Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mater Today Proc ; 56: 3317-3324, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34722166

RESUMEN

Covid-19 cases are increasing each day, however none of the countries successfully came up with a proper approved vaccine. Studies suggest that the virus enters the body causing a respiratory infection post contact with a disease. Measures like screening and early diagnosis contribute towards the management of COVID- 19 thereby reducing the load of health care systems. Recent studies have provided promising methods that will be applicable for the current pandemic situation. The previous system designed a various Machine Learning (ML) algorithms such as Decision Tree (DT), Random Forest (RF), XGBoost, Gradient Boosting Machine (GBM) and Support Vector Machine (SVM) for predicting COVID-19 disease with symptoms. However, it does not produce satisfactory results in terms of true positive rate. And also, better optimization methods are required to enhance the precision rate with minimum execution time. To solve this problem the proposed system designed a Weighted Butterfly Optimization Algorithm (WBOA) with Intuitionistic fuzzy Gaussian function based Adaptive-Neuro Fuzzy Inference System (IFGF-ANFIS) classifier for predicting the magnitude of COVID- 19 disease. The principle aim of this method is to design an algorithm that could predict and assess the COVID-19 parameters. Initially, the dataset regarding COVID-19 is taken as an input and preprocessed. The parameters included are age, sex, history of fever, travel history, presence of cough and lung infection. Then the optimal features are selected by using Weighted Butterfly Optimization Algorithm (WBOA) to improve the classification accuracy. Based on the selected features, an Intuitionistic fuzzy Gaussian function based Adaptive-Neuro Fuzzy Inference System (IFGF-ANFIS) classifier is utilized for classifying the people having infection possibility. The studies conducted on this proposed system indicates that it is capable of producing better results than the other systems especially in terms of accuracy, precision, recall and f-measure.

2.
Vet Microbiol ; 239: 108447, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31767087

RESUMEN

Brucellosis is one of the most common zoonotic diseases worldwide. Almost 500,000 new human cases occur each year; yet there is no vaccine for human use. Moreover, there is no universal Brucella vaccine that would provide protection against all pathogenic species of Brucella. We generated a rough, live-attenuated B. neotomae strain by deleting the wboA gene encoding a glycosyltransferase. This strain lacks the O-side chain in its lipopolysaccharide (LPS) and thus the vaccinated animals can be differentiated serologically from the field-infected animals. We tested the efficacy of rough B. neotomae strain to stimulate dendritic cells compared to the smooth wild type strain. Based on TNF-α production, our data suggests that a significantly higher stimulation was obtained when dendritic cells were stimulated with the rough vaccine strain compared to the smooth wild type B. neotomae. Furthermore, the rough mutant was cleared from mice within 6 weeks even at a dose as high as 2 x 108 CFU. Vaccinated mice showed significantly higher level of protection against a virulent B. suis 1330 challenge compared to the control mice. Antibody titers in the mice and cytokine production by the splenocytes from the vaccinated mice showed a Th1 mediated immune response that correlated with the protection.


Asunto(s)
Vacuna contra la Brucelosis/inmunología , Brucella/inmunología , Brucelosis/prevención & control , Animales , Anticuerpos Antibacterianos/sangre , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Brucella/genética , Vacuna contra la Brucelosis/normas , Brucella suis , Brucelosis/inmunología , Brucelosis/microbiología , Eliminación de Gen , Ratones , Vacunas Atenuadas/inmunología
3.
Electron Physician ; 7(6): 1381-6, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26516446

RESUMEN

INTRODUCTION: Brucella spp. are gram-negative, facultative intracellular bacteria pathogens responsible for brucellosis, a zoonotic disease that can cause abortion, fetal death, and genital infections in animals and undulant fever in humans. Lipopolysaccharide (LPS) is known as a major virulence factor of Brucella spp. The wboA gene is capable of encoding a glycosyltransferase that appears to play a major role in LPS biosynthesis. Hence, the characterization of this gene can help in the clarification of the pathogenicity of Brucella spp. METHODS: This study was carried out at Razi Vaccine and Serum Research Institute in 2011. Briefly, the wboA gene in B. abortus biovar 3 and B. melitensis biovar 1, the predominant biovars in Iran, were amplified by using two pairs of specific primers. Polymerase chain reaction (PCR) products were cloned into a thymine-adenine (TA) cloning vector and transformed into an E. coli DH5α before being sequenced. Multiple alignments of identified sequences were performed, with all wboA sequences deposited in the GenBank sequence database. RESULTS: This study showed that a mismatch has occurred in B. melitensis biovar 1; this biovar is predominant in Iran. In contrast, the wboA gene from B. abortus biovar 3 was similar to that of other B. abortus variations. CONCLUSION: The comparison and alignment of the wboA gene of native Brucella strains in Iran to all wboA sequences deposited in GenBank revealed that the wboA gene has changed in the long term; hence, because of its unique nucleotide pattern, the gene can be used for specific diagnosis of B. abortus and B. canis.

4.
Mol Immunol ; 66(2): 276-83, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25899866

RESUMEN

Brucella spp. are Gram-negative intracellular pathogens of both humans and animals that cause great economic burdens in developing countries. Live attenuated vaccines are the most efficient means for the prevention and control of animal Brucellosis. However, Brucella vaccines (strain M5-90 and others) have several drawbacks and do not allow serological differentiation between vaccinated and infected animals. A wboA mutant was derived from Brucella melitensis (B. melitensis) vaccine strain M5-90 and tested for virulence and protective efficiency. T-cell responses (CD4(+), CD8(+)), levels of immunoglobulin G (IgG), and cytokine production were observed. WboA was also assessed as a diagnostic marker for Brucellosis. B. melitensis strain M5-90ΔwboA exhibited reduced survival in murine macrophages (RAW 264.7) and BALB/c mice and induced protective immunity in mice comparable to that from the parental strain M5-90. In mice, the wboA mutant elicited an anti-Brucella-specific IgG response and induced the secretion of gamma interferon (IFN-γ) and interleukin-2 (IL-2). In sheep, M5-90ΔwboA immunization induced the secretion of IFN-γ, and serum samples from sheep inoculated with M5-90ΔwboA were negative by Bengal Plate Test (RBPT) and Standard Tube Agglutination Test (STAT). In mice, probes against WboA antigen allowed for serological differentiation between natural infection and vaccination. The M5-90ΔwboA mutant is a potential attenuated live vaccine candidate against virulent B. melitensis 16M infection. It will be further evaluated in livestock.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Proteínas Bacterianas/genética , Vacuna contra la Brucelosis/genética , Brucella melitensis/inmunología , Brucelosis/prevención & control , Eliminación de Gen , Animales , Anticuerpos Antibacterianos/biosíntesis , Proteínas Bacterianas/inmunología , Vacuna contra la Brucelosis/administración & dosificación , Vacuna contra la Brucelosis/inmunología , Brucella melitensis/genética , Brucelosis/inmunología , Brucelosis/microbiología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/microbiología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/microbiología , Femenino , Humanos , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/sangre , Interferón gamma/biosíntesis , Interferón gamma/sangre , Interleucina-2/biosíntesis , Interleucina-2/sangre , Ratones , Ratones Endogámicos BALB C , Vacunación , Vacunas Atenuadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA