Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
PNAS Nexus ; 3(9): pgae338, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39246667

RESUMEN

Isolation of symptomatic infectious persons can reduce influenza transmission. However, virus shedding that occurs without symptoms will be unaffected by such measures. Identifying effective isolation strategies for influenza requires understanding the interplay between individual virus shedding and symptom presentation. From 2017 to 2020, we conducted a case-ascertained household transmission study using influenza real-time RT-qPCR testing of nasal swabs and daily symptom diary reporting for up to 7 days after enrolment (≤14 days after index onset). We assumed real-time RT-qPCR cycle threshold (Ct) values were indicators of quantitative virus shedding and used symptom diaries to create a score that tracked influenza-like illness (ILI) symptoms (fever, cough, or sore throat). We fit phenomenological nonlinear mixed-effects models stratified by age and vaccination status and estimated two quantities influencing isolation effectiveness: shedding before symptom onset and shedding that might occur once isolation ends. We considered different isolation end points (including 24 h after fever resolution or 5 days after symptom onset) and assumptions about the infectiousness of Ct shedding trajectories. Of the 116 household contacts with ≥2 positive tests for longitudinal analyses, 105 (91%) experienced ≥1 ILI symptom. On average, children <5 years experienced greater peak shedding, longer durations of shedding, and elevated ILI symptom scores compared with other age groups. Most individuals (63/105) shed <10% of their total shed virus before symptom onset, and shedding after isolation varied substantially across individuals, isolation end points, and infectiousness assumptions. Our results can inform strategies to reduce transmission from symptomatic individuals infected with influenza.

2.
Vet Res ; 55(1): 74, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38863015

RESUMEN

Bovine coronavirus (BCoV) is a pneumoenteric virus that can infect the digestive and respiratory tracts of cattle, resulting in economic losses. Despite its significance, information regarding BCoV pathogenesis is limited. Hence, we investigated clinical signs, patterns of viral shedding, changes in antibody abundance, and cytokine/chemokine production in calves inoculated with BCoV via intranasal and oral. Six clinically healthy Korean native calves (< 30 days old), initially negative for BCoV, were divided into intranasal and oral groups and monitored for 15 days post-infection (dpi). BCoV-infected calves exhibited clinical signs such as nasal discharge and diarrhea, starting at 3 dpi and recovering by 12 dpi, with nasal discharge being the most common symptoms. Viral RNA was detected in nasal and fecal samples from all infected calves. Nasal shedding occurred before fecal shedding regardless of the inoculation route; however, fecal shedding persisted longer. Although the number of partitions was very few, viral RNA was identified in the blood of two calves in the oral group at 7 dpi and 9 dpi using digital RT-PCR analysis. The effectiveness of maternal antibodies in preventing viral replication and shedding appeared limited. Our results showed interleukin (IL)-8 as the most common and highly induced chemokine. During BCoV infection, the levels of IL-8, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1ß were significantly affected, suggesting that these emerge as potential and reliable biomarkers for predicting BCoV infection. This study underscores the importance of BCoV as a major pathogen causing diarrhea and respiratory disease.


Asunto(s)
Enfermedades de los Bovinos , Infecciones por Coronavirus , Coronavirus Bovino , Esparcimiento de Virus , Animales , Bovinos , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/inmunología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/inmunología , República de Corea , Heces/virología , ARN Viral/análisis , Anticuerpos Antivirales/sangre , Citocinas/metabolismo , Citocinas/genética , Masculino
3.
Vet World ; 17(4): 744-755, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38798289

RESUMEN

Background and Aim: Live-attenuated vaccines are the most successful type of vaccine and could be useful in controlling fowl adenovirus (FAdV) 8b infection. This study aimed to attenuate, molecularly characterize, and determine the immunogenicity, efficacy, and challenge virus shedding in broiler chickens. Materials and Methods: The FAdV 8b isolate (UPM08136) was passaged onto chicken embryo liver (CEL) cells until attenuation. We sequenced and analyzed the hexon and fiber genes of the passage isolates. The attenuated bioreactor-passage isolate was inoculated into 1-day-old broiler chickens with (attenuated and inactivated) and without booster groups and challenged. Body weight (BW), liver weight (LW), liver: body weight ratio (LBR), FAdV antibody titers, T-lymphocyte subpopulation in the liver, spleen, and thymus, and challenge virus load and shedding were measured. Results: Typical cytopathic effects with novel genetic changes on CEL cells were observed. The uninoculated control-challenged (UCC) group had significantly lower BW and higher LW and LBR than the inoculated groups. A significantly higher FAdV antibody titer was observed in the challenged non-booster and attenuated booster groups than in the UCC group. T cells in the spleen and thymus of the liver of inoculated chickens were higher than uninoculated control group levels at all-time points and at different times. A significantly higher FAdV challenge virus load was observed in the liver and shedding in the cloaca of UCC chickens than in non-booster chickens. Conclusion: The FAdV 8b isolate was successfully attenuated, safe, and immunogenic. It reduces virus shedding and is effective and recommended as a vaccine against FAdV infection in broiler chickens.

4.
Acta Stomatol Croat ; 58(1): 76-84, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38562219

RESUMEN

Background: Epstein-Barr virus (EBV) is a widely disseminated herpesvirus for which antibodies have been demonstrated in over 90% of adults worldwide. After subclinical primary EBV infections, as well as after infectious mononucleosis, the virus can be shed in saliva for a prolonged period of time. Aim: Diseases and disorders that can induce EBV salivary shedding include mental disorders and sex, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, malaria and HIV infection. Since the occurrence of EBV in saliva during acute infectious diseases has not yet been systematically researched, we aimed to investigate the possible relationship between acute infectious diseases and salivary shedding of EBV. Material and methods: This pilot cross-sectional study included consenting adults hospitalized for acute infectious conditions and their peers free of acute infectious diseases. A total of 40 patients with acute infectious diseases were enrolled, along with 41 adults free of acute infections. Peripheral venous blood samples for serodiagnosis and saliva samples for EBV PCR testing were collected from both groups. We fitted logit and general linear models to proportions and to ln (viral copy counts) to generate adjusted proportions and geometric mean values in the two groups of subjects. We used SAS for Windows 9.4. Results: The most common acute infectious disease was COVID-19 pneumonia, followed by hemorrhagic fever with renal syndrome. Crude proportions of people with positive serological test results and those with saliva viral shedding were similar in the two groups. Conclusions: The presented preliminary data do not indicate acute infectious conditions as a marked "contributor" in increasing salivary EBV shedding.

5.
Vet Anim Sci ; 24: 100348, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38623086

RESUMEN

Newcastle disease virus (NDV) strains, while falling under a single serotype, are classified into distinct genotypes. Genotype VII virulent NDVs pose a significant threat to poultry due to their association with high mortality rates and economic losses. This study aimed to evaluate the efficacy of three commercial live vaccines based on genotype II against genotype VII virulent NDV (vNDV) in specific pathogen-free (SPF) chickens. Forty one-day-old chickens were randomly divided into four groups (n = 10) and inoculated with one dose of each ND pneumotropic vaccine-B1, Clone.12IR, and La Sota-or received phosphate-buffered saline (PBS) as a control at eight days of age via eye drop. At 28 days of age (20th post-vaccination days), chickens were intramuscularly challenged with genotype VII virulent NDV (≥ 105 LD50). Serum samples were collected at 28 days of age (challenge day), 7 and 14 post-challenge days to measure NDV antibodies via the hemagglutination inhibition (HI) test. Cloacal and oropharyngeal swabs were taken on the 3rd, 5th, 7th, and 10th post-challenge days to evaluate virus shedding. Vaccinated groups exhibited significantly higher antibody titers and greater protection levels compared to the control group (P≤ 0.001). While HI antibody titer was not different at 28 and 35 days of age between vaccinated chickens, the Clone.12IR groups showed higher HI antibody titer compared to B1 at day 42 of age (9.43 vs. 7.42; P≤ 0.002). La Sota and Clone.12IR vaccines demonstrated superior protection against mortality compared to the B1 vaccine (90 %, 80% vs. 60 %, respectively) with 6.0 and 2.67 odds ratio of survivability. All three mismatched vaccines effectively curbed the shedding of virulent genotype VII NDV, with 0 % to 11 % positive cloacal samples up to the 3rd post-challenge day. These findings demonstrate that in the experimental setting, the administration of mismatched ND vaccines, particularly La Sota and Clone.12IR, confer protection against genotype VII virulent NDV and control viral shedding, which can help to develop effective vaccination strategies to mitigate the impact of vNDV outbreaks in the poultry farms.

6.
Eur J Med Res ; 29(1): 243, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643153

RESUMEN

BACKGROUND: Despite vaccines' effectiveness in reducing COVID-19 infection rates and disease severity, their impact on critical patients presenting with acute respiratory failure is elusive. The aim of this study was to further investigate the influence of vaccination on mortality rates among severely ill COVID-19 patients experiencing acute respiratory failure. METHODS: This retrospective cohort study was carried out at a tertiary medical center in Taiwan. From April to September 2022, patients who tested positive for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through reverse transcription polymerase chain reaction (RT-PCR) and subsequently experienced acute respiratory failure were included in the study. Baseline characteristics, including vaccination history, along with information regarding critical illness and clinical outcomes, were gathered and compared between patients who received the vaccine and those who did not. RESULTS: A total of 215 patients with COVID-19 exhibiting acute respiratory failure, as confirmed via RT‒PCR, were included in the analysis. Of this cohort, sixty-six (30.7%) patients died within 28 days. Neither administration of the vaccine nor achievement of primary series vaccination status had a significantly different effect on 28 day mortality, number of viral shedding events, acute respiratory distress syndrome (ARDS) incidence or other clinical outcomes. Patients who received the booster vaccine and completed the primary series showed a tendency of increased 28 days of ventilator-free status, though this difference was not statistically significant (p = 0.815). CONCLUSIONS: Vaccination status did not significantly influence mortality rates, the occurrence of ARDS, or the viral shedding duration in COVID-19 patients with acute respiratory failure.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Vacunas , Humanos , COVID-19/prevención & control , COVID-19/complicaciones , Síndrome de Dificultad Respiratoria/etiología , Insuficiencia Respiratoria/etiología , Estudios Retrospectivos , SARS-CoV-2 , Resultado del Tratamiento , Vacunación
7.
Open Vet J ; 14(2): 617-629, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38549580

RESUMEN

Background: Fowl adenovirus (FAdV) 8b causes huge economic losses in the poultry industry worldwide. Attenuated FAdV 8b could be useful in preventing FAdV infections globally and scale-up obstacles could be solved by bioreactor technology. Aim: This study was carried out to attenuate the FAdV 8b isolate, propagate it in a bioreactor, molecularly characterize the passage isolates, and determine the immunogenicity, efficacy, and shedding of the virus of chickens. Methods: FAdV serotype 8b (UPM11142) isolate was passaged on chicken embryo liver (CEL) cells until attenuation and propagated in a bioreactor (UPM11142P20B1). Hexon and fiber genes of the isolates were sequenced and analyzed. UPM11142P20B1 was administered to 116-day-old broiler chickens divided into four groups, A (control), B (non-booster), C (booster with UPM11142P20B1), and D (booster with inactivated UPM11142P5B1). Eight chickens from each group were challenged. Body weight (BW) and liver weight (LW), liver: BW ratio (LBR), FAdV antibody titer, T lymphocyte sub-populations in the liver, spleen and thymus; and challenge virus load in the liver and shedding in cloaca were measured at weekly intervals. Results: The isolate caused typical cytopathic effects on CEL cells typical of FAdV. Novel molecular changes in the genes occurred which could be markers for FAdV 8b attenuation. BW, LW, and LBR were similar among groups throughout the trial but the uninoculated control-challenged group (UCC) had significantly higher LBR than the inoculated and challenged groups at 35 dpi. Non-booster group had higher FAdV antibodies at all time points than the uninoculated control group (UCG); and the challenged booster groups had higher titer at 35 dpi than UCC. T lymphocytes increased at different time-points in the liver of inoculated chickens, and in the spleen and thymus as well, and was higher in the organs of inoculated challenged groups than the UCC. There was a significantly higher challenge virus load in the liver and cloaca of UCC chickens than in the non-booster chickens. Conclusion: UPM11142P20B1 was safe, efficacious, significantly reduced shedding, and is recommended as a candidate vaccine in the prevention and control of FAdV 8b infections in broiler chickens.


Asunto(s)
Infecciones por Adenoviridae , Aviadenovirus , Enfermedades de las Aves de Corral , Embrión de Pollo , Animales , Pollos , Serogrupo , Esparcimiento de Virus , Infecciones por Adenoviridae/prevención & control , Infecciones por Adenoviridae/veterinaria , Aviadenovirus/genética
8.
Viruses ; 16(3)2024 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-38543760

RESUMEN

Feline leukemia virus (FeLV) remains a serious concern in some countries despite advances in diagnostics and vaccines. FeLV-infected cats often have reduced lifespans due to FeLV-associated diseases. The infection is transmitted through social interactions. While Northern European countries have reported a decrease in FeLV among pet cats, Switzerland's rates remain stagnant at 2.7% (2016/17: 95% CI 1.4-5.2%). Research on FeLV in Swiss stray cats has been lacking, even though these animals could serve as a virus reservoir. Sampling stray cats that do not receive regular veterinary care can be challenging. Collaboration with the Swiss Network for Animal Protection (NetAP) allowed for the prospective collection of saliva samples from 1711 stray cats during a trap-neuter-return program from 2019 to 2023. These samples were tested for FeLV RNA using RT-qPCR as a measure for antigenemia. Viral RNA was detected in 4.0% (95% CI 3.1-5.0%) of the samples, with 7.7% (95% CI 4.9-11.3%) in sick cats and 3.3% (95% CI 2.4-4.4%) in healthy ones. We identified three geographically independent hotspots with alarmingly high FeLV infection rates in stray cats (up to 70%). Overall, including the previous data of privately owned cats, FeLV-positive cats were scattered throughout Switzerland in 24/26 cantons. Our findings underscore welfare concerns for FeLV infections among stray cats lacking veterinary attention, highlighting the potential risk of infection to other free-roaming cats, including those privately owned. This emphasizes the critical significance of vaccinating all cats with outdoor access against FeLV and developing programs to protect cats from FeLV infections.


Asunto(s)
Enfermedades de los Gatos , Leucemia Felina , Animales , Gatos , Virus de la Leucemia Felina/genética , Suiza/epidemiología , Estudios Prospectivos , Leucemia Felina/diagnóstico , Leucemia Felina/epidemiología , ARN Viral , Enfermedades de los Gatos/diagnóstico , Enfermedades de los Gatos/epidemiología
9.
Water Res ; 252: 121223, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38310802

RESUMEN

The microbiological analysis of wastewater samples is increasingly used for the surveillance of SARS-CoV-2 globally. We described the setup process of the national SARS-CoV-2 wastewater-based surveillance system in Denmark, presented its main results during the first year of activities, from July 2021 to June 2022, and discussed their operational significance. The Danish SARS-CoV-2 wastewater-based surveillance system was designed to cover 85 % of the population in Denmark and it entailed taking three weekly samples from 230 sites. Samples were RT-qPCR tested for SARS-CoV-2 RNA, targeting the genetic markers N1, N2 and RdRp, and for two faecal indicators, Pepper Mild Mottle Virus and crAssphage. We calculated the weekly SARS-CoV-2 RNA concentration in the wastewater from each sampling site and monitored it in view of the results from individual testing, at the national and regional levels. We attempted to use wastewater results to identify potential local outbreaks, and we sequenced positive wastewater samples using Nanopore sequencing to monitor the circulation of viral variants in Denmark. The system reached its full implementation by October 2021 and covered up to 86.4 % of the Danish population. The system allowed for monitoring of the national and regional trends of SARS-CoV-2 infections in Denmark. However, the system contribution to the identification of potential local outbreaks was limited by the extensive information available from clinical testing. The sequencing of wastewater samples identified relevant variants of concern, in line with results from sequencing of human samples. Amidst the COVID-19 pandemic, Denmark implemented a nationwide SARS-CoV-2 wastewater-based surveillance system that integrated routine surveillance from individual testing. Today, while testing for COVID-19 at the community level has been discontinued, the system is on the frontline to monitor the occurrence and spread of SARS-CoV-2 in Denmark.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Prueba de COVID-19 , Pandemias , ARN Viral , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , Dinamarca/epidemiología
10.
Emerg Microbes Infect ; 13(1): 2302103, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38189080

RESUMEN

Crimean-Congo haemorrhagic fever orthonairovirus (CCHFV) is a tick-borne, risk group 4 pathogen that often causes a severe haemorrhagic disease in humans (CCHF) with high case fatality rates. The virus is believed to be maintained in a tick-vertebrate-tick ecological cycle involving numerous wild and domestic animal species; however the biology of CCHFV infection in these animals remains poorly understood. Here, we experimentally infect domestic sheep with CCHFV Kosovo Hoti, a clinical isolate representing high pathogenicity to humans and increasingly utilized in current research. In the absence of prominent clinical signs, the infection leads to an acute viremia and coinciding viral shedding, fever and markers for potential impairment in liver and kidney functions. A number of host responses distinguish the subclinical infection in sheep versus fatal infection in humans. These include an early reduction of neutrophil recruitment and its chemoattractant, IL-8, in the blood stream of infected sheep, whereas neutrophil infiltration and elevated IL-8 are features of fatal CCHFV infections reported in immunodeficient mice and humans. Several inflammatory cytokines that correlate with poor disease outcomes in humans and have potential to cause vascular dysfunction, a primary hallmark of severe CCHF, are down-regulated or restricted from increasing in sheep. Of particular interest, the detection of CCHFV RNA (including full-length genome) in a variety of sheep tissues long after the acute phase of infection indicates a widespread viral dissemination in the host and suggests a potentially long-term persisting impact of CCHFV infection. These findings reveal previously unrecognized aspects of CCHFV biology in animals.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Garrapatas , Humanos , Animales , Ratones , Ovinos , Fiebre Hemorrágica de Crimea/diagnóstico , Oveja Doméstica/genética , ARN Viral/genética , Kosovo , Interleucina-8
11.
J Infect Dis ; 229(6): 1722-1727, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38114088

RESUMEN

Immunocompromised patients with coronavirus disease 2019 were prospectively enrolled from March to November 2022 to understand the association between antibody responses and severe acute respiratory syndrome coronavirus 2 shedding. A total of 62 patients were analyzed, and the results indicated a faster decline in genomic and subgenomic viral RNA in patients with higher neutralizing and S1-specific immunoglobulin G (IgG) antibodies (both P < .001). Notably, high neutralizing antibody levels were associated with a significantly faster decrease in viable virus cultures (P = .04). Our observations suggest the role of neutralizing antibodies in prolonged virus shedding in immunocompromised patients, highlighting the potential benefits of enhancing their humoral immune response through vaccination or monoclonal antibody treatments.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Huésped Inmunocomprometido , Inmunoglobulina G , SARS-CoV-2 , Esparcimiento de Virus , Humanos , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Masculino , Estudios Prospectivos , Femenino , Persona de Mediana Edad , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Anciano , ARN Viral , Adulto , Formación de Anticuerpos/inmunología
12.
Proc Natl Acad Sci U S A ; 120(52): e2314808120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38134196

RESUMEN

Infectious virus shedding from individuals infected with severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is used to estimate human-to-human transmission risk. Control of SARS-CoV-2 transmission requires identifying the immune correlates that protect infectious virus shedding. Mucosal immunity prevents infection by SARS-CoV-2, which replicates in the respiratory epithelium and spreads rapidly to other hosts. However, whether mucosal immunity prevents the shedding of the infectious virus in SARS-CoV-2-infected individuals is unknown. We examined the relationship between viral RNA shedding dynamics, duration of infectious virus shedding, and mucosal antibody responses during SARS-CoV-2 infection. Anti-spike secretory IgA antibodies (S-IgA) reduced viral RNA load and infectivity more than anti-spike IgG/IgA antibodies in infected nasopharyngeal samples. Compared with the IgG/IgA response, the anti-spike S-IgA post-infection responses affected the viral RNA shedding dynamics and predicted the duration of infectious virus shedding regardless of the immune history. These findings highlight the importance of anti-spike S-IgA responses in individuals infected with SARS-CoV-2 for preventing infectious virus shedding and SARS-CoV-2 transmission. Developing medical countermeasures to shorten S-IgA response time may help control human-to-human transmission of SARS-CoV-2 infection and prevent future respiratory virus pandemics.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Esparcimiento de Virus , Formación de Anticuerpos , Tiempo de Reacción , Anticuerpos Antivirales , ARN Viral , Inmunoglobulina G , Inmunoglobulina A , Inmunoglobulina A Secretora
13.
Ther Adv Respir Dis ; 17: 17534666231209150, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37949827

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a global outbreak disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Cytomegalovirus (CMV) infection can occur in critical COVID-19 patients and is associated with adverse clinical outcomes. OBJECTIVE: The aim of this study was to explore the clinical characteristics and outcome of CMV infection in critical COVID-19 patients. DESIGN: This was a retrospective cohort study. METHODS: From May to September 2021, SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR)-confirmed COVID-19 patients with intensive care unit (ICU) admission were enrolled. CMV infection was confirmed by PCR. Baseline characteristics, critical illness data and clinical outcomes were recorded and analyzed. RESULTS: Seventy-two RT-PCR-confirmed COVID-19 patients with ICU admission were included during the study period and 48 (66.7%) patients required mechanical ventilation (MV). Overall, in-hospital mortality was 19.4%. Twenty-one (29.2%) patients developed CMV infection. Patients with CMV infection had a higher likelihood of diabetes, higher lactate dehydrogenase and lactate levels, and higher proportions of MV, anticoagulant, and steroid use. Patients with CMV infection were associated with longer duration of SARS-CoV-2 shedding, longer ICU and hospital stay, and fewer ventilator-free days. The independent risk factor for development of CMV infection was a higher accumulative steroid dose. CONCLUSION: CMV infection adversely impacted the outcomes of critical COVID-19 patients, resulting in longer ICU stays, longer mechanical ventilation uses and prolonged shedding of SARS-CoV-2.


Asunto(s)
COVID-19 , Infecciones por Citomegalovirus , Humanos , COVID-19/diagnóstico , COVID-19/terapia , SARS-CoV-2 , Estudios Retrospectivos , Unidades de Cuidados Intensivos , Infecciones por Citomegalovirus/diagnóstico , Esteroides
14.
J Med Virol ; 95(11): e29228, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38009999

RESUMEN

There are limited data supporting current Centers for Disease Control and Prevention guidelines for the isolation period in moderate to severely immunocompromised patients with coronavirus disease 2019 (COVID-19). Adult COVID-19 patients who underwent solid organ transplantation (SOT) or received active chemotherapy against hematologic malignancy were enrolled and weekly respiratory samples were collected. Samples with positive genomic real-time polymerase chain reaction results underwent virus culture and rapid antigen testing (RAT). A total of 65 patients (40 with hematologic malignancy and 25 SOT) were enrolled. The median duration of viable virus shedding was 4 weeks (interquartile range: 3-7). Multivariable analysis revealed that B-cell depletion (hazard ratio [HR]: 4.76) was associated with prolonged viral shedding, and COVID-19 vaccination (≥3 doses) was negatively associated with prolonged viral shedding (HR: 0.22). The sensitivity, specificity, positive predictive value, and negative predictive value of RAT for viable virus shedding were 79%, 76%, 74%, and 81%, respectively. The negative predictive value of RAT was only 48% (95% confidence interval [CI]: 33-65) in the samples from those with symptom onset ≤20 days, but it was as high as 92% (95% CI: 85-96) in the samples from those with symptom onset >20 days. About half of immunocompromised COVID-19 patients shed viable virus for ≥4 weeks from the diagnosis, and virus shedding was prolonged especially in unvaccinated patients with B-cell-depleting therapy treatment. RAT beyond 20 days in immunocompromised patients had a relatively high negative predictive value for viable virus shedding.


Asunto(s)
COVID-19 , Neoplasias Hematológicas , Adulto , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Estudios Prospectivos , Vacunas contra la COVID-19 , Neoplasias Hematológicas/complicaciones , Esparcimiento de Virus , ARN Viral/análisis
15.
Emerg Infect Dis ; 29(11): 2315-2324, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37877582

RESUMEN

Enterovirus D68 (EV-D68) causes cyclical outbreaks of respiratory disease and acute flaccid myelitis. EV-D68 is primarily transmitted through the respiratory route, but the duration of shedding in the respiratory tract is unknown. We prospectively enrolled 9 hospitalized children with EV-D68 respiratory infection and 16 household contacts to determine EV-D68 RNA shedding dynamics in the upper respiratory tract through serial midturbinate specimen collections and daily symptom diaries. Five (31.3%) household contacts, including 3 adults, were EV-D68-positive. The median duration of EV-D68 RNA shedding in the upper respiratory tract was 12 (range 7-15) days from symptom onset. The most common symptoms were nasal congestion (100%), cough (92.9%), difficulty breathing (78.6%), and wheezing (57.1%). The median illness duration was 20 (range 11-24) days. Understanding the duration of RNA shedding can inform the expected rate and timing of EV-D68 detection in associated acute flaccid myelitis cases and help guide public health measures.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Infecciones del Sistema Respiratorio , Niño , Adulto , Humanos , Enterovirus Humano D/genética , Colorado/epidemiología , Sistema Respiratorio , Infecciones por Enterovirus/epidemiología , Brotes de Enfermedades , ARN , Infecciones del Sistema Respiratorio/epidemiología
16.
Viruses ; 15(9)2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37766246

RESUMEN

Newcastle disease (ND), caused by the virulent Newcastle disease virus (NDV), is an acute, highly contagious, and economically significant avian disease worldwide. Vaccination is the most effective measure for controlling ND. In recent years, vaccines matched with the prevalent strains of genotype VII have been developed and are now commercially available. These vaccines can provide full protection for chickens against clinical disease and mortality after challenges with genotype VII viruses and significantly decrease virus shedding compared to conventional vaccines belonging to genotypes I and II. Vaccinated hens can transfer antibodies to their offspring through the egg yolk. Maternally derived antibodies can provide passive protection against diseases but can also interfere with vaccination efficacy early in life. This study was conducted on chicks hatched from hens vaccinated with a commercial genotype VII NDV-matched vaccine to investigate the correlation between hemagglutination inhibition (HI) antibody levels in chicks and hens and the decaying pattern of maternally derived HI antibodies, and to evaluate the protective efficacy of different levels of maternally derived HI antibodies against challenge with a virulent NDV strain of genotype VII based on survivability and virus shedding. The HI antibody titers in chicks at hatching were about 1.3 log2 lower than those in hens, indicating an antibody transfer rate of approximately 41.52%. The estimated half-life of these antibodies was about 3.2 days. The protective efficacy of maternally derived HI antibodies was positively correlated with the titer. These antibodies could effectively protect chicks against mortality when the titer was 7 log2 or higher, but they were unable to prevent virus shedding or infection even at a high titer of 11 log2. The obtained results will greatly assist producers in determining the immune status of chicks and formulating appropriate vaccination schedules against ND.


Asunto(s)
Pollos , Enfermedad de Newcastle , Animales , Femenino , Virus de la Enfermedad de Newcastle/genética , Hemaglutinación , Anticuerpos Antivirales , Genotipo , Enfermedad de Newcastle/prevención & control
17.
Front Public Health ; 11: 1132643, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37559731

RESUMEN

Background: The worldwide epidemic of Coronavirus Disease 2019 (COVID-19) has evolved into multiple variants. The Delta variant is known for its ability to spread and replicate, while data are limited about the virus shedding time in patients infected by the Delta variant. Methods: 56 Delta variant and 56 original SARS-CoV-2 infected patients from Hunan, China, matched according to age and gender divided into two groups and compared the baseline characteristics and laboratory findings with appropriate statistical methods. Results: Patients infected with the Delta variant had significantly fewer symptoms of fever (p < 0.001), fatigue (p = 0.004), anorexia (p < 0.001), shortness of breath (p = 0.004), diarrhea (p = 0.006), positive pneumonia rate of chest CT (p = 0.019) and chest CT ground glass opacities (p = 0.004) than those of patients with the original SARS-CoV-2. Patients of the Delta variant group had a significantly longer virus shedding time [41.5 (31.5, 46.75) vs. 18.5 (13, 25.75), p < 0.001] compared with the original SARS-CoV-2 group. The correlation analyses between the virus shedding time and clinical or laboratory parameters showed that the virus shedding time was positively related to the viral strain, serum creatinine and creatine kinase isoenzyme, while negatively correlated with lymphocyte count, total bilirubin and low-density lipoprotein. Finally, the viral strain and lymphocyte count were thought of as the independent risk factors of the virus shedding time demonstrated by multiple linear regression. Conclusion: COVID-19 patients infected with the Delta variant exhibited fewer gastrointestinal symptoms and prolonged virus shedding time than those infected with the original SARS-CoV-2. Delta variant and fewer lymphocyte were correlated with prolonged virus shedding time.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Esparcimiento de Virus , Factores de Riesgo
18.
Influenza Other Respir Viruses ; 17(6): e13149, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37380175

RESUMEN

BACKGROUND: We present post-vaccination nasal shedding findings from the phase IV, community-based, triple-blinded RCT conducted to assess efficacy of trivalent LAIV and inactivated influenza vaccines in rural north India. METHODS: Children aged 2-10 years received LAIV or intranasal placebo across 2015 and 2016, as per initial allocation. On days 2 and 4 post-vaccination, trained study nurses collected nasal swabs from randomly selected subset of trial participants based on operational feasibility, accounting for 10.0% and 11.4% of enrolled participants in 2015 and 2016, respectively. Swabs were collected in viral transport medium and transported under cold chain to laboratory for testing by reverse transcriptase real-time polymerase chain reaction. RESULTS: In year 1, on day 2 post-vaccination, 71.2% (74/104) of LAIV recipients shed at least one of vaccine virus strains compared to 42.3% (44/104) on day 4. During year 1, on day 2 post-vaccination, LAIV-A(H1N1)pdm09 was detected in nasal swabs of 12% LAIV recipients, LAIV-A(H3N2) in 41%, and LAIV-B in 59%. In year 2, virus shedding was substantially lower; 29.6% (32/108) of LAIV recipients shed one of the vaccine virus strains on day 2 compared to 21.3% on day 4 (23/108). CONCLUSION: At day 2 post-vaccination in year 1, two-thirds of LAIV recipients were shedding vaccine viruses. Shedding of vaccine viruses varied between strains and was lower in year 2. More research is needed to determine the reason for lower virus shedding and vaccine efficacy for LAIV-A(H1N1)pdm09.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Niño , Humanos , Subtipo H3N2 del Virus de la Influenza A , Vacunación , Inmunización , Vacunas Atenuadas , India
19.
Emerg Infect Dis ; 29(7): 1349-1356, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37347494

RESUMEN

The effect of norovirus dose on outcomes such as virus shedding and symptoms after initial infection is not well understood. We performed a secondary analysis of a human challenge study by using Bayesian mixed-effects models. As the dose increased from 4.8 to 4,800 reverse transcription PCR units, the total amount of shed virus in feces increased from 4.5 × 1011 to 3.4 × 1012 genomic equivalent copies; in vomit, virus increased from 6.4 × 105 to 3.0 × 107 genomic equivalent copies. Onset time of viral shedding in feces decreased from 1.4 to 0.8 days, and time of peak viral shedding decreased from 2.3 to 1.5 days. Time to symptom onset decreased from 1.5 to 0.8 days. One type of symptom score increased. An increase in norovirus dose was associated with more rapid shedding and symptom onset and possibly increased severity. However, the effect on virus load and shedding was inconclusive.


Asunto(s)
Infecciones por Caliciviridae , Gastroenteritis , Norovirus , Humanos , Norovirus/genética , Teorema de Bayes , Cinética , Factores de Tiempo , Heces , Esparcimiento de Virus
20.
Animals (Basel) ; 13(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37106904

RESUMEN

Red sea bream iridovirus (RSIV) causes significant economic losses in the aquaculture industry. We analyzed the pathogenicity of RSIV in flathead grey mullets (Mugil cephalus), the correlation of histopathological lesions, and interspecies horizontal transmission, through immersion infection and cohabitation challenges. Flathead grey mullets, which were challenged by immersion infection, exhibited mortality at 14 and 24 days after RSIV exposure. Viral shedding in seawater peaked 2-3 days before or after the observed mortality. Specific lesions of RSIV were observed in the spleen and kidney, and the correlation between histopathological grade and viral load was the highest in the spleen. In a cohabitation challenge, flathead grey mullets were the donors, and healthy rock bream, red sea bream, and flathead grey mullets were the recipients. Viral shedding in seawater was the highest in flathead grey mullet and rock bream at 25 °C, with 106.0 RSIV copies L/g at 14 dpi. No mortality was observed in any group challenged at 15 °C, and no RSIV was detected in seawater after 30 dpi. The virus shed from RSIV-infected flathead grey mullets caused horizontal transmission through seawater. These findings suggest that rapid decision-making is warranted when managing disease in fish farms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA