Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Vet Parasitol ; 331: 110278, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39116548

RESUMEN

This study aimed to verify the number of R. microplus annual generations in irrigated and non-irrigated pastures compared to the constant ideal environment. It also sought to evaluate the biology of the non-parasitic phase of this tick for each generation in these different areas of pasture; assess the larvae population dynamics in the pasture of each tick generation, and evaluate the R. microplus population dynamics parasitizing cattle in non-irrigated pasture. In the field experiment, two sub-areas were subjected to artificial irrigation (IRRI-A and IRRI-B) with artesian water, while the other two remained non-irrigated (NIRRI-A and NIRRIG-B). When more than 75 % of the total surviving engorged females from all 90 repetitions of each area (irrigated or non-irrigated) produced mature larvae within one tick generation, two cattle were infested with approximately 10,000 R. microplus larvae from the tick colony used in this study. On the 22nd day post-infestation, a new tick generation was started by releasing these females in different areas (IRRI-B and NIRRIG-B). This procedure was repeated successively, and each year was analyzed independently. In both the non-irrigated and irrigated areas, there were five generations of R. microplus per year. It can be observed that there the number of annual generations of ticks in this region has increased when compared to 30 years ago. Under the constant ideal temperature and humidity conditions (B.O.D. chamber), R. microplus completed an average of 6.59 generations. In the environment, the longest generation was the first (July to October), while the 2nd, 3rd and 4th (December to March) were the most similar to B.O.D. conditions. Although the number of generations was the same in the different areas, the population density of R. microplus larvae was higher in the irrigated area, probably because the irrigation provided milder temperatures, higher relative humidity and lower saturation deficit values during about eight hours per day. Between the 3rd and 5th generation of ticks, there was an overlap of larvae in the pastures, belonging to different generations, and at each peak of infestation observed in cattle between these generations, there were up to 30 % of larvae from the previous generation, and consequently up to 70 % of larvae from the new generation.


Asunto(s)
Riego Agrícola , Enfermedades de los Bovinos , Larva , Rhipicephalus , Infestaciones por Garrapatas , Clima Tropical , Animales , Rhipicephalus/fisiología , Rhipicephalus/crecimiento & desarrollo , Bovinos , Infestaciones por Garrapatas/veterinaria , Infestaciones por Garrapatas/parasitología , Femenino , Enfermedades de los Bovinos/parasitología , Larva/fisiología , Larva/crecimiento & desarrollo , Dinámica Poblacional
2.
PeerJ ; 12: e16943, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770100

RESUMEN

The aim of the current study was to assess the potency of the exopolymeric substances (EPS)-secreting purple non-sulfur bacteria (PNSB) on rice plants on acidic salt-affected soil under greenhouse conditions. A two-factor experiment was conducted following a completely randomized block design. The first factor was the salinity of the irrigation, and the other factor was the application of the EPS producing PNSB (Luteovulum sphaeroides EPS18, EPS37, and EPS54), with four replicates. The result illustrated that irrigation of salt water at 3-4‰ resulted in an increase in the Na+ accumulation in soil, resulting in a lower rice grain yield by 12.9-22.2% in comparison with the 0‰ salinity case. Supplying the mixture of L. sphaeroides EPS18, EPS37, and EPS54 increased pH by 0.13, NH4+ by 2.30 mg NH4+ kg-1, and available P by 8.80 mg P kg-1, and decreased Na+ by 0.348 meq Na+ 100 g-1, resulting in improvements in N, P, and K uptake and reductions in Na uptake, in comparison with the treatment without bacteria. Thus, the treatments supplied with the mixture of L. sphaeroides EPS18, EPS37, and EPS54 resulted in greater yield by 27.7% than the control treatment.


Asunto(s)
Oryza , Microbiología del Suelo , Suelo , Oryza/microbiología , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Suelo/química , Salinidad , Estrés Salino , Proteobacteria/metabolismo , Concentración de Iones de Hidrógeno , Sodio/metabolismo , Sodio/farmacología
3.
Plants (Basel) ; 13(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38592830

RESUMEN

Plants' response to single environmental changes can be highly distinct from the response to multiple changes. The effects of a single environmental factor on wheat growth have been well documented. However, the interactive influences of multiple factors on different wheat genotypes need further investigation. Here, treatments of three important growth factors, namely water regime, temperature, and CO2 concentration ([CO2]), were applied to compare the response of two wheat genotypes with different heat sensitivities. The temperature response curves showed that both genotypes showed more variations at elevated [CO2] (e[CO2]) than ambient [CO2] (a[CO2]) when the plants were treated under different water regimes and temperatures. This corresponded to the results of water use efficiency at the leaf level. At e[CO2], heat-tolerant 'Gladius' showed a higher net photosynthetic rate (Pn), while heat-susceptible 'Paragon' had a lower Pn at reduced water, as compared with full water availability. The temperature optimum for photosynthesis in wheat was increased when the growth temperature was high, while the leaf carbon/nitrogen was increased via a reduced water regime. Generally, water regime, temperature and [CO2] have significant interactive effects on both wheat genotypes. Two wheat genotypes showed different physiological responses to different combinations of environmental factors. Our investigation concerning the interactions of multi-environmental factors on wheat will benefit the future wheat climate-response study.

4.
Sci Total Environ ; 912: 168820, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38036148

RESUMEN

The energy industry generates large volumes of produced water (PW) as a byproduct of oil and gas extraction. In the central United States, PW disposal occurs through deep well injection, which can increase seismic activity. The treatment of PW for use in agriculture is an alternative to current disposal practices that can also provide supplemental water in regions where limited freshwater sources can affect agricultural production. This paper assesses the potential for developing PW as a water source for agriculture in the Anadarko basin, a major oil and gas field spanning parts of Kansas, Oklahoma, Colorado, and Texas. From 2011 to 2019, assessment of state oil and gas databases indicated that PW generation in the Anadarko Basin averaged 428 million m3/yr. A techno-economic analysis of PW treatment was combined with geographical information on PW availability and composition to assess the costs and energy requirements to recover this PW as a non-conventional water resource for agriculture. The volume of freshwater economically extractable from PW was estimated to be between 58 million m3 per year using reverse osmosis (RO) treatment only and 82 million m3 per year using a combination of RO and mechanical vapor compression to treat higher salinity waters. These volumes could meet 1-2 % and 49-70 % of the irrigation and livestock water demands in the basin, respectively. PW recovery could also modestly contribute to mitigating the decline of the Ogallala aquifer by ~2 %. RO treatment costs and energy requirements, 0.3-1.5 $/m3 and 1.01-2.65 kWh/m3, respectively, are similar to those for deep well injection. Treatment of higher salinity waters increases costs and energy requirements substantially and is likely not economically feasible in most cases. The approach presented here provides a valuable framework for assessing PW as a supplemental water source in regions facing similar challenges.

5.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1030686

RESUMEN

Objective To calculate the leakage rate of the automated watering system in Tsinghua University Laboratory Animal Resources Center, to evaluate the safety of the system, and provide references for selection, maintenance, and management of automated watering systems in animal facilities.MethodsThis study investigated the automated watering system installed in South and North Barriers of Tsinghua University Laboratory Animal Resources Center (Phase II). Water leakage monitoring was conducted over two periods, one over a period of 3 years and the other over 1.5 years. The occurrence of water leakage events at the two barriers during the monitoring period was statistically analyzed, classifying the causes into four categories: mishandling by personnel, animal behavior, obstruction by foreign objects, and deformation of fittings. The total daily leakage rate due to these causes and the daily leakage rate caused by quality issues, i.e. obstruction by foreign objects and deformation of fittings were calculated. Further analysis and discussion focused on the causes of water leakage and its impact on the facilities. At the same time, the number of caretakers at the end of the monitoring period in the Phase I facility without automated watering system and the Phase II facility with automated watering system were counted. Finally the difference in the number of cages per capita under the two watering systems was calculated.ResultsA total of 52 water leakage incidents occurred in both areas during the monitoring period, with a total daily leakage rate of 0.000 13%. Among them, 31 were caused by personnel mishandling, accounting for approximately 60% of total leakages. Enhanced training, supervision, inspection, and effective reminder measures could reduce leakage caused by personnel mishandling. There were 2 cases of water leakages caused by animal behavior, 0 leakage due to obstruction by foreign objects, and 19 leakages due to system quality issues, with a daily leakage rate of 0.000 07%. According to the operation data of Tsinghua University Laboratory Animal Resources Center, the average number of cages managed per person in facilities equipped with the automated watering system was 908, compared to 570 cages in facilities without the automated watering system. This represents an approximate 59% increase in the number of cages managed per person with the adoption of the automated watering system.Conclusion The daily leakage rate of the automated watering system in the Tsinghua University Laboratory Animal Resources Center is significantly lower than the theoretical design rate of 0.003%, which demonstrates the system's safety and effectiveness. Additionally, the adoption of an automated watering system can significantly enhance caretaking efficiency. While initial investments in the system are required, the subsequent increase in efficiency leads to a continuous decrease in labor costs, thereby reducing the total operational expenses of the facility. In the context of modernizing animal facility construction, automated watering systems are becoming an essential consideration in facility design and operation.

6.
J Agric Food Chem ; 72(4): 1845-1848, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36880814

RESUMEN

Balsamic vinegar of Modena (ABM) is a product obtained from concentrated grape must with the addition of wine vinegar. It can be adulterated with the addition of exogenous water. The official method EN16466-3, based on the analysis of the stable isotope ratio δ18O of the water, is not applicable to ABM with high density (above 1.20 at 20 °C). In this work, for the first time, the official method was modified, providing for a prior dilution of the sample and applying a correction of the data in order to eliminate the isotopic contribution of the diluent, whereupon the within- and between-day standard deviations of repeatability (Sr) were estimated. Considering the limit values of δ18O for vinegar and concentrated must, the threshold limit of δ18O, below which the ABM product can be considered adulterated, has been identified.


Asunto(s)
Ácido Acético , Vitis , Ácido Acético/análisis , Isótopos , Agua
7.
Proc Biol Sci ; 290(2012): 20232239, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38052242

RESUMEN

Globally rising livestock populations and declining wildlife numbers are likely to dramatically change disease risk for wildlife and livestock, especially at resources where they congregate. However, limited understanding of interspecific transmission dynamics at these hotspots hinders disease prediction or mitigation. In this study, we combined gastrointestinal nematode density and host foraging activity measurements from our prior work in an East African tropical savannah system with three estimates of parasite sharing capacity to investigate how interspecific exposures alter the relative riskiness of an important resource - water - among cattle and five dominant herbivore species. We found that due to their high parasite output, water dependence and parasite sharing capacity, cattle greatly increased potential parasite exposures at water sources for wild ruminants. When untreated for parasites, cattle accounted for over two-thirds of total potential exposures around water for wild ruminants, driving 2-23-fold increases in relative exposure levels at water sources. Simulated changes in wildlife and cattle ratios showed that water sources become increasingly important hotspots of interspecific transmission for wild ruminants when relative abundance of cattle parasites increases. These results emphasize that livestock have significant potential to alter the level and distribution of parasite exposures across the landscape for wild ruminants.


Asunto(s)
Enfermedades de los Bovinos , Nematodos , Parásitos , Animales , Bovinos , Animales Salvajes/parasitología , Rumiantes , Ganado , Agua
8.
Environ Monit Assess ; 195(12): 1419, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932465

RESUMEN

This study employs Geographic Information Systems (GIS) tools and spatial data to evaluate water resource availability for livestock watering in Algeria's southwestern Wilaya of Naama. The research adopts a two-stage approach, starting with the creation of seven thematic maps encompassing livestock water needs, proximity to water sources, water quantities from boreholes, hillside reservoirs, wells, and springs, precipitation, and land use/land cover (LULC). Subsequently, an Analytic Hierarchy Process (AHP) is utilized to identify suitable areas within the Wilaya for livestock watering. Beyond its primary objective of establishing a benchmark for water resources to facilitate optimal and sustainable livestock management, this study also aims to assess suitable sites for livestock and provide a comprehensive evaluation of water resources for grazing. The findings reveal that the majority of the area is unsuitable for grazing due to limited water resources, with approximately 2.43% being "highly suitable" (S1), 13.42% "moderately suitable" (S2), and the remaining 84.15% categorized as "marginally suitable" (S3), "temporarily unsuitable" (N1), or "permanently unsuitable" (N2). These results underscore the significance of GIS and spatial analysis in natural resource management and emphasize the need for further research to refine the methodology. The data generated in this study will be invaluable to researchers and water stakeholders for informed decision-making in this sensitive zone.


Asunto(s)
Sistemas de Información Geográfica , Recursos Hídricos , Animales , Ganado , Argelia , Monitoreo del Ambiente/métodos , Agua
9.
BMC Psychol ; 11(1): 310, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803410

RESUMEN

BACKGROUND: Indoor, sedentary lifestyles have disconnected individuals from nature, necessitating interventions to reestablish this bond. Performing horticultural activities, such as watering houseplants, offers a potential solution. This study sought to determine how participating in horticulture activities affected adults' cognitive and emotional moods. METHODS: We compared the benefits of watering houseplants (a gardening task) to those of standing while performing a computer task (a mental task). Chinese participants, aged 20 to 21 years, were recruited; their physiological and psychological reactions were measured using electroencephalograms, blood pressure assessments, and psychological assessments. RESULTS: Fifty participants were included. Watering indoor plants significantly reduced blood pressure, without affecting pulse rate. During the plant watering task as opposed to the mental activity, more dramatic different patterns of very high alpha and beta brainwave activity were identified. Participants reported increased happiness following gardening activities. CONCLUSIONS: The findings of this study highlight the substantial relaxation benefits, both mental and physical, associated with the simple act of watering indoor plants.


Asunto(s)
Emociones , Jardinería , Humanos , Adulto , Frecuencia Cardíaca/fisiología , Electroencefalografía
10.
3 Biotech ; 13(10): 328, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37667775

RESUMEN

Water stress influences plant growth and metabolism. Carnitine, an amino acid involved in lipid metabolism, has been related to responses of plants to abiotic stresses, also modulating their metabolites. Culantro (Eryngium foetidum L.) is a perennial herb, rich in essential oils, native to Latin America, commonly used due to its culinary and medicinal properties. Here, we investigated the effect of exogenous carnitine on morphophysiology and the essential oil profile of culantro plants under water stress. For this, plants were grown under three water conditions: well-watered, drought stress, and re-watered; and sprayed with exogenous carnitine (100 µM) or water (control). Culantro growth was impaired by drought and enhanced by re-watering. Carnitine, in turn, did not reverse drought effects on growth, and impaired the growth of re-watered plants, also improving photosynthetic pigment content. Water conditions and carnitine application changed the essential oil profile of the plants. Drought and re-watering improved the production of eryngial, which was even increased with exogenous carnitine in re-watered plants. In addition, hydroquinone was only produced with the combination of re-watering and carnitine application. The application of exogenous carnitine can be a strategy to induce the production of essential oil compounds with cosmetic and pharmaceutical importance in culantro. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03757-y.

11.
Front Plant Sci ; 14: 1202115, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37670868

RESUMEN

Investigating historical and ongoing changes in urban green space (UGS) and urban plant diversity (UPD) provides critical insights into urban ecology and urban planning development. The present study illuminates some of the transformations which can occur in rapidly developing urban landscapes. In this work, we used 30 m resolution images from the Landsat 5 satellite from 2015 to investigate UGS patterns in Haikou City, China. Metrics of UPD were obtained using field surveys, allowing the proportion of UGS and UPD to be determined in each urban functional unit (UFU) of Haikou. The results revealed that leisure and entertainment areas (such as parks) had the highest diversity, whereas roads and transportation hubs had the lowest. More frequent anthropogenic maintenance had a positive effect on the total number of species, including cultivated, tree, and herb species. Similarly, increased watering frequency had a positive impact on the diversity of cultivated and shrub species. By providing demonstrating a crucial link between UGS and UPD, the results provide valuable information for planning sustainable urban development in Haikou City and other tropical regions. They highlight the important role of UGS in maintaining biodiversity and providing a range of ecosystem services. This research will inform policymakers and urban planners about the need to consider UGS and UPD in urban planning and management process, in order to promote sustainability and conservation of biodiversity.

12.
Plants (Basel) ; 12(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36771523

RESUMEN

There are currently knowledge gaps in the environmental context related to successful seed germination of Ephedra major. Therefore, we herein explore the influence of soil quality and water availability on the germination performance through a garden experiment that mimics natural site conditions. One hundred seeds were extracted from fifty ripe strobili collected randomly from the ramets of a single female plant. Ten seeds per pot were sown in ten pots, which were equally split by receiving different watering treatments (watered versus control) and soil types (S0-shallow and stony; S1-like S0 but slightly deeper; S2-like S0 but even deeper and rich in woodland humus; S3-clay-layered alluvial; S4-anthropogenic). No significant interaction effect was detected between the two manipulated factors. Watering only had a marginal effect on the germination rate, but the latter was significantly higher in S2 when compared to the other soil types. These outcomes suggest that soil quality is more important than moisture for the germination success. Its rate is expected to be higher under the open canopy of woodlands compared to open rupicolous habitats, since seeds can benefit from higher humus availability and reduced evapotranspiration.

13.
Conserv Biol ; 37(1): e14044, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36661082

RESUMEN

For sea turtles, like many oviparous species, increasing temperatures during development threaten to increase embryonic mortality, alter offspring quality, and potentially create suboptimal primary sex ratios. Various methods are being implemented to mitigate the effects of climate change on reproductive success, but these methods, such as breeding programs, translocations, and shading, are often invasive and expensive. Irrigation is an alternative strategy for cooling nests that, depending on location, can be implemented relatively quickly and cheaply. However, multiple factors, including ambient conditions, nest substrate, and species characteristics, can influence irrigation success. Additionally, irrigation can vary in duration, frequency, and the volume of water applied to nests, which influences the cooling achieved and embryonic survival. Thus, it is critical to understand how to maximize cooling and manage risks before implementing irrigation as a nest-cooling strategy. We reviewed the literature on nest irrigation to examine whether artificial irrigation is feasible as a population management tool. Key factors that affected cooling were the volume of water applied and the frequency of applications. Embryonic responses varied with species, ambient conditions, and the timing of irrigation during development. Nest inundation was the key risk to a successful irrigation regime. Future irrigation regimes must identify clear targets, either primary or adult sex ratios, that maximize population viability. Monitoring population responses and adjusting the irrigation regime in response to population characteristics will be critical. Most studies reported on the manipulation of only one or two variables, further research is required to understand how altering multiple factors in an irrigation regime influences the cooling achieved and embryonic responses.


Como sucede con muchas especies ovíparas, el incremento en las temperaturas durante el desarrollo embrionario puede aumentar la mortalidad embrionaria, alterar la calidad de la descendencia y tiene el potencial de crear proporciones sexuales primarias poco óptimas en las tortugas marinas. Se están implementando varios métodos para mitigar los efectos del cambio climático sobre el éxito reproductivo, aunque dichos métodos (p. ej.: los programas de reproducción, reubicaciones y sombreado) suelen ser invasivos y costosos. La irrigación es una estrategia alternativa para el enfriamiento de los nidos, la cual, según la ubicación, puede implementarse de manera rápida y económica. Sin embargo, factores como las condiciones ambientales, el sustrato de anidación y las características de la especie pueden influir sobre el éxito de la irrigación. Además, la duración, frecuencia y volumen del agua aplicada a los nidos durante la irrigación puede variar, lo que influye sobre el enfriamiento y la supervivencia embrionaria. Por todo esto, es importante entender cómo maximizar el enfriamiento y gestionar los riesgos antes de implementar la irrigación como estrategia de enfriamiento de nidos. Revisamos la literatura sobre la irrigación de nidos para analizar si la irrigación artificial es una herramienta viable de manejo poblacional. Los factores clave que afectaron el enfriamiento fueron el volumen aplicado de agua y la frecuencia de las aplicaciones. Las respuestas embrionarias variaron según la especie, condiciones ambientales y el momento de irrigación durante el desarrollo. El principal riesgo para un régimen exitoso de irrigación fue la inundación del nido. Los próximos regímenes de irrigación deben identificar objetivos claros, ya sean las proporciones sexuales adultas o primarias, que maximicen la viabilidad poblacional. Para esto, serán muy importantes el monitoreo de las respuestas poblacionales y el ajuste del régimen de irrigación en respuesta a las características de la población. La mayoría de los estudios reportaron la manipulación de una o dos variables, por lo que se requiere de mayores estudios para entender cómo la alteración de varios factores en el régimen de irrigación influye sobre el enfriamiento obtenido y las respuestas embrionarias.


Asunto(s)
Cambio Climático , Tortugas , Animales , Tortugas/fisiología , Conservación de los Recursos Naturales , Temperatura , Agua , Comportamiento de Nidificación/fisiología
14.
Saudi J Biol Sci ; 30(1): 103494, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36419925

RESUMEN

Fog water collection provides a sustainable resource for watering of crops. The Jizan region is one of the smallest states in the Kingdom of Saudi Arabia (KSA) but very rich with unique flora, fauna, landscape diversity, and occurrence of fog. According to satellite data from the period between (1991-2021) the average visibility in this fog belt varied between 5 m and 100 m. Specific relief properties, such as elevation contrast, present rare space for flora preservation and sustainable fog utilization and use in the watering of crops. Some results showed that number of foggy days is not equal and can be divided in three big cycles. It was estimated that 8 × 1013 L, or 80 m3 of fresh water from fog per year, could be used for drinking and partly for farming in Jizan region from settlements Al Araq and Al Gandla, city of Jizan, Al Madaya, Al Mubarakiyah, Muwassam. This amount of water varied through time. The last observational period had large amount of water, 10 × 1013 L or 100 m3. The main methodologies used in this research were advanced GIS (Geographical Information Systems), Remote Sensing (RS), and numerical analysis. Satellite data were downloaded from National Oceanic and Atmospheric Administration (NOAA) and Landsat 8 and 9 satellite missions. This kind of alternative water may produce stability for three main plants in Jizan region, palm, wheat and olive. Typical arid regions in KSA can be transformed by water used from the fog.

15.
Plants (Basel) ; 11(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36559663

RESUMEN

It is known that high N doses, N/K imbalances, and frequent irrigation favor Verticillium wilt. The influence of fertilization and its interaction with the frequency of irrigation on the development of Verticillium wilt of olive (VWO) has been evaluated. A split-split-plot design in microplots with two naturally infested soils of different texture was established for studying three fertilization treatments (NO3Ca, NPK and without fertilization), plus two irrigation frequencies (daily and deficit). The treatments were applied by means of fertigation, evaluating the susceptible cultivar Picual. Final disease incidence in plants subjected to NO3Ca daily treatment was 100% regardless of soil texture. However, final mortality in these plants was 37% and 85.2% in clay and sandy loam soils, respectively. In addition, the area under the disease progress curve values were significantly higher (49.1%) in plants subjected to NO3Ca fertilization compared to those not fertilized or fertilized with N-P-K when plants were grown in clay soil. This value in the sandy loam soil was significantly higher in the NO3Ca daily irrigation treatment (94.3%), followed by the N-P-K-daily treatment (61.1%) which also was significantly higher than the unfertilized daily, N-deficit and NPK-deficit treatments (37.8, 42.6 and 44.9%, respectively). The plants submitted to unfertilized-deficit treatment reached the lowest value (9.6%). In this work it can be concluded that the application of fertilizer or the application of fertilizer with daily irrigation in naturally infested soils increases the development of VWO in Picual.

16.
Plants (Basel) ; 11(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36432745

RESUMEN

Lack of high-quality irrigation water and soil salinity are two main environmental factors that affect plant development. When both stressors are combined, the soil becomes sterile and constrains plant productivity. Consequently, two field trials were designed to assess whether plant growth-promoting microbes (PGPMs; Bradyrhizobium japonicum (USDA 110) and Trichoderma harzianum) and potassium humate (K-humate) can stimulate soybean growth, productivity, and seed quality under two different watering regimes as follows: (i) well-watered (WW), where plants were irrigated at 12-day intervals (recommended), and (ii) water stress (WS), where plants were irrigated at the 18-day intervals in salt-affected soil during 2020 and 2021 seasons. Results revealed that coupled application of PGPMs and K-humate resulted in a substantial improvement in K+ levels in the leaves compared to Na+ levels, which has a direct positive impact on an enhancement in the antioxidants defense system (CAT, POX, SOD), which caused the decline of the oxidative stress indicators (H2O2, MDA, and EL%) as well as proline content under water stress in salt-affected soil. Hence, a significant increase in root length, nodule weight, soybean relative water content (RWC), stomatal conductance, photosynthetic pigments, net photosynthetic rate, soluble protein, seed carbohydrate content as well as the number of pods plant-1 and seed yield was reported. In conclusion, the combined application of PGPMs and K-humate might be recommended to maximize the soybean growth and productivity under harsh growth conditions (e.g., water stress and soil salinity).

17.
Glob Chang Biol ; 28(23): 6889-6905, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36039835

RESUMEN

After drought events, tree recovery depends on sufficient carbon (C) allocation to the sink organs. The present study aimed to elucidate dynamics of tree-level C sink activity and allocation of recent photoassimilates (Cnew ) and stored C in c. 70-year-old Norway spruce (Picea abies) trees during a 4-week period after drought release. We conducted a continuous, whole-tree 13 C labeling in parallel with controlled watering after 5 years of experimental summer drought. The fate of Cnew to growth and CO2 efflux was tracked along branches, stems, coarse- and fine roots, ectomycorrhizae and root exudates to soil CO2 efflux after drought release. Compared with control trees, drought recovering trees showed an overall 6% lower C sink activity and 19% less allocation of Cnew to aboveground sinks, indicating a low priority for aboveground sinks during recovery. In contrast, fine-root growth in recovering trees was seven times greater than that of controls. However, only half of the C used for new fine-root growth was comprised of Cnew while the other half was supplied by stored C. For drought recovery of mature spruce trees, in addition to Cnew , stored C appears to be critical for the regeneration of the fine-root system and the associated water uptake capacity.


Asunto(s)
Picea , Sequías , Carbono , Dióxido de Carbono , Árboles , Agua
18.
Sensors (Basel) ; 22(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35746371

RESUMEN

This work aimed to assess the recalibration and accurate characterization of commonly used smart soil-moisture sensors using computational methods. The paper describes an ensemble learning algorithm that boosts the performance of potato root moisture estimation and increases the simple moisture sensors' performance. It was prepared using several month-long everyday actual outdoor data and validated on the separated part of that dataset. To obtain conclusive results, two different potato varieties were grown on 24 separate plots on two distinct soil profiles and, besides natural precipitation, several different watering strategies were applied, and the experiment was monitored during the whole season. The acquisitions on every plot were performed using simple moisture sensors and were supplemented with reference manual gravimetric measurements and meteorological data. Next, a group of machine learning algorithms was tested to extract the information from this measurements dataset. The study showed the possibility of decreasing the median moisture estimation error from 2.035% for the baseline model to 0.808%, which was achieved using the Extra Trees algorithm.


Asunto(s)
Suelo , Agua , Aprendizaje Automático , Meteorología , Agua/análisis
19.
Foods ; 11(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35741965

RESUMEN

Croatian islands are olive growing areas characterized by poor conditions for olive trees because of karst soil and a precipitation deficiency. Under these conditions, irrigation is a very important factor for constant olive oil production. This paper aims to investigate the effects of different watering regimes on quantity, sensory and chemical quality and composition of Coratina cv. olive oil obtained from trees grown on ameliorate karst soil during two harvesting years. Olive trees were subjected to rainfed conditions and three different irrigation treatments (T1-deficit irrigation representing the usual producer's practice, T2-regulated deficit irrigation in respect to phenological stages, T3-full irrigation). Irrigation treatments increased oil yield compared to rainfed conditions (T1 + 58%, T2 + 66% and T3 + 74%, representing average values for both studied years). All olive oil samples were of extra quality. Irrigation led to a decrease in carotenoids, volatiles, polyunsaturated fatty acids and linolenic acid contents, with no difference found among irrigation treatments. Total phenols and secoiridoids concentration was not affected by irrigation, indicating that similar oil quality could be achieved with less demand on the water supply. Obtained results could help producers to define a suitable irrigation management in particular conditions of ameliorate karst.

20.
Front Plant Sci ; 13: 834654, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432421

RESUMEN

Elucidation of the composition, functional characteristics, and formation mechanism of wheat quality is critical for the sustainable development of wheat industry. It is well documented that wheat processing quality is largely determined by its seed storage proteins including glutenins and gliadins, which confer wheat dough with unique rheological properties, making it possible to produce a series of foods for human consumption. The proportion of different gluten components has become an important target for wheat quality improvement. In many cases, the processing quality of wheat is closely associated with the nutritional value and healthy effect of the end-products. The components of wheat seed storage proteins can greatly influence wheat quality and some can even cause intestinal inflammatory diseases or allergy in humans. Genetic and environmental factors have great impacts on seed storage protein synthesis and accumulation, and fertilization and irrigation strategies also greatly affect the seed storage protein content and composition, which together determine the final end-use quality of wheat. This review summarizes the recent progress in research on the composition, function, biosynthesis, and regulatory mechanism of wheat storage proteins and their impacts on wheat end-product quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA