Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuroscience ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284434

RESUMEN

The glymphatic system theory postulates that brain waste is removed through the cerebrospinal fluid (CSF) flow. According to this theory, CSF in the subarachnoid space (SAS) moves to the perivascular space around the penetrating arteries, flows into parenchyma to mix with interstitial fluid and brain waste, and then moves to the perivenous space to be flushed out of the brain. Despite the controversies about the glymphatic theory, it is clear that SAS plays a key role in waste clearance. For instance, the SAS around the middle cerebral artery is known to be highly involved in glymphatic influx. While diffusion tensor imaging has been used for studying the glymphatic system, there has been limited exploration of age-related changes in diffusion anisotropy within SAS and their regional variations. Given the narrow and heterogeneous morphology of SAS, the fractional anisotropy (FA) in diverse brain regions may be more relevant to glymphatic transport than mean diffusivity (MD). The goal of this study was to investigate FA in SAS to observe age-related changes across different brain regions and to interpret the results based on the glymphatic transport. We segmented SAS in the whole brain of 83 young adults and divided SAS into four cortical lobes. We demonstrated regional variations in FA and MD within SAS and an age-related decline in FA among young adults, indicating that diffusion within SAS becomes more isotropic with aging. These findings raise new questions about the factors influencing diffusion anisotropy within SAS, which are relevant to glymphatic transport.

2.
NMR Biomed ; 37(9): e5162, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38715420

RESUMEN

Cerebrospinal fluid (CSF) plays a critical role in metabolic waste clearance from the brain, requiring its circulation throughout various brain pathways, including the ventricular system, subarachnoid spaces, para-arterial spaces, interstitial spaces, and para-venous spaces. The complexity of CSF circulation has posed a challenge in obtaining noninvasive measurements of CSF dynamics. The assessment of CSF dynamics throughout its various circulatory pathways is possible using diffusion magnetic resonance imaging (MRI) with optimized sensitivity to incoherent water movement across the brain. This review presents an overview of both established and emerging diffusion MRI techniques designed to measure CSF dynamics and their potential clinical applications. The discussion offers insights into the optimization of diffusion MRI acquisition parameters to enhance the sensitivity and specificity of diffusion metrics on underlying CSF dynamics. Lastly, we emphasize the importance of cautious interpretations of diffusion-based imaging, especially when differentiating between tissue- and fluid-related changes or elucidating structural versus functional alterations.


Asunto(s)
Líquido Cefalorraquídeo , Imagen de Difusión por Resonancia Magnética , Humanos , Líquido Cefalorraquídeo/diagnóstico por imagen , Líquido Cefalorraquídeo/fisiología , Animales , Hidrodinámica , Encéfalo/diagnóstico por imagen
3.
Magn Reson Med Sci ; 23(3): 268-290, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569866

RESUMEN

More than 5 years have passed since the Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS) method was proposed with the intention of evaluating the glymphatic system. This method is handy due to its noninvasiveness, provision of a simple index in a straightforward formula, and the possibility of retrospective analysis. Therefore, the ALPS method was adopted to evaluate the glymphatic system for many disorders in many studies. The purpose of this review is to look back and discuss the ALPS method at this moment.The ALPS-index was found to be an indicator of a number of conditions related to the glymphatic system. Thus, although this was expected in the original report, the results of the ALPS method are often interpreted as uniquely corresponding to the function of the glymphatic system. However, a number of subsequent studies have pointed out the problems on the data interpretation. As they rightly point out, a higher ALPS-index indicates predominant Brownian motion of water molecules in the radial direction at the lateral ventricular body level, no more and no less. Fortunately, the term "ALPS-index" has become common and is now known as a common term by many researchers. Therefore, the ALPS-index should simply be expressed as high or low, and whether it reflects a glymphatic system is better to be discussed carefully. In other words, when a decreased ALPS-index is observed, it should be expressed as "decreased ALPS-index" and not directly as "glymphatic dysfunction". Recently, various methods have been proposed to evaluate the glymphatic system. It has become clear that these methods also do not seem to reflect the entirety of the extremely complex glymphatic system. This means that it would be desirable to use various methods in combination to evaluate the glymphatic system in a comprehensive manner.


Asunto(s)
Imagen de Difusión Tensora , Sistema Glinfático , Humanos , Imagen de Difusión Tensora/métodos , Sistema Glinfático/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos
4.
Fluids Barriers CNS ; 21(1): 28, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532513

RESUMEN

Waste from the brain has been shown to be cleared via the perivascular spaces through the so-called glymphatic system. According to this model the cerebrospinal fluid (CSF) enters the brain in perivascular spaces of arteries, crosses the astrocyte endfoot layer, flows through the parenchyma collecting waste that is subsequently drained along veins. Glymphatic clearance is dependent on astrocytic aquaporin-4 (AQP4) water channels that are highly enriched in the endfeet. Even though the polarized expression of AQP4 in endfeet is thought to be of crucial importance for glymphatic CSF influx, its role in extracellular solute clearance has only been evaluated using non-quantitative fluorescence measurements. Here we have quantitatively evaluated clearance of intrastriatally infused small and large radioactively labeled solutes in mice lacking AQP4 (Aqp4-/-) or lacking the endfoot pool of AQP4 (Snta1-/-). We confirm that Aqp4-/- mice show reduced clearance of both small and large extracellular solutes. Moreover, we find that the Snta1-/- mice have reduced clearance only for the 500 kDa [3H]dextran, but not 0.18 kDa [3H]mannitol suggesting that polarization of AQP4 to the endfeet is primarily important for clearance of large, but not small molecules. Lastly, we observed that clearance of 500 kDa [3H]dextran increased with age in adult mice. Based on our quantitative measurements, we confirm that presence of AQP4 is important for clearance of extracellular solutes, while the perivascular AQP4 localization seems to have a greater impact on clearance of large versus small molecules.


MAIN POINTS: Solute clearance is reduced in mice lacking AQP4 Polarization of AQP4 to the endfeet may have a greater impact on clearance of large versus small molecules Clearance of large but not small solutes is correlated with age within adult age.


Asunto(s)
Dextranos , Sistema Glinfático , Animales , Ratones , Acuaporina 4/metabolismo , Astrocitos/metabolismo , Encéfalo/metabolismo , Dextranos/metabolismo , Sistema Glinfático/metabolismo
5.
J Mech Behav Biomed Mater ; 153: 106486, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428205

RESUMEN

In this study, we conduct a multiscale, multiphysics modeling of the brain gray matter as a poroelastic composite. We develop a customized representative volume element based on cytoarchitectural features that encompass important microscopic components of the tissue, namely the extracellular space, the capillaries, the pericapillary space, the interstitial fluid, cell-cell and cell-capillary junctions, and neuronal and glial cell bodies. Using asymptotic homogenization and direct numerical simulation, the effective properties at the tissue level are identified based on microscopic properties. To analyze the influence of various microscopic elements on the effective/macroscopic properties and tissue response, we perform sensitivity analyses on cell junction (cluster) stiffness, cell junction diameter (dimensions), and pericapillary space width. The results of this study suggest that changes in cell adhesion can greatly affect both mechanical and hydraulic (interstitial fluid flow and porosity) features of brain tissue, consistent with the effects of neurodegenerative diseases.


Asunto(s)
Líquido Extracelular , Espacio Extracelular , Adhesión Celular , Simulación por Computador , Porosidad
6.
Neuroradiol J ; 37(3): 342-350, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38490679

RESUMEN

BACKGROUND AND PURPOSE: Recent studies have suggested an association between dysfunction of the choroid plexus and the glymphatic system. However, information is inconclusive. Following a population-based study design, we aimed to assess the association between choroid plexus calcifications (CPCs)-as a surrogate of choroid plexus dysfunction-and severity and progression of putative markers of glymphatic dysfunction, including white matter hyperintensities (WMH) of presumed vascular origin and abnormally enlarged basal ganglia perivascular spaces (BG-PVS). METHODS: This study recruited community-dwellers aged ≥40 years living in neighboring Ecuadorian villages. Participants who had baseline head CTs and brain MRIs were included in cross-sectional analyses and those who additional had follow-up MRIs (after a mean of 6.4 ± 1.5 years) were included in longitudinal analyses. Logistic and Poisson regression models, adjusted for demographics and cardiovascular risk factors, were fitted to assess associations between CPCs and WMH and enlarged BG-PVS severity and progression. RESULTS: A total of 590 individuals were included in the cross-sectional component of the study, and 215 in the longitudinal component. At baseline, 25% of participants had moderate-to-severe WMH and 27% had abnormally enlarged BG-PVS. At follow-up, 36% and 20% of participants had WMH and enlarged BG-PVS progression, respectively. Logistic regression models showed no significant differences between CPCs volumes stratified in quartiles and severity of WMH and enlarged BG-PVS. Poisson regression models showed no association between the exposure and WMH and enlarged BG-PVS progression. Baseline age remained significant in these models. CONCLUSIONS: Choroid plexus calcifications are not associated with putative markers of glymphatic system dysfunction.


Asunto(s)
Calcinosis , Plexo Coroideo , Sistema Glinfático , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Plexo Coroideo/diagnóstico por imagen , Plexo Coroideo/patología , Persona de Mediana Edad , Sistema Glinfático/diagnóstico por imagen , Estudios Transversales , Imagen por Resonancia Magnética/métodos , Anciano , Calcinosis/diagnóstico por imagen , Estudios Longitudinales , Ecuador , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Adulto , Tomografía Computarizada por Rayos X , Biomarcadores
7.
Front Cardiovasc Med ; 10: 1283434, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075961

RESUMEN

In the brain, perivascular fibroblasts (PVFs) reside within the perivascular spaces (PVSs) of arterioles and large venules, however their physiological and pathophysiological roles remain largely unknown. PVFs express numerous extracellular matrix proteins that are found in the basement membrane and PVS surrounding large diameter vessels. PVFs are sandwiched between the mural cell layer and astrocytic endfeet, where they are poised to interact with mural cells, perivascular macrophages, and astrocytes. We draw connections between the more well-studied PVF pro-fibrotic response in ischemic injury and the less understood thickening of the vascular wall and enlargement of the PVS described in dementia and neurodegenerative diseases. We postulate that PVFs may be responsible for stability and homeostasis of the brain vasculature, and may also contribute to changes within the PVS during disease.

8.
J Magn Reson Imaging ; 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38156600

RESUMEN

BACKGROUND: Diffusion imaging holds great potential for the non-invasive assessment of the glymphatic system in humans. One technique, diffusion tensor imaging along the perivascular space (DTI-ALPS), has introduced the ALPS-index, a novel metric for evaluating diffusivity within the perivascular space. However, it still needs to be established whether the observed reduction in the ALPS-index reflects axonal changes, a common occurrence in neurodegenerative diseases. PURPOSE: To determine whether axonal alterations can influence change in the ALPS-index. STUDY TYPE: Retrospective. POPULATION: 100 participants (78 cognitively normal and 22 with mild cognitive impairments) aged 50-90 years old. FIELD STRENGTH/SEQUENCE: 3T; diffusion-weighted single-shot spin-echo echo-planar imaging sequence, T1-weighted images (MP-RAGE). ASSESSMENT: The ratio of two radial diffusivities of the diffusion tensor (i.e., λ2/λ3) across major white matter tracts with distinct venous/perivenous anatomy that fulfill (ALPS-tracts) and do not fulfill (control tracts) ALPS-index anatomical assumptions were analyzed. STATISTICAL TESTS: To investigate the correlation between λ2/λ3 and age/cognitive function (RAVLT) while accounting for the effect of age, linear regression was implemented to remove the age effect from each variable. Pearson correlation analysis was conducted on the residuals obtained from the linear regression. Statistical significance was set at p < 0.05. RESULTS: λ2 was ~50% higher than λ3 and demonstrated a consistent pattern across both ALPS and control tracts. Additionally, in both ALPS and control tracts a reduction in the λ2/λ3 ratio was observed with advancing age (r = -0.39, r = -0.29, association and forceps tract, respectively) and decreased memory function (r = 0.24, r = 0.27, association and forceps tract, respectively). DATA CONCLUSIONS: The results unveil a widespread radial asymmetry of white matter tracts that changes with aging and neurodegeration. These findings highlight that the ALPS-index may not solely reflect changes in the diffusivity of the perivascular space but may also incorporate axonal contributions. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

9.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139290

RESUMEN

The intricate mechanisms governing brain health and function have long been subjects of extensive investigation. Recent research has shed light on two pivotal systems, the glymphatic system and the endocannabinoid system, and their profound role within the central nervous system. The glymphatic system is a recently discovered waste clearance system within the brain that facilitates the efficient removal of toxic waste products and metabolites from the central nervous system. It relies on the unique properties of the brain's extracellular space and is primarily driven by cerebrospinal fluid and glial cells. Conversely, the endocannabinoid system, a multifaceted signaling network, is intricately involved in diverse physiological processes and has been associated with modulating synaptic plasticity, nociception, affective states, appetite regulation, and immune responses. This scientific review delves into the intricate interconnections between these two systems, exploring their combined influence on brain health and disease. By elucidating the synergistic effects of glymphatic function and endocannabinoid signaling, this review aims to deepen our understanding of their implications for neurological disorders, immune responses, and cognitive well-being.


Asunto(s)
Sistema Glinfático , Enfermedades del Sistema Nervioso , Humanos , Sistema Glinfático/metabolismo , Endocannabinoides/metabolismo , Encéfalo/metabolismo , Sistema Nervioso Central , Enfermedades del Sistema Nervioso/metabolismo
10.
J Magn Reson Imaging ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37991132

RESUMEN

Recent research has identified a link between the global mean signal of resting-state functional MRI (fMRI) and macro-scale cerebrospinal fluid movement, indicating the potential link between this resting-state dynamic and brain waste clearance. Consistent with this notion, the strength of this coupling has been associated with multiple neurodegenerative disease pathologies, especially the build-up of toxic proteins. This article aimed to review the latest advancements in this research area, emphasizing studies on spontaneous global brain activity that is tightly linked to the global mean resting-state fMRI signal, and aimed to discuss potential mechanisms through which this activity and associated physiological modulations might affect brain waste clearance. The available evidence supports the presence of a highly organized global brain activity that is linked to arousal and memory systems. This global brain dynamic, along with its associated physiological modulations, has the potential to influence brain waste clearance through multiple pathways through multiple pathways. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.

11.
Alzheimers Res Ther ; 15(1): 170, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821965

RESUMEN

The glymphatic system is a crucial component in preserving brain homeostasis by facilitating waste clearance from the central nervous system (CNS). Aquaporin-4 (AQP4) water channels facilitate the continuous interchange between cerebrospinal fluid and brain interstitial fluid by convective flow movement. This flow is responsible for guiding proteins and metabolites away from the CNS. Proteinopathies are neurological conditions characterized by the accumulation of aggregated proteins or peptides in the brain. In Alzheimer's disease (AD), the deposition of amyloid-ß (Aß) peptides causes the formation of senile plaques. This accumulation has been hypothesized to be a result of the imbalance between Aß production and clearance. Recent studies have shown that an extended form of AQP4 increases Aß clearance from the brain. In this mini-review, we present a summary of these findings and explore the potential for future therapeutic strategies aiming to boost waste clearance in AD.


Asunto(s)
Enfermedad de Alzheimer , Deficiencias en la Proteostasis , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Acuaporina 4/metabolismo , Encéfalo/metabolismo , Isoformas de Proteínas/metabolismo , Deficiencias en la Proteostasis/metabolismo
12.
J Magn Reson Imaging ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37823526

RESUMEN

Interstitial fluid (ISF) refers to the fluid between the parenchymal cells and along the perivascular spaces (PVS). ISF plays a crucial role in delivering nutrients and clearing waste products from the brain. This narrative review focuses on the use of MRI techniques to measure various ISF characteristics in humans. The complementary value of contrast-enhanced and noncontrast-enhanced techniques is highlighted. While contrast-enhanced MRI methods allow measurement of ISF transport and flow, they lack quantitative assessment of ISF properties. Noninvasive MRI techniques, including multi-b-value diffusion imaging, free-water-imaging, T2 -decay imaging, and DTI along the PVS, offer promising alternatives to derive ISF measures, such as ISF volume and diffusivity. The emerging role of these MRI techniques in investigating ISF alterations in neurodegenerative diseases (eg, Alzheimer's disease and Parkinson's disease) and cerebrovascular diseases (eg, cerebral small vessel disease and stroke) is discussed. This review also emphasizes current challenges of ISF imaging, such as the microscopic scale at which ISF has to be measured, and discusses potential focus points for future research to overcome these challenges, for example, the use of high-resolution imaging techniques. Noninvasive MRI methods for measuring ISF characteristics hold significant potential and may have a high clinical impact in understanding the pathophysiology of neurodegenerative and cerebrovascular disorders, as well as in evaluating the efficacy of ISF-targeted therapies in clinical trials. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

13.
Magn Reson Med ; 90(6): 2411-2419, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37582262

RESUMEN

PURPOSE: To quantify the T1 and T2 values of CSF in the subarachnoid space (SAS) at 3 T and interpret them in the context of water exchange between CSF and brain tissues. METHODS: CSF T1 was measured using inversion recovery, and CSF T2 was assessed using T2 -preparation. T1 and T2 values in the SAS were compared with those in the frontal horns of lateral ventricles, which have less brain-CSF exchange. Phantom experiments were performed to examine whether there were spatial variations in T1 and T2 that were unrelated to brain-CSF exchange. Simulations were conducted to investigate the relationship between the brain-CSF exchange rate and the apparent T1 and T2 values of SAS CSF. RESULTS: The CSF T1 and T2 values were 4308.7 ± 146.9 ms and 1885.5 ± 67.9 ms, respectively, in the SAS and were 4454.0 ± 187.9 ms and 2372.9 ± 72.0 ms in the frontal horns. The SAS CSF had shorter T1 (p = 0.006) and T2 (p < 0.0001) than CSF in the frontal horns. Phantom experiments showed negligible (< 6 ms for T1 ; < 1 ms for T2 ) spatial variations in T1 and T2 , suggesting that the T1 and T2 differences between SAS and frontal horns were largely attributed to physiological reasons. Simulations revealed that faster brain-CSF exchange rates lead to shorter apparent T1 and T2 of SAS CSF. However, the experimentally observed T2 difference between SAS and frontal horns was greater than that attributable to typical exchange effect, suggesting that the T2 shortening in SAS may reflect a combined effect of exchange and deoxyhemoglobin susceptibility. CONCLUSION: Quantification of SAS CSF relaxation times may be useful to assess the brain-CSF exchange.


Asunto(s)
Encéfalo , Espacio Subaracnoideo , Animales , Encéfalo/diagnóstico por imagen , Espacio Subaracnoideo/diagnóstico por imagen , Factores de Tiempo , Fantasmas de Imagen , Imagen por Resonancia Magnética
14.
Neuroimage ; 271: 120009, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36907282

RESUMEN

Enlarged perivascular spaces (PVS) are considered a biomarker for vascular pathology and are observed in normal aging and neurological conditions; however, research on the role of PVS in health and disease are hindered by the lack of knowledge regarding the normative time course of PVS alterations with age. To this end, we characterized the influence of age, sex and cognitive performance on PVS anatomical characteristics in a large cross-sectional cohort (∼1400) of healthy subjects between 8 and 90 years of age using multimodal structural MRI data. Our results show age is associated with wider and more numerous MRI-visible PVS over the course of the lifetime with spatially-varying patterns of PVS enlargement trajectories. In particular, regions with low PVS volume fraction in childhood are associated with rapid age-related PVS enlargement (e.g., temporal regions), while regions with high PVS volume fraction in childhood are associated with minimal age-related PVS alterations (e.g., limbic regions). PVS burden was significantly elevated in males compared to females with differing morphological time courses with age. Together, these findings contribute to our understanding of perivascular physiology across the healthy lifespan and provide a normative reference for the spatial distribution of PVS enlargement patterns to which pathological alterations can be compared.


Asunto(s)
Sistema Glinfático , Masculino , Femenino , Humanos , Longevidad , Estudios Transversales , Imagen por Resonancia Magnética/métodos , Envejecimiento
15.
Fluids Barriers CNS ; 20(1): 20, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941607

RESUMEN

BACKGROUND: Astrocyte endfoot processes are believed to cover all micro-vessels in the brain cortex and may play a significant role in fluid and substance transport into and out of the brain parenchyma. Detailed fluid mechanical models of diffusive and advective transport in the brain are promising tools to investigate theories of transport. METHODS: We derive theoretical estimates of astrocyte endfoot sheath permeability for advective and diffusive transport and its variation in microvascular networks from mouse brain cortex. The networks are based on recently published experimental data and generated endfoot patterns are based on Voronoi tessellations of the perivascular surface. We estimate corrections for projection errors in previously published data. RESULTS: We provide structural-functional relationships between vessel radius and resistance that can be directly used in flow and transport simulations. We estimate endfoot sheath filtration coefficients in the range [Formula: see text] to [Formula: see text], diffusion membrane coefficients for small solutes in the range [Formula: see text] to [Formula: see text], and gap area fractions in the range 0.2-0.6%, based on a inter-endfoot gap width of 20 nm. CONCLUSIONS: The astrocyte endfoot sheath surrounding microvessels forms a secondary barrier to extra-cellular transport, separating the extra-cellular space of the parenchyma and the perivascular space outside the endothelial layer. The filtration and membrane diffusion coefficients of the endfoot sheath are estimated to be an order of magnitude lower than those of the extra-cellular matrix while being two orders of magnitude higher than those of the vessel wall.


Asunto(s)
Astrocitos , Encéfalo , Ratones , Animales , Encéfalo/metabolismo , Transporte Biológico , Difusión , Espacio Extracelular/metabolismo
16.
J Cereb Blood Flow Metab ; 43(7): 1153-1165, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36809165

RESUMEN

The glymphatic system is a brain-wide waste drainage system that promotes cerebrospinal fluid circulation through the brain to remove waste metabolites. Currently, the most common methods for assessing glymphatic function are ex vivo fluorescence microscopy of brain slices, macroscopic cortical imaging, and MRI. While all these methods have been crucial for expanding our understanding of the glymphatic system, new techniques are required to overcome their specific drawbacks. Here, we evaluate SPECT/CT imaging as a tool to assess glymphatic function in different anesthesia-induced brain states using two radiolabeled tracers, [111In]-DTPA and [99mTc]-NanoScan. Using SPECT, we confirmed the existence of brain state-dependent differences in glymphatic flow and we show brain state-dependent differences of CSF flow kinetics and CSF egress to the lymph nodes. We compare SPECT and MRI for imaging glymphatic flow and find that the two imaging modalities show the same overall pattern of CSF flow, but that SPECT was specific across a greater range of tracer concentrations than MRI. Overall, we find that SPECT imaging is a promising tool for imaging the glymphatic system, and that qualities such as high sensitivity and the variety of available tracers make SPECT imaging a good alternative for glymphatic research.


Asunto(s)
Sistema Glinfático , Ratas , Animales , Encéfalo/irrigación sanguínea , Imagen por Resonancia Magnética/métodos , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único
17.
Neurosci Biobehav Rev ; 144: 104999, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36529311

RESUMEN

The cerebral waste clearance system (i.e, glymphatic or intramural periarterial drainage) works through a network of perivascular spaces (PVS). Dysfunction of this system likely contributes to aggregation of Amyloid-ß and subsequent toxic plaques in Alzheimer's disease (AD). A promising, non-invasive technique to study this system is MRI, though applications in dementia are still scarce. This review focusses on recent non-contrast enhanced (non-CE) MRI techniques which determine and visualise physiological aspects of the clearance system at multiple levels, i.e., cerebrospinal fluid flow, PVS-flow and interstitial fluid movement. Furthermore, various MRI studies focussing on aspects of the clearance system which are relevant to AD are discussed, such as studies on ageing, sleep alterations, and cognitive decline. Additionally, the complementary function of non-CE to CE methods is elaborated upon. We conclude that non-CE studies have great potential to determine which parts of the waste clearance system are affected by AD and in which stages of cognitive impairment dysfunction of this system occurs, which could allow future clinical trials to target these specific mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Sistema Glinfático , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Sistema Glinfático/diagnóstico por imagen , Sistema Glinfático/metabolismo , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo
18.
Front Neuroanat ; 16: 1013808, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569282

RESUMEN

Background: Previous reports have established an association between impaired clearance of macromolecular waste from the brain parenchyma and a variety of brain insults for which chronic neuroinflammation is a common pathological feature. Here we investigate whether chronic neuroinflammation is sufficient to impair macromolecular waste clearance from the rat brain. Methods: Using a rodent model of chronic neuroinflammation induced by a single high-dose injection of lipopolysaccharide, the clearance kinetics of two fluorophore-conjugated dextran tracers were assayed at 8-weeks post-induction. The expression and distribution of amyloid ß and aquaporin-4 proteins within selected brain regions were assayed at 36-weeks post-induction, following open-field, novel object recognition, and contextual fear conditioning assays. Results: Chronic neuroinflammation significantly impaired the clearance kinetics of both dextran tracers and resulted in significantly elevated levels of amyloid ß within the hippocampus. Aquaporin-4 density on astrocytic endfeet processes was also reduced within multiple brain regions. These pathologies were associated with significantly enhanced contextual fear memory. Conclusion: Our results suggest that chronic neuroinflammation is sufficient to compromise the clearance of macromolecular waste from the brain parenchyma and may be the root cause of impaired waste clearance associated with a variety of brain pathologies.

19.
Physiology (Bethesda) ; 37(6): 0, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35881783

RESUMEN

This review focuses on the physiology of glymphatic solute transport and waste clearance, using evidence from experimental animal models as well as from human studies. Specific topics addressed include the biophysical characteristics of fluid and solute transport in the central nervous system, glymphatic-lymphatic coupling, as well as the role of cerebrospinal fluid movement for brain waste clearance. We also discuss the current understanding of mechanisms underlying increased waste clearance during sleep.


Asunto(s)
Sistema Glinfático , Animales , Encéfalo/fisiología , Sistema Nervioso Central , Sistema Glinfático/fisiología , Humanos , Sueño
20.
Neurophotonics ; 9(3): 031914, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35581998

RESUMEN

Brain barriers are crucial sites for cerebral energy supply, waste removal, immune cell migration, and solute exchange, all of which maintain an appropriate environment for neuronal activity. At the capillary level, where the largest area of brain-vascular interface occurs, pericytes adjust cerebral blood flow (CBF) by regulating capillary diameter and maintain the blood-brain barrier (BBB) by suppressing endothelial cell (EC) transcytosis and inducing tight junction expression between ECs. Pericytes also limit the infiltration of circulating leukocytes into the brain where resident microglia confine brain injury and provide the first line of defence against invading pathogens. Brain "waste" is cleared across the BBB into the blood, phagocytosed by microglia and astrocytes, or removed by the flow of cerebrospinal fluid (CSF) through perivascular routes-a process driven by respiratory motion and the pulsation of the heart, arteriolar smooth muscle, and possibly pericytes. "Dirty" CSF exits the brain and is probably drained around olfactory nerve rootlets and via the dural meningeal lymphatic vessels and possibly the skull bone marrow. The brain is widely regarded as an immune-privileged organ because it is accessible to few antigen-primed leukocytes. Leukocytes enter the brain via the meninges, the BBB, and the blood-CSF barrier. Advances in genetic and imaging tools have revealed that neurological diseases significantly alter immune-brain barrier interactions in at least three ways: (1) the brain's immune-privileged status is compromised when pericytes are lost or lymphatic vessels are dysregulated; (2) immune cells release vasoactive molecules to regulate CBF, modulate arteriole stiffness, and can plug and eliminate capillaries which impairs CBF and possibly waste clearance; and (3) immune-vascular interactions can make the BBB leaky via multiple mechanisms, thus aggravating the influx of undesirable substances and cells. Here, we review developments in these three areas and briefly discuss potential therapeutic avenues for restoring brain barrier functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA