RESUMEN
Stable homogeneous two-electron water oxidation electrocatalysts are highly demanded to understand the precise mechanism and reaction intermediates of electrochemical H2O2 production. Here we report a tetranuclear manganese complex with a cubane structure which can electrocatalyze water oxidation to hydrogen peroxide under alkaline and neutral conditions. Such a complex demonstrates an optimal Faradaic efficiency (FE) of 87 %, which is amongst (if not) the highest FE(H2O2) of reported homogeneous and heterogeneous electrocatalysts. In addition, active species were identified and co-catalysts were excluded through ESI-MS characterization. Furthermore, we identified water binding sites and isolated one-electron oxidation intermediate by chemical oxidation of the catalyst in the presence of water substrates. It is evident that efficient proton-accepting electrolytes avoid rapid proton building-up at electrode and substantially improve reaction rate and selectivity. Accordingly, we propose a two-electron catalytic cycle model for water oxidation to hydrogen peroxide with the bioinspired molecular electrocatalyst. The present work is expected to provide an ideal platform to elucidate the two-electron WOR mechanism at the atomic level.
RESUMEN
The low activation barrier for O-O coupling in the closed-cubane Oxygen-Evolving Centre (OEC) of Photosystemâ II (PSII) requires water coordination with the Mn4 'dangler' ion in the Mn(V)-oxo fragment. This coordination transforms the Mn(V)-oxo complex into a more reactive Mn4(IV)-oxyl species, enhancing O-O coupling. This study explains the mechanism behind the coordination and indicates that in the most stable form of the OEC, the Mn4 fragment adopts a trigonal bipyramidal geometry but needs to transition to a square pyramidal form to be activated for O-O coupling. This transition stabilizes the Mn4 dxy orbital, enabling electron transfer from the oxo ligand to the dxy orbital, converting the oxo ligand into an oxyl species. The role of the water is to coordinate with the square pyramidal structure, reducing the energy gap between the oxo and oxyl forms, thereby lowering the activation energy for O-O coupling. This mechanism applies not only to the OEC system but also to other Mn(V)-based catalysts. For other catalysts, ligands such as OH- stabilize the Mn(IV)-oxyl species better than water, improving catalyst activation for reactions like C-H bond activation. This study is the first to explain the Mn(V)-oxo to Mn(IV)-oxyl conversion, providing a new foundation for Mn-based catalyst design.
RESUMEN
Protein structure plays an essential role on their stability, functionality, and catalytic activity. In this work, the interplay between the ß-sheet structure and its catalytic implications to the design of enzyme-inspired materials is investigated. Here, inspiration is drawn from the active sites and ß-sheet rich structure of the highly efficient multicopper oxidase (MCO) to engineer a bio-inspired electrocatalyst for water oxidation utilizing the abundant metal, copper. Copper ions are coordinated to poly-histidine (polyCuHis), as they are in MCO active sites. The resultant polyCuHis material effectively promotes water oxidation with low overpotentials (0.15 V) in alkaline systems. This activity is due to the 3D structure of the poly-histidine backbone. By increasing the prevalence of ß-sheet structure and decreasing the random coil nature of the polyCuHis secondary structures, this study is able to modulates the electrocatalytic activity of this material is modulated, shifting it toward water oxidation. These results highlight the crucial role of the local environment at catalytic sites for efficient, energy-relevant transformations. Moreover, this work highlights the importance of conformational structure in the design of scaffolds for high-performance electrocatalysts.
Asunto(s)
Oxidación-Reducción , Agua , Agua/química , Catálisis , Polímeros/química , Cobre/química , Estructura Secundaria de Proteína , Oxidorreductasas/química , Oxidorreductasas/metabolismo , HistidinaRESUMEN
The interfacial barrier of charge transfer from semiconductors to cocatalysts means that the photogenerated charges cannot be fully utilized, especially for the challenging water oxidation reaction. Using cobalt cubane molecules (Co4 O4 ) as water oxidation cocatalysts, we rationally assembled partially oxidized graphene (pGO), acting as a charge-transfer mediator, on the hole-accumulating {-101} facets of lead chromate (PbCrO4 ) crystal. The assembled pGO enables preferable immobilization of Co4 O4 molecules on the {-101} facets of the PbCrO4 crystal, which is favorable for the photogenerated holes transferring from PbCrO4 to Co4 O4 molecules. The surface charge-transfer efficiency of PbCrO4 was boosted by selective assembly of pGO between PbCrO4 and Co4 O4 molecules. An apparent quantum efficiency for photocatalytic water oxidation on the Co4 O4 /pGO/PbCrO4 photocatalyst exceeded 10 % at 500â nm. This strategy of rationally assembling charge-transfer mediator provides a feasible method for acceleration of charge transfer and utilization in semiconductor photocatalysis.
RESUMEN
Photoelectrochemical (PEC) water oxidation using ternary oxide systems has been considered a promising approach for investigating the effective utilization of sunlight and the production of green fuel. Herein, we report a ternary-oxide-based CuWO4/BiVO4/FeCoOx film deposited entirely by RF-magnetron sputtering using homemade ceramic targets. Our CuWO4/BiVO4 photoanode exhibits a significant photocurrent density of 0.82 mA cm-2 at 1.23 V vs RHE under AM 1.5G illumination, which is a record 382% increase compared to that of the bare CuWO4 film. To further boost the PEC performance, we deposited an ultrathin layer of amorphous FeCoOx cocatalyst, resulting in a triple CuWO4/BiVO4/FeCoOx heterojunction with a significant reduction in onset potential and a 500% increase in the photocurrent density of bare CuWO4. Experimental and theoretical approaches were used to provide insights into the interfacial band alignment and photoinduced charge carrier pathway across heterojunctions. Our results reveal noticeable interface potential barriers for charge carriers at the CuWO4/BiVO4 heterojunction, potentially limiting its application in tandem systems. Conversely, the deposition of the FeCoOx ultrathin layer over the CuWO4/BiVO4 heterojunction induces a p-n junction on the BiVO4/FeCoOx interface, which, when combined with the abundant FeCoOx oxygen vacancies, results in improved charge separation and transport as well as enhanced photoelectrochemical stability. Our study provides a feasible strategy for producing photocatalytic heterojunction systems and introduces simple tools for investigating interface effects on photoinduced charge carrier pathways for PEC water splitting.
RESUMEN
In this work, we have successfully constructed a cobalt-oxo (CoIII 4 O4 ) cubane complex on polymeric carbon nitride (PCN) through pyridine linkage. The covalently grafted CoIII 4 O4 cubane units were uniformly distributed on the PCN surface. The product exhibited greatly enhanced photocatalytic activities for water oxidation under visible-light irradiation. Further characterizations and spectroscopic analyses revealed that the grafted CoIII 4 O4 cubane units could effectively capture the photogenerated holes from excited PCN, lower the overpotential of oxygen evolution reaction (OER), and serve as efficient catalysts to promote the multi-electron water oxidation process. This work provides new insight into the future development of efficient photocatalysts by grafting molecular catalysts for artificial photosynthesis.
RESUMEN
Cobalt oxide is an excellent water oxidation cocatalyst used in photoelectrochemical (PEC) water splitting field. Finding a facial way to load cobalt oxide on a semiconductor anode is important to effectively realize PEC water splitting on a large scale. In this work, a simple impregnation and calcination method is developed to fabricate CoOx/BiVO4 anode. The constructed CoOx/BiVO4 anode provides a photocurrent of 3.1 mA cm-2 at 1.23 V vs. RHE, about 2.8 times that of BiVO4 anode (1.1 mA cm-2). Furthermore, both the charge separation and injection efficiency are improved by loading CoOx nanoparticles onto the BiVO4 layer. Importantly, input voltage-output current characteristic curves are used for the first time to prove the formation of p-n junction between CoOx and BiVO4, which benefits to the separation of photogenerated holes and electrons. All results indicate that the impregnation and calcination method is efficacious for facile fabrication of CoOx/BiVO4 photoanode with high performance.
RESUMEN
The development of efficient, robust and earth-abundant catalysts for photocatalytic conversions has been the Achilles' heel of solar energy utilization. Here, we report on a chemical approach based on ligand designed architectures to fabricate unique structural molecular catalysts coupled with appropriate light harvesters (e.g., carbon nitride and Ru(bpy)32+) for photoredox reactions. The "Co4O4" cubane complex Co4O4(CO2Me)4(RNC5H4)4 (R = CN, Br, H, Me, OMe), serves as a molecular catalyst for the efficient and stable photocatalytic water oxidation and CO2 reduction. A comprehensive structure-function analysis emerged herein, highlights the regulation of electronic characteristics for a molecular catalyst by selective ligand modification. This work demonstrates a modulation method for fabricating effective, stable and earth-abundant molecular catalysts, which might facilitate further innovation in the function-led design and synthesis of cubane clusters for photoredox reactions.
RESUMEN
The unusually high tolerance toward chemical functional groups of the copper(I)-catalyzed Huisgen-Sharpless-Meldal 1,3-dipolar cycloaddition of azides and alkynes protocol (the CuAAC or "click" reaction) associated with its mild conditions and high yields has been explored in the present methodology to successfully prepare water oxidation catalyst iridium oxide nanoparticles decorated with organic dyes. The "click reaction" has proven to be an excellent synthetic tool to overcome the incompatible solubility of the hydrophilic iridium oxide nanoparticles and the hydrophobic dyes. A complex artificial photosynthetic model designed to mimic the photoinduced redox processes occurring in photosystem II is used as a hydrophobic dye to highlight the efficiency and selectiveness of the method.
Asunto(s)
Química Clic , Iridio , Nanopartículas , Oxidación-Reducción , Fotosíntesis , Agua/química , Catálisis , Colorantes/química , Interacciones Hidrofóbicas e Hidrofílicas , Iridio/química , Estructura Molecular , Nanopartículas/química , Nanopartículas/ultraestructura , Oxígeno/metabolismo , Análisis EspectralRESUMEN
Inspired by the cubic Mn4 CaO5 cluster of natural oxygen-evolving complex in Photosystem II, tetrametallic molecular water oxidation catalysts, especially M4 O4 cubane-like clusters (M=transition metals), have aroused great interest in developing highly active and robust catalysts for water oxidation. Among these M4 O4 clusters, however, copper-based molecular catalysts are poorly understood. Now, bio-inspired Cu4 O4 cubanes are presented as effective molecular catalysts for electrocatalytic water oxidation in aqueous solution (pHâ 12). The exceptional catalytic activity is manifested with a turnover frequency (TOF) of 267â s-1 for [(LGly -Cu)4 ] at 1.70â V and 105â s-1 for [(LGlu -Cu)4 ] at 1.56â V. Electrochemical and spectroscopic study revealed a successive two-electron transfer process in the Cu4 O4 cubanes to form high-valent CuIII and CuIII O. intermediates during the catalysis.
RESUMEN
ABSTRACT The efficiency of nanostructures for photoelectrochemical water-splitting is fundamentally governed by the capability of the surface to sustain the reaction without electron trapping or recombination by photogenerated holes. This brief review will summarize the latest progress on hematite, designed with columnar morphology via chemical synthesis, for photoelectrochemical cell application. The columnar morphology efficiently minimizes the number of defects, grain boundaries, and surface traps normally present on the planar morphology. The major drawback related to hole diffusion through the solid/liquid interface was addressed by using high annealing temperature combined with dopant addition. A critical view and depth of understanding of these two parameters were discussed focusing on the molecular oxygen evolution mechanism from the sunlight-driven water oxidation reaction.
RESUMEN
Bio-mimetic catalysts such as LnCo3 (OR)4 (Ln=Er, Tm; OR=alkoxide) cubanes have recently been in the focus of research for artificial water oxidation processes. Previously, the remarkable adaptability with respect to ligand shell, nuclear structure as well as protonation and oxidation states of those catalysts has been shown to be beneficial for the water oxidation process. We further explored the structural flexibility of those catalysts and present here a series of novel structures in which one metal center is pulled out of the cubane cage. This leads to an open cubane core, which is to some extent reminiscent of observed open/closed cubane-core forms of the oxygen-evolving complex in nature's photosystemâ II. We investigate how those open cubane core models alter the thermodynamics of the water oxidation cycle and how different solvation approaches influence their stability.
Asunto(s)
Materiales Biomiméticos/química , Lantano , Compuestos Organometálicos/química , Agua/química , Carbono , Catálisis , Ligandos , Oxidación-Reducción , Complejo de Proteína del Fotosistema II , TermodinámicaRESUMEN
Molecular Co4 O4 cubane water oxidation catalysts were combined with BiVO4 electrodes for photoelectrochemical (PEC) water splitting. The results show that tuning the substituent groups on cobalt cubane allows the PEC properties of the final molecular catalyst/BiVO4 hybrid photoanodes to be tailored. Upon loading a new cubane complex featuring alkoxy carboxylato bridging ligands (1 h) on BiVO4 , an AMâ 1.5G photocurrent density of 5â mA cm-2 at 1.23â V vs. RHE for water oxidation was obtained, the highest photocurrent for undoped BiVO4 photoanodes. A high solar-energy conversion efficiency of 1.84 % was obtained for the integrated photoanode, a sixfold enhancement over that of unmodified BiVO4 . These results and the high surface charge separation efficiency support the role of surface-modified molecular catalysts in improving PEC performance and demonstrate the potential of molecule/semiconductor hybrids for efficient artificial photosynthesis.
RESUMEN
[Mn4O4{O2P(OtBu)2}6] (1), an Mn4O4 cubane complex combining the structural inspiration of the photosystem II oxygen-evolving complex with thermolytic precursor ligands, was synthesized and fully characterized. Core oxygen atoms within complex 1 are transferred upon reaction with an oxygen-atom acceptor (PEt3), to give the butterfly complex [Mn4O2{O2P(OtBu)2}6(OPEt3)2]. The cubane structure is restored by reaction of the latter complex with the O-atom donor PhIO. Complex 1 was investigated as a precursor to inorganic Mn metaphosphate/pyrophosphate materials, which were studied by X-ray absorption spectroscopy to determine the fate of the Mn4O4 unit. Under the conditions employed, thermolyses of 1 result in reduction of the manganese to Mn(II) species. Finally, the related butterfly complex [Mn4O2{O2P(pin)}6(bpy)2] (pin = pinacolate) is described.
Asunto(s)
Complejos de Coordinación/química , Organofosfatos/química , Oxígeno/química , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Técnicas Electroquímicas , Ligandos , Manganeso/química , Conformación Molecular , Oxidación-Reducción , Complejo de Proteína del Fotosistema II/química , Termodinámica , Agua/química , Espectroscopía de Absorción de Rayos XRESUMEN
Cores for thought! A new [Mn4 O4 ]6+ "cubane" core complex (L6 Mn4 O4 ) with six facially bridging phosphinate chelate ligands (L- =(MePh)2 PO2- ) was synthesized. Photo-excitation releases molecular O2 by intramolecular coupling of two core oxygen atoms and selective rearrangement to a [Mn4 O2 ]6+ "butterfly" core ([L5 Mn4 O2 ]+ ; see scheme). Thus the Mn4 O4 cubane core exhibits unique reactivity in O2 evolution which may account for its presence in the photosynthetic enzyme.