Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Viruses ; 14(12)2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36560620

RESUMEN

While the aetiology of asthma is unclear, the onset and/or exacerbation of asthma may be associated with respiratory infections. Virus-induced asthma is also known as virus-associated/triggered asthma, and the reported main causative agent is rhinovirus (RV). Understanding the relationship between viral infections and asthma may overcome the gaps in deferential immunity between viral infections and allergies. Moreover, understanding the complicated cytokine networks involved in RV infection may be necessary. Therefore, the complexity of RV-induced asthma is not only owing to the response of airway and immune cells against viral infection, but also to allergic immune responses caused by the wide variety of cytokines produced by these cells. To better understand RV-induced asthma, it is necessary to elucidate the nature RV infections and the corresponding host defence mechanisms. In this review, we attempt to organise the complexity of RV-induced asthma to make it easily understandable for readers.


Asunto(s)
Asma , Infecciones por Enterovirus , Hipersensibilidad , Infecciones por Picornaviridae , Humanos , Rhinovirus , Infecciones por Picornaviridae/complicaciones , Citocinas , Infecciones por Enterovirus/complicaciones
2.
J Family Med Prim Care ; 8(9): 2753-2759, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31681638

RESUMEN

Asthma exacerbation can be a major life threatening event. Viruses have been pinned as the cause behind the vast majority of these exacerbations. The purpose of this short review is to explore the mechanisms behind these exacerbations, focusing mostly on viral infections as triggers. We will also be discussing the phenotypes prone to asthma exacerbation, the pathophysiology of viral induced asthma and ventilation patterns of asthmatic lungs. This manuscript will assist primary care physicians in delineating the proper pathophysiology of the disease as well as the management.

3.
Am J Respir Crit Care Med ; 199(4): 423-432, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30562041

RESUMEN

Acute asthma remains an important medical emergency, the most frequent cause of acute admissions in children and a major source of morbidity for adults with asthma. In all ages with asthma, the presence of exacerbations is an important defining characteristic of asthma severity. In this review, we assess the epidemiology of acute asthma, the triggers of acute exacerbations, and the mechanisms that underlie these exacerbations. We also assess current treatments that prevent exacerbations, with an emphasis on the role of type 2 airway inflammation in the context of acute exacerbations and the novel treatments that effectively target this. Finally we review current management strategies of the exacerbations themselves.


Asunto(s)
Antiasmáticos/uso terapéutico , Asma/etiología , Enfermedad Aguda , Asma/tratamiento farmacológico , Asma/prevención & control , Humanos
4.
Front Immunol ; 7: 325, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27617014

RESUMEN

Paramyxoviral infection in childhood has been linked to a significant increased rate of asthma development. In mice, paramyxoviral infection with the mouse parainfluenza virus type I, Sendai virus (Sev), causes a limited bronchiolitis followed by persistent asthma traits. We have previously shown that the absence of cysteine protease dipeptidyl peptidase I (DPPI) dampened the acute lung inflammatory response and the subsequent asthma phenotype induced by Sev. Adoptive transfer of wild-type neutrophils into DPPI-deficient mice restored leukocyte influx, the acute cytokine response, and the subsequent mucous cell metaplasia that accompanied Sev-induced asthma phenotype. However, the exact mechanism by which DPPI-sufficient neutrophils promote asthma development following Sev infection is still unknown. We hypothesize that neutrophils recruited to the alveolar space following Sev infection elaborate neutrophil extracellular traps (NETs) that propagate the inflammatory cascade, culminating in the eventual asthma phenotype. Indeed, we found that Sev infection was associated with NET formation in the lung and release of cell-free DNA complexed to myeloperoxidase in the alveolar space and plasma that peaked on day 2 post infection. Absence of DPPI significantly attenuated Sev-induced NET formation in vivo and in vitro. Furthermore, concomitant administration of DNase 1, which dismantled NETs, or inhibition of peptidylarginine deiminase 4 (PAD4), an essential mediator of NET formation, suppressed the early inflammatory responses to Sev infection. Lastly, NETs primed bone marrow-derived cells to release cytokines that can amplify the inflammatory cascade.

5.
6.
Front Microbiol ; 4: 276, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24062733

RESUMEN

It has been confirmed that respiratory virus infections can induce abberant cytokine production in the host. These cytokines may be associated with both elimination of the virus and complications in the host, such as virus-induced asthma. Representative host defense mechanisms against pathogens, including bacteria and viruses, are mediated by the innate immune system. Cells of the innate immune system express essential molecules, namely pattern recognition receptors (PRRs), such as Toll-like receptors, nucleotide-binding oligomerization domain-like receptors, and retinoic acid-inducible gene-I-like receptors. These PRRs can recognize components of pathogens such as bacterial lipopolysaccharide, viral antigens, and their genomes (DNA and RNA). Furthermore, PRRs activate various signaling pathways resulting in cytokine production against pathogen infection. However, the exact mechanisms remain unknown. In this review, we mainly focus on the representative mechanisms of cytokine production through PRRs and signaling pathways due to virus infections, including respiratory virus infections. In addition, we describe the relationships between respiratory infections and virus-induced asthma.

7.
Front Microbiol ; 4: 278, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-24062735

RESUMEN

Acute respiratory illness (ARI) due to various viruses is not only the most common cause of upper respiratory infection in humans but is also a major cause of morbidity and mortality, leading to diseases such as bronchiolitis and pneumonia. Previous studies have shown that respiratory syncytial virus (RSV), human rhinovirus (HRV), human metapneumovirus (HMPV), human parainfluenza virus (HPIV), and human enterovirus infections may be associated with virus-induced asthma. For example, it has been suggested that HRV infection is detected in the acute exacerbation of asthma and infection is prolonged. Thus it is believed that the main etiological cause of asthma is ARI viruses. Furthermore, the number of asthma patients in most industrial countries has greatly increased, resulting in a morbidity rate of around 10-15% of the population. However, the relationships between viral infections, host immune response, and host factors in the pathophysiology of asthma remain unclear. To gain a better understanding of the epidemiology of virus-induced asthma, it is important to assess both the characteristics of the viruses and the host defense mechanisms. Molecular epidemiology enables us to understand the pathogenesis of microorganisms by identifying specific pathways, molecules, and genes that influence the risk of developing a disease. However, the epidemiology of various respiratory viruses associated with virus-induced asthma is not fully understood. Therefore, in this article, we review molecular epidemiological studies of RSV, HRV, HPIV, and HMPV infection associated with virus-induced asthma.

8.
Front Microbiol ; 4: 252, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23986756

RESUMEN

Asthma inception is associated with respiratory viral infection, especially infection with respiratory syncytial virus (RSV) and/or human rhinovirus (HRV), in the vast majority of cases. However, the reason why RSV and HRV induce the majority of bronchiolitis cases during early childhood and why only a small percentage of children with RSV- and HRV-induced bronchiolitis later develop asthma remains unclear. A genetic association study has revealed the important interaction between viral illness and genetic variants in patients with asthma. Severe RSV- and HRV-induced bronchiolitis may be associated with a deficiency in the innate immune response to RSV and HRV. RSV and HRV infections in infants with deficient innate immune response and the dysfunction of regulatory T cells are considered to be a risk factor for the development of asthma. Sensitization to aeroallergens, beginning in the first year of life, consistently predisposes children to HRV-induced wheezing illnesses, but the converse is not true. Some evidence of virus specificity exists, in that allergic sensitization specifically increased the risk of wheezing in individuals infected with HRV, but not RSV. Administration of Palivizumab, a humanized monoclonal antibody that targets the A antigenic site of the Fusion-protein of RSV, decreases the risk of hospitalization in high-risk infants and the risk of recurrent of wheezing. However, palivizumab did not have any effect on subsequent recurrent wheezing in children with a family history of atopy. These findings suggest that infection with RSV and infection with HRV might predispose individuals to recurrent wheezing through an atopy-independent and an atopy-dependent mechanism, respectively. Respiratory virus-induced wheezing illnesses may encompass multiple sub-phenotypes that relate to asthma in different ways.

9.
Int Arch Allergy Immunol ; 99(2-4): 422-424, 1992.
Artículo en Inglés | MEDLINE | ID: mdl-34167241

RESUMEN

Viral respiratory infections provoke wheezing in many patients with asthma. It is our hypothesis that viral respiratory infections enhance the airway inflammatory response to antigen, thus provoking increased wheezing. To evaluate this possibility, 8 patients with allergic rhinitis were experimentally inoculated with rhinovirus (RV) 16. The airway response to antigen was evaluated by segmental bronchoprovocation with antigen. During the RV infection, and at recovery 4 weeks later, there was enhanced histamine release and recruitment of cells, particularly eosinophils, to the airway with antigen challenge. These findings suggest that RV infection can enhance the airway inflammatory response to antigen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA