zn, Ag, and Cd ions there was no difference along the points in time (P > 0.05). For Zn ions, there was a statistic difference from G4 to G1 and G2 (P = 0.007 and P = 0.019), with median values ranging from 741.7 to 963.4 µg/L for G4, and for Ag ions, from G4 to G2 and G3 (P < 0.001 for both), with lower medians for G4 (3.7-6.1 µg/L). For Cd ions there was a statistic difference from T1 to T4 in all groups (P = 0.016), with lower values for T4. CONCLUSIONS: Different welding procedures may affect salivary ion concentrations. For most ions there was no significant increase comparing welding and comparing throughout points in the same group. Although TIG welding presented greater Ni ion release, this possibly occurred due to a bigger corrosion of the welded. CLINICAL RELEVANCE: Determining the amount of released metal ions from the use of orthodontic appliances is relevant to ensure the safest method for patients. Welding procedures affect salivary ion concentrations, when comparing ion release triggered by one of the most common devices used for preventive/interceptive orthodontic treatments.
Asunto(s)
Materiales Dentales , Plata , Soldadura , Corrosión , Humanos , Iones , Ensayo de Materiales , Saliva/química , Plata/análisisRESUMEN
Duplex stainless steels (DSSs), a particular category of stainless steels, are employed in all kinds of industrial applications where excellent corrosion resistance and high strength are necessary. These good properties are provided by their biphasic microstructure, consisting of ferrite and austenite in almost equal volume fractions of phases. In the present work, Nd: YAG pulsed laser dissimilar welding of UNS S32750 super duplex stainless steel (SDSS) with 316L austenitic stainless steel (ASS), with different heat inputs, was investigated. The results showed that the fusion zone microstructure observed consisted of a ferrite matrix with grain boundary austenite (GBA), Widmanstätten austenite (WA) and intragranular austenite (IA), with the same proportion of ferrite and austenite phases. Changes in the heat input (between 45, 90 and 120 J/mm) did not significantly affect the ferrite/austenite phase balance and the microhardness in the fusion zone.