Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; : 176068, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299326

RESUMEN

Riverine ecosystems are profoundly influenced by hydrological dynamics and natural flow regimes, which dictate the temporal variability of water levels and the amplitude of fluctuations. Human activities, particularly navigation and hydropower generation, have significantly altered these natural patterns, leading to detrimental impacts on the physical, chemical, and biological integrity of river ecosystems. The littoral zone, in particular, is highly susceptible to anthropogenic disturbances, experiencing disruptions in biological activity and biogeochemical processes. This study evaluates the effects of ship-induced wave trains on the structural and functional properties of periphytic algal communities in a regulated river environment. Using data from the Austrian Danube River, periphytic algae's immediate and long-term responses to wave events generated by different types of ships were investigated. Immediate reactions of periphytic algae to wave trains were characterized by reductions in the effective quantum yield of PS II, indicating stress-induced down-regulation of photosystem II photochemistry. Abrasion and remobilization of periphytic algae due to wave action led to increased resuspension of chlorophyll-a into the water column. Furthermore, ship-induced wave trains influenced the pigment composition of periphyton, with photoprotective mechanisms being activated in response to fluctuating light conditions. Long-term effects of wave impact on periphytic algae biomass varied depending on water depth and exposure to aerial stress. While wave action mitigated desiccation stress in shallow areas, it resulted in biomass reduction and alterations in community composition in deeper zones. Notably, the occurrence of diatoms decreased in wave-impacted areas, potentially shifting the community towards Chlorophyceae dominance. Overall, this study underscores the complexity of ship-induced wave impacts on riverine ecosystems and highlights the importance of considering both immediate and long-term responses of periphytic algal communities. Understanding these dynamics is crucial for informing sustainable management strategies aimed at mitigating the adverse effects of navigation activities on riverine biodiversity and ecosystem functioning.

2.
Sci Total Environ ; 953: 176041, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244041

RESUMEN

Water level fluctuations in China's Three Gorges Reservoir (TGR) area are typical of many reservoirs and significantly impact water level fluctuation zones (WLFZ), including upstream rivers. Understanding methane oxidation in the TGR-WLFZ is crucial for evaluating the impact of large-scale reservoir construction on global climate change. In this study, we investigated methane oxidation rates in the TGR-WLFZ, focusing on periods of drying and flooding. The highest methane oxidation rates were observed during the drying period, ranging from 35.69 to 56.32 nmol/(g soil)/d, while the lowest rates were recorded during the flooding period, at 11.58 to 11.98 nmol/(g soil)/d, in lab-scale simulated columns. Using 13CH4 labeling experiments, we measured CH4 oxidation potentials for aerobic methane oxidation (AMO) using oxygen and anaerobic oxidation of methane (AOM) using nitrite, nitrate, sulfate, ferric iron, and manganese oxide as electron acceptors at varying concentrations. AMO was the dominant process across all experiments, with potentials ranging from 145.71 to 180.77 nmol 13CO2/(g soil)/d. For AOM, metal-dependent oxidation, particularly with Fe (III) and Mn(IV), was predominant (12.64-17.59 and 3.91-12.69 nmol 13CO2/(g soil)/d, respectively), followed by nitrite and nitrate-dependent pathways (1.49-9.10 nmol 13CO2/(g soil)/d). Sulfate-dependent AOM was limited (1.33-3.27 nmol 13CO2/(g soil)/d). Metagenomic analysis identified key microorganisms responsible for AMO, such as unclassified_f_Methylobacteriaeae and Methylobacterium sp., and for AOM are Ca. Methylomirabilis oxyfera, Ca. Methanoperedens nitroreducens and Ca. Methylomirabilis sp. Complete functional genes and enzymes for the methane oxidation and reverse methanogenesis pathways were obtained in each hydrological period, with the highest content during the drying period and the lowest during flooding. Our study shows that reservoirs, traditionally considered significant sources of methane, may also act as methane sinks. This finding raises new questions: How do different methane oxidation pathways respond to water level fluctuations in reservoirs, and are some pathways more resilient to changes in hydrological conditions?

3.
Sci Total Environ ; 947: 174617, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38992375

RESUMEN

Peat formation is the key process responsible for carbon sequestration in peatlands. In rich fens, peat is formed by brown mosses and belowground biomass of vascular plants. However, the impact of ecohydrological settings on the contribution of mosses and belowground biomass to peat formation remains an open question. We established seven transects in well-preserved fens in NE Poland along an ecohydrological gradient from mesotrophic sedge-moss communities with stable water levels, to more eutrophic tall sedge communities with higher water level fluctuations. In each transect, we measured the production of brown mosses (using the plug method), aboveground vascular plant biomass (one year after cutting) and belowground biomass (using ingrowth cores). Decomposition rates of all biomass fractions were assessed using litter bags. The first-year surplus of potentially peat-forming fractions, i.e., mosses and belowground biomass, decreased with increasing water level fluctuations and along a vegetation gradient from sedge-moss to tall sedge communities. Moss production was highest in the sedge-moss fen with a stable water level at the ground surface. We did not detect any difference in belowground biomass production across the gradient but found it to be consistently higher in the upper 0-5 cm than in the deeper layers. The decomposition rate also showed no response to the gradient, but differed between biomass types, with aboveground biomass of vascular plants decomposing 2.5 times faster than belowground biomass and mosses. Pattern of peat formation potential along the ecohydrological gradient in rich fen was strongly driven by brown moss production. Sedge-moss fens with a stable water level at the ground surface have the highest peat formation capacity compared to other vegetation types. In the part of the gradient that is poorer in nutrients, vascular plants invest in belowground production, and mosses dominate the aboveground layer.


Asunto(s)
Biomasa , Suelo , Humedales , Suelo/química , Polonia , Hidrología , Secuestro de Carbono , Monitoreo del Ambiente , Briófitas/crecimiento & desarrollo
4.
Huan Jing Ke Xue ; 45(5): 2715-2726, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629535

RESUMEN

Riparian zones are typical fragile and sensitive ecological areas. Fluctuations in water level are the main factor affecting the soil environment in these zones, and vegetation restoration is considered an important means of soil conservation there. However, the interactive effects of water level fluctuations and vegetation restoration on the soil microbial community structure in the reservoir riparian zone remain unclear. Therefore, we selected abandoned grassland and artificial forestland at different water level elevations as research objects in the riparian zone of the Three Gorges Reservoir. We used 16S rRNA high-throughput sequencing technology to explore the composition and diversity of soil prokaryotic microbial communities and investigated the main environmental factors driving the soil microbial community structure. The results showed that the α diversity of soil prokaryotes was the highest at the low water level of the riparian zone. The Pielou_e index, Shannon index, and Simpson index at the 163 m elevation were significantly higher than those at the 168 m elevation, and the Chao1 index and Shannon index were significantly higher than those at the 173 m elevation. However, no significant difference was found in the soil microbial community α diversity between abandoned grassland and artificial forestland. At the same time, water level fluctuations and vegetation restoration had significant effects on the community composition of soil prokaryotic microorganisms, and there were significant differences in biomarker categories in different study sites. Notably, the effects of vegetation restoration types on the soil prokaryotic microbial community structure were stronger than that of water level fluctuations. In addition, the results of hierarchical segmentation showed that soil pH was the main driving factor for the change in soil prokaryotic microbial community structure in the Three Gorges Reservoir. These results deepen our understanding of the variations in microbial community structure in the reservoir riparian zone and provide scientific reference for the restoration and reconstruction of the riparian zone ecosystem.


Asunto(s)
Microbiota , Suelo , Suelo/química , Ecosistema , Agua , ARN Ribosómico 16S , Bosques , Microbiología del Suelo
5.
Front Microbiol ; 15: 1324313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371932

RESUMEN

Water level fluctuations (WLFs) are typical characteristic of floodplain lakes and dominant forces regulating the structure and function of lacustrine ecosystems. The sediment diazotrophs play important roles in contributing bioavailable nitrogen to the aquatic environment. However, the relationship between the diazotrophic community and WLFs in floodplain lakes is unknown. In this paper, we carried out a comprehensive investigation on the alpha diversity, abundance, composition and co-occurrence network of the sediment diazotrophs during different water level phases in Poyang Lake. There were no regular variation patterns in the alpha diversity and abundance of the sediment diazotrophs with the water level phase transitions. The relative abundance of some diazotrophic phyla (including Alphaproteobacteria, Deltaproteobacteri, Euryarchaeota, and Firmicutes) and genera (including Geobacter, Deferrisoma, Desulfuromonas, Rivicola, Paraburkholderia, Methylophilus, Methanothrix, Methanobacterium, and Clostridium) was found to change with the water level phase transitions. The results of ANOSIM, PerMANOVA, and DCA at the OTU level showed that the diazotrophic community structure in the low water level phase was significantly different from that in the two high water level phases, while there was no significant difference between the two high water level phases. These results indicated that the diazotrophic community was affected by the declining water level in terms of the composition, while the rising water level contributed to the recoveries of the diazotrophic community. The diazotrophs co-occurrence network was disrupted by the declining water level, but it was strengthened by the rising water level. Moreover, redundancy analysis showed that the variation of the diazotrophic community composition was mostly related to sediment total nitrogen (TN) and total phosphorous (TP). Interestingly, the levels of sediment TN and TP were also found to vary with the water level phase transitions. Therefore, it might be speculated that the WLFs may influence the sediment TN and TP, and in turn influence the diazotrophic community composition. These data can contribute to broadening our understanding of the ecological impacts of WLFs and the nitrogen fixation process in floodplain lakes.

6.
Environ Res ; 228: 115778, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36997041

RESUMEN

Wetting-drying alternation (WD) of the soil is one of the key characteristics of riparian zones shaped by dam construction, profoundly impacting the soil microenvironment that determines the bacterial community. Knowledge concerning the stability of bacterial community and N-cycling functions in response to different frequencies of WD remains unclear. In this study, samples were taken from a riparian zone in the Three Gorges Reservoir (TGR) and an incubation experiment was conducted including four treatments: constant flooding (W), varied wetting-drying alternation frequencies (WD1 and WD2), and constant drying (D) (simulating water level of 145 m, 155 m, 165 m, and 175 m in the riparian zone respectively). The results revealed that there was no significant difference in the diversity among the four treatments. Following the WD1 and WD2 treatments, the relative abundances of Proteobacteria increased, while those of Chloroflexi and Acidobacteriota decreased compared to the W treatment. However, the stability of bacterial community was not affected by WD. Relative to the W treatment, the stability of N-cycling functions estimated by resistance, which refers to the ability of functional genes to adapt to changes in the environment, decreased following the WD1 treatment, but showed no significant change following the WD2 treatment. Random forest analysis showed that the resistances of the nirS and hzo genes were core contributors to the stability of N-cycling functions. This study provides a new perspective for investigating the impacts of wetting-drying alternation on soil microbes.


Asunto(s)
Bacterias , Suelo , Bacterias/genética , Agua
7.
Artículo en Inglés | MEDLINE | ID: mdl-36232199

RESUMEN

The cascade hydropower development in the Lancang River has significantly modified the hydrologic regime and is consequently responsible for many local environmental changes. The influence of the altered hydrological regime on heavy metals accumulation in the soils of the riparian zone was evaluated for the Xiaowan Reservoir (XWR). Specifically, this study focused on investigating the trace metals As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn and their concentrations in the riparian soils. Furthermore, this research aimed to examine the contamination levels of heavy metals by employing the geoaccumulation index (Igeo) and the ecological risk index (RI), respectively. Additionally, the relationship between heavy metals and water level fluctuations as caused by the dam operation was explored. The results showed that heavy metals deposits occurred in relatively low levels in the riparian soils of XWR, even though several of these metals were revealed to occur in higher concentrations than the local background value. The Igeo assessment indicated that the riparian soils exhibited slight pollution by Hg at the Zhujie wharf (ZJW) and Cr at the transect of the Heihui River (HHR), and moderate contamination by As at ZJW. Moreover, the RI revealed that As in riparian soils is moderately hazardous while Hg poses a high risk at ZJW. The polluted water and sediments from upstream and upland of the riparian zone may be contributing to the changed concentrations of heavy metal in the riparian soils. The present study inferred that the WLFs due to reservoir impoundment play a vital role in the accumulation of trace metals in the riparian zone. However, more exhaustive investigations are necessary for verification.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Contaminantes Químicos del Agua , Cadmio , China , Monitoreo del Ambiente , Sedimentos Geológicos , Plomo , Metales Pesados/análisis , Medición de Riesgo , Ríos , Suelo , Contaminantes del Suelo/análisis , Agua , Contaminantes Químicos del Agua/análisis
8.
Data Brief ; 43: 108437, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35845099

RESUMEN

Gallocanta is the largest well-preserved saline lake in Western Europe, included in the Ramsar List. Associated with its shallow morphology, the lake undergoes strong variations in its water surface extent along time that condition the habitat distribution and the ecological functions. Data on the morphology of the lake and its hydrological variations along time may be of paramount ecological importance for the managers of this natural space. Even though its interest for research and management purposes, no accurate and robust dataset of this nature covering large periods of time is available. This dataset presents a multi-decadal mapping with a sub-weekly frequency (2-5 days) of the contour of the Gallocanta Lake (NE Iberian Peninsula) along the period 1984-2020 (1043 dates with information). The shoreline position appears continuously defined with subpixel accuracy from the freely-available images acquired by the satellites Sentinel-2 (sensor MSI) and Landsat 5 (TM), 7 (EMT+), and 8 (OLI) by applying the extraction system SHOREX. The satellite-derived shorelines allow the definition of the surface of the lake and are combined with a digital elevation model to assign elevation values to the points defining each shoreline. This allows deducing the mean elevation of the water level and the volumetric changes for those same dates. This data package constitutes a valuable source of information for carrying out robust analyses of the trends of the lake along decades, as well as its response to individual rainfall events.

9.
Sci Total Environ ; 827: 154314, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35257766

RESUMEN

Flash rips are episodic bursts of water jetting offshore, which can lead to drowning incidents by sweeping swimmers offshore without warning, thus posing a hidden and unrecognized danger to beachgoers. This study reveals hazards of flash rips by investigating a series of drowning incidents along coasts of Lake Michigan during a series of storm events on July 18-21, 2019. Occurrences and causes of flash rips were depicted through webcam image observations, storm features of atmospheric disturbances, hydrodynamic circumstances of wind waves and meteorologically induced water level fluctuations, and model-reconstructed nearshore circulations. Results shows that flash rips were generated during or after storms through nearshore processes of storm-induced wind waves and meteorologically induced water level fluctuations. With small wind waves, low water level fluctuations, and a timing delay of rip occurrences relative to the causative convective storms, flash rips pose a hidden hazard to unaware swimmers. Historical observations for incidents in Lake Michigan between 2002 and 2019 further show that dry conditions or fair weathers and a calm water signature at the beach can likely generate unexpected hidden flash rips, resulting in the highest drowning risks. There is an urgent need for communication, education, and prediction/forecast of hidden flash rips to the Laurentian Great Lakes and worldwide coastal communities.


Asunto(s)
Ahogamiento , Lagos , Ahogamiento/epidemiología , Humanos , Michigan/epidemiología , Agua , Viento
10.
Environ Pollut ; 288: 117747, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34273767

RESUMEN

The ecological status of Pampean shallow lakes is evidenced by Cyanobacteria Harmful Blooms impairing these nutrient enriched, turbid and polymictic water bodies spread along the Central Plains of Argentina. Under the premise that shallow lakes are sentinels of global climate and eutrophication, a 3-year research in ten lakes located across a climatic gradient explored which factors drove the dynamics of cyanobacterial assemblages frequently driving to bloom prevalence. Contrarily to what is expected, the effect of seasonal temperature on cyanobacteria was subordinated to both the light environment of the water column, which was on turn highly affected by water level conditions, and to nutrient concentrations. Monthly samplings evidenced that cyanobacterial assemblages presented a broad-scale temporal dynamics mostly reflecting inter-annual growth patterns driven by water level fluctuations. Both species composition and biovolume gradually changed across a gradient of resources and conditions and hence, the scenario in each individual lake was unique with patterns at different temporal and spatial scales. More than 35 filamentous and colonial morphospecies constituted the assemblages of Pampean lakes: nostocaleans and chroococcaleans were inversely correlated in the prevailing interannual 3-cycled patterns.


Asunto(s)
Cianobacterias , Lagos , Argentina , Eutrofización , Humanos
11.
Ecotoxicol Environ Saf ; 220: 112354, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34116335

RESUMEN

Hydropower generation, a renewable source of electricity, has been linked to elevated methylmercury (MeHg) concentrations in impoundments and aquatic biota. This study investigates the impact of water level fluctuations (WLF) on MeHg concentrations in water, sediment, and fish. Using a set of controlled microcosm experiments emulating the drawdown/refill dynamics and subsequent sediment exposure to air experienced in reservoirs, we demonstrate that less frequent WLFs, and/or increased exposure of sediment to air, can lead to elevated MeHg concentrations in sediment, and total mercury (THg) and MeHg concentrations in water. In examining the effects of WLF frequency (two-day, weekly, and monthly), the monthly treatment displayed the highest THg and MeHg water levels, while the weekly treatment was characterized by the highest MeHg levels in the sediment. Our work supports emerging evidence that longer duration between WLF creates a larger surface area of sediment exposed to air leading to conditions conducive to higher MeHg concentrations in sediments and water. In contrast, THg, MeHg, and fatty acid trends in fish were largely inconclusive characterized by similar among-treatment effects and minimal temporal variability over the course of our experiment. This result could partly be attributed to overall low mercury levels and simple "worm-forage fish" food web in our experiment. To elucidate the broader impacts of water fluctuations on aquatic chemistry and biota, other factors (e.g., longer WLF cycles, dissolved organic matter, temperature, more complex food webs) which modulate both methylation rates and food web dynamics must be considered.


Asunto(s)
Mercurio/análisis , Movimientos del Agua , Contaminantes Químicos del Agua/análisis , Animales , Monitoreo del Ambiente , Peces/metabolismo , Cadena Alimentaria , Sedimentos Geológicos/química , Compuestos de Metilmercurio/análisis , Agua/química
12.
Ecol Indic ; 1222021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33897301

RESUMEN

Lakes face multiple anthropogenic pressures that can substantially alter their hydrology. Dams and land use in the watershed (e.g., irrigated agriculture) can modify lake water regimes beyond natural ranges, and changing climate may exacerbate anthropogenic stresses on lake hydrology. However, we lack cost-effective indicators to quantify anthropogenic hydrologic alteration potential in lakes at regional and national extents. We developed a framework to rank lakes by the potential for dams and land use to alter lake hydrology (HydrAP) that can be applied at a national scale. The HydrAP framework principles are that 1) dams are primary drivers of lake hydro-alteration, 2) land use activities are secondary drivers that alter watershed hydrology, and 3) topographic relief limits where land use and dams are located on the landscape. We ranked lakes in the United States Environmental Protection Agency National Lakes Assessment (NLA) on a HydrAP scale from zero to seven, where a zero indicates lakes with no potential for anthropogenic hydro-alteration, and a seven indicates large dams and/or intensive land use with high potential to alter lake hydrology. We inferred HydrAP population distributions in the conterminous US (CONUS) using the NLA probabilistic weights. Half of CONUS lakes had moderate to high hydro-alteration potential (HydrAP ranks 3-7), the other half had minimal to no hydro-alteration potential (HydrAP ranks 0-2). HydrAP ranks generally corresponded with natural and man-made lake classes, but >15% of natural lakes had moderate to high HydrAP ranks and ~10% of man-made lakes had low HydrAP ranks. The Great Plains, Appalachians, and Coastal Plains had the largest percentages (>50%) of high HydrAP lakes, and the West and Midwest had the lowest percentages (~30%). Water residence time (τ) and water-level change were associated with HydrAP ranks, demonstrating the framework's intended ability to differentiate anthropogenic stressors that can alter lake hydrology. Consistently across ecoregions high HydrAP lakes had shorter τ. But HydrAP relationships with water-level change varied by ecoregion. In the West and Appalachians, high HydrAP lakes experienced excessive water-level declines compared to low-ranked lakes. In contrast, high HydrAP lakes in the Great Plains and Midwest showed stable water levels compared to low-ranked lakes. These differences imply that water management in western and eastern mountainous regions may result in large water-level fluctuations, but water management in central CONUS may promote water-level stabilization. The HydrAP framework using accessible, national datasets can support large-scale lake assessments and be adapted to specific locations where data are available.

13.
Environ Res ; 194: 110717, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33421430

RESUMEN

Dam construction has significantly altered riparian hydrological regime and environmental conditions in the reservoir region, yet knowledge concerning how bacterial community and N-cycling genes respond to these changes remains limited. In this study, we investigated the bacterial community composition, network structure and N-cycling genes in the water level fluctuation zones (WLFZs) of the Three Gorges Reservoir (TGR). Here, samples collected from five different water levels were divided into three groups: waterward sediments, interface sediments, and landward soils. Our results show that higher contents of NO2--N, SOC, DOC, NH4+-N, and TP were characterized in waterward and interface sediments whereas higherNO3--N content was observed in landward soils. The α-diversity of bacterial community decreased gradually from waterward sediments to landward soils. Compared with waterward sediments and landward soils, the interface sediments showed a unique bacterial community pattern with diverse primary producers as well as N-cycling microbes. The interface sediments also had a much more complex co-occurrence network and a higher possible community stability. Among all of N-cycling genes, higher abundances of nrfA and AOA amoA genes were observed in interface sediments. The dissimilarity in bacterial community composition and N-cycling gene abundance was mainly driven by water-level. Moreover, random forest model revealed that AOA amoA and nirS genes were the most sensitive indicators in response to water level fluctuations. Overall, this study suggests distinct abundance, diversity, and network structure of microbes in riparian sediments and soils across the gradient of water levels and enhances our understanding with respect to comprehensive effects of dam construction on nitrogen cycle.


Asunto(s)
Ciclo del Nitrógeno , Suelo , Bacterias/genética , Sedimentos Geológicos , Microbiología del Suelo , Agua
14.
Chemosphere ; 269: 128702, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33162161

RESUMEN

Biogeochemical hotspots of nitrogen cycling such as ammonia oxidation commonly occur in riparian ecosystems. However, the responses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) to water-level fluctuations (WLF) in riparian zones remain unclear. In this study, two patterns of WLF (gradual waterlogging and drying) were investigated in a 9-month column experiment, and the abundances and activities of AOA and AOB were investigated. The recovery evaluation revealed AOB abundance had not returned to the initial level at the end of the experiment, while AOA abundance had recovered nearly completely. AOA outnumbered AOB at almost all depths, and AOA showed higher resistance and adaptation to WLF than AOB. However, higher microbial abundance was not always linked to the larger contribution to nitrification. Changes in environmental parameters such as moisture and dissolved oxygen caused by WLF instead of ammonia-oxidizing microorganism (AOM) abundance might play a key role in regulating the expression of amoA gene and thus the activity of ammonia oxidizers. In addition, the community structure of AOM evolved over the incubation period. The composition of AOA species in sediment changed in the same way as that in soil, and the Nitrosopumilus cluster showed strong resistance to WLF. Conversely, waterlogging changed the community structure of AOB in soil while drying had no significant effect on the AOB community structure in sediment. This study suggests that the ammonia oxidizers will respond to WLF and eventually affect N fate in riparian ecosystems considering the coupling with other N transformation processes.


Asunto(s)
Amoníaco , Ecosistema , Amoníaco/análisis , Archaea/genética , Nitrificación , Oxidación-Reducción , Filogenia , Suelo , Microbiología del Suelo , Agua
15.
Water Res ; 186: 116319, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32846383

RESUMEN

Reservoirs are an important source of atmospheric methane (CH4), a potent greenhouse gas. The Mekong, one of the largest Asian rivers, has been heavily dammed and can be a potential hotspot for CH4 emissions. While low diffusive CH4 flux was previously reported from cascading reservoirs in the Upper Mekong, the contribution of ebullition (bubbling) remained unexplored. To better constrain the magnitude and drivers of ebullition from these reservoirs, automated bubble traps were deployed in four reservoirs, allowing for continuous measurement of the ebullitive flux with high temporal resolution for a period of six months. To characterize the spatial variability of CH4 fluxes mediated by ebullition and diffusion, whole-reservoir surveys were conducted using a scientific echo sounder for bubble observations together with a gas equilibrator for mapping dissolved CH4 concentration in surface water from which diffusive fluxes were estimated. Potential production and anaerobic oxidation rates of CH4 were estimated in laboratory incubations of sediment cores collected near the bubble trap deployment sites. The CH4 production potential in sediments increased strongly along the reservoir cascade, with mostly minor reduction by anaerobic oxidation. Surface CH4 fluxes, in contrast, showed high spatial variability in both ebullitive and diffusive pathways (ranging 0.05-44 and 1.8-6.4 mg m-2 d-1, respectively, among all reservoirs). Ebullitive fluxes were about one order of magnitude higher than diffusive fluxes and remained significant at sites as deep as 30-45 m. The repeated spatial pattern of ebullition (higher fluxes at the dam area than in upstream sections) suggests the possible control of emission rates by sediment transport and deposition.


Asunto(s)
Gases de Efecto Invernadero , Ríos , Metano/análisis
16.
Environ Sci Pollut Res Int ; 25(34): 34583-34594, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30315531

RESUMEN

Plant roots in lakeshore areas can directly determine the survival of the aboveground plant parts. However, most current studies are focused on the aerial shoots, and less attention has been paid to the functions of the roots. In order to evaluate the effects of water level fluctuations (WLFs) on root architectural and morphological traits of plants in lakeshore areas, field investigations were conducted seasonally in three subtropical floodplain lakes with different types of WLFs. The results showed that both the pH and moisture contents of the soils were significantly different in all seasons among the three lakes, while the total nitrogen and total phosphorus in the soils only showed significant differences in certain seasons. Significant differences were also found in the two architectural trait parameters (root length density and root branching number) and three morphological trait parameters (root tissue density, root surface area, and root volume), all of which (except for root tissue density) were highest in the Dahuchi lake that experiences intermittent WLFs, and lowest in the Chaohu Lake with reservoir-like WLFs. With increasing lakeshore elevation gradients, we found that root length density, root branching number, root surface area, and root volume in the three lakes changed significantly, and all these root trait parameters increased first and then decreased. However, no significant differences were found for the above four root traits in the three lakes over the different seasons. Spearman correlation analyses indicated that both the hydrological and physicochemical factors were strongly correlated with the architectural and morphological root trait parameters, and the duration of submergence (duration) was the most important factor, judging from the correlation coefficients (R). The results of stepwise multiple regression further indicated the duration was the key factor affecting plant root traits. Based on the results of this study, we suggest that the WLFs in reservoir-like lakes should be changed in order to improve the ecological functions of the lakeshore.


Asunto(s)
Lagos , Raíces de Plantas/fisiología , Suelo/química , China , Hidrología/métodos , Nitrógeno/análisis , Fenotipo , Fósforo/análisis , Estaciones del Año
17.
PeerJ ; 6: e5205, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30038862

RESUMEN

Long-term and seasonal changes in production and respiration were surveyed in the Valle de Bravo reservoir, Mexico, in a period during which high water-level fluctuations occurred (2006-2015). We assessed the community metabolism through oxygen dynamics in this monomictic water-body affected by strong diurnal winds. The multiple-year data series allowed relationships with some environmental drivers to be identified, revealing that water level-fluctuations strongly influenced gross primary production and respiratory rates. Production and respiration changed mainly vertically, clearly in relation to light availability. Gross primary production ranged from 0.15 to 1.26 gO2 m-2 h-1, respiration rate from -0.13 to -0.83 gO2  m-2 h-1 and net primary production from -0.36 to 0.66 gO2  m-2 h -1 within the production layer, which had a mean depth of 5.9 m during the stratification periods and of 6.8 m during the circulations. The greater depth of the mixing layer allowed the consumption of oxygen below the production layer even during the stratifications, when it averaged 10.1 m. Respiration below the production layer ranged from -0.23 to -1.38 gO2 m-2 h-1. Vertically integrated metabolic rates (per unit area) showed their greatest variations at the intra-annual scale (stratification-circulation). Gross primary production and Secchi depth decreased as the mean water level decreased between stratification periods. VB is a highly productive ecosystem; its gross primary production averaged 3.60 gC m-2 d-1 during the 10 years sampled, a rate similar to that of hypertrophic systems. About 45% of this production, an annual average net carbon production of 599 g C m-2 year-1, was exported to the hypolimnion, but on the average 58% of this net production was recycled through respiration below the production layer. Overall, only 19% of the carbon fixed in VB is buried in the sediments. Total ecosystem respiration rates averaged -6.89 gC  m-2 d-1 during 2006-2015, doubling the gross production rates. The reservoir as a whole exhibited a net heterotrophic balance continuously during the decade sampled, which means it has likely been a net carbon source, potentially releasing an average of 3.29 gC m-2 d-1 to the atmosphere. These results are in accordance with recent findings that tropical eutrophic aquatic ecosystems can be stronger carbon sources than would be extrapolated from temperate systems, and can help guide future reassessments on the contribution of tropical lakes and reservoirs to carbon cycles at the global scale. Respiration was positively correlated with temperature both for the stratification periods and among the circulations, suggesting that the contribution of C to the atmosphere may increase as the reservoirs and lakes warm up owing to climate change and as their water level is reduced through intensification of their use as water sources.

18.
Sci Total Environ ; 619-620: 1183-1193, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29734597

RESUMEN

The stability of habitat conditions in littoral zones of navigated rivers is strongly affected by shipping induced waves and water displacements. In particular, the increase of variability in flow conditions diminishes the suitability of these habitats for juvenile fishes. Recently, a novel ecosystem based river management strategy has resulted in the replacement of traditional river training structures (i.e., groynes) by longitudinal training dams (LTDs), and the creation of shore channels in the river Waal, the main, free-flowing and intensively navigated distributary of the river Rhine in the Netherlands. It was hypothesized that these innovative LTDs mitigated the effects of shipping on fishes by maintaining the natural variability of habitat conditions in the littoral zones during ship passages whereby shore channels served as refugia for juvenile fishes. Measurements of abiotic conditions showed a significantly lower water level fluctuation and significantly higher flow stability in shore channels compared to groyne fields. Flow velocity did not differ, nor did the variation in flow velocity fluctuation during ship passage between these habitats. Densities of fish were found to be significantly higher in the littoral zones of shore channels compared to nearby groyne fields. Moreover, electrofishing along the inner side of the newly constructed LTD showed a significant linear relationship between fish density and distance from highly dynamic in- and outflow sections and to lowered inflow sections in the LTD. Results of our field sampling clearly indicate successful ecological rehabilitation of littoral zones that coincides with a facilitation of navigation in the main river channel and increased flood safety.


Asunto(s)
Monitoreo del Ambiente/métodos , Peces , Ríos/química , Navíos , Animales , Ecosistema , Países Bajos
19.
Environ Sci Pollut Res Int ; 25(2): 1306-1318, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29086174

RESUMEN

Lake water level fluctuations (WLF) are an important factor driving the selection and seasonal dynamics of phytoplankton and potentially toxigenic cyanobacteria. Nevertheless, the relative importance of environmental drivers connected to WLF may be completely different, depending on the typology and use of waterbodies, latitude and climatic regimes. In this study, we investigated the impact of WLF in a large subtropical reservoir in south-eastern China (Hongfeng Reservoir, Guizhou Province). The study was based on monthly samplings carried out in 2014 in six stations. The strong increase in the water level observed in early summer caused a radical shift in the phytoplankton community. While in the pre-flooding period phytoplankton was composed of large diatoms, chrysophytes and Oscillatoriales (mostly Limnothrix sp.), the post-flooding period showed an increase in smaller and more competitive chlorophytes, smaller diatoms and cryptophytes better adapted to a fast colonisation of new and nutrient-rich environments. The environmental drivers that drove the change were dilution, flushing and interference with the seasonal water stratification processes. We concluded that, because WLF represents a complex variable integrating different physical effects in one explanatory descriptor, its value as a predictor of phytoplankton and cyanobacteria dynamics in lake ecosystems is difficult to generalise and needs to be investigated on a case-by-case basis. For this reason, considering the year-to-year hydrological variability that potentially characterise reservoirs, definite indications for management should be outlined considering more than 1-year study.


Asunto(s)
Cianobacterias/fisiología , Lagos/análisis , Microalgas/fisiología , Fitoplancton/fisiología , China , Cianobacterias/crecimiento & desarrollo , Monitoreo del Ambiente , Lagos/microbiología , Microalgas/crecimiento & desarrollo , Fitoplancton/crecimiento & desarrollo , Dinámica Poblacional , Estaciones del Año , Agua/análisis , Abastecimiento de Agua
20.
Sci Total Environ ; 557-558: 445-52, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27016690

RESUMEN

Globally aquatic ecosystems are likely to become more vulnerable to extreme water fluctuation rates due to the combined effects of climate change and human activity. However, relatively little is known about the importance of water level fluctuations (WLF) as a predictor of phytoplankton community shifts in subtropical reservoirs. In this study, we used one year of data (2010-2011) from four subtropical reservoirs of southeast China to quantify the effects of WLF and other environmental variables on phytoplankton and cyanobacteria dynamics. The reservoirs showed an apparent switch between a turbid state dominated by cyanobacteria and a clear state dominated by other non-cyanobacterial taxa (e.g., diatoms, green algae). Cyanobacterial dominance decreased, or increased, following marked changes in water level. Multiple regression analysis demonstrated that pH, euphotic depth, WLF, and total phosphorus provided the best model and explained 30.8% of the variance in cyanobacteria biomass. Path analysis showed that positive WLF (i.e. an increase in water level) can reduce the cyanobacteria biomass either directly by a dilution effect or indirectly by modifying the limnological conditions of the reservoirs in complex pathways. To control the risk of cyanobacterial dominance or blooms, WLF should be targeted to be above +2m/month; that is an increase in water level of 2m or more. Given that WLF is likely to be of more frequent occurrence under future predicted conditions of climate variability and human activity, water level management can be widely used in small and medium-sized reservoirs to prevent the toxic cyanobacterial blooms and to protect the ecosystem integrity or functions.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Monitoreo del Ambiente , Abastecimiento de Agua/estadística & datos numéricos , China , Chlorophyta , Cambio Climático , Ecosistema , Eutrofización , Agua Dulce/análisis , Fósforo/análisis , Fitoplancton
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA