Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1385775, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572241

RESUMEN

HIV-1 gp120 glycan binding to C-type lectin adhesion receptor L-selectin/CD62L on CD4 T cells facilitates viral attachment and entry. Paradoxically, the adhesion receptor impedes HIV-1 budding from infected T cells and the viral release requires the shedding of CD62L. To systematically investigate CD62L-shedding mediated viral release and its potential inhibition, we screened compounds specific for serine-, cysteine-, aspartyl-, and Zn-dependent proteases for CD62L shedding inhibition and found that a subclass of Zn-metalloproteinase inhibitors, including BB-94, TAPI, prinomastat, GM6001, and GI25423X, suppressed CD62L shedding. Their inhibition of HIV-1 infections correlated with enzymatic suppression of both ADAM10 and 17 activities and expressions of these ADAMs were transiently induced during the viral infection. These metalloproteinase inhibitors are distinct from the current antiretroviral drug compounds. Using immunogold labeling of CD62L, we observed association between budding HIV-1 virions and CD62L by transmission electron microscope, and the extent of CD62L-tethering of budding virions increased when the receptor shedding is inhibited. Finally, these CD62L shedding inhibitors suppressed the release of HIV-1 virions by CD4 T cells of infected individuals and their virion release inhibitions correlated with their CD62L shedding inhibitions. Our finding reveals a new therapeutic approach targeted at HIV-1 viral release.

2.
Fish Shellfish Immunol ; 149: 109530, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570120

RESUMEN

The elongation of very long chain fatty acids (ELOVL) proteins are key rate-limiting enzymes that catalyze fatty acid synthesis to form long chain fatty acids. ELOVLs also play regulatory roles in the lipid metabolic reprogramming induced by mammalian viruses. However, little is known about the roles of fish ELOVLs during virus infection. Here, a homolog of ELOVL7 was cloned from Epinephelus coioides (EcELOVL7a), and its roles in red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV) infection were investigated. The transcription level of EcELOVL7a was significantly increased upon RGNNV and SGIV infection or other pathogen-associated molecular patterns stimulation in grouper spleen (GS) cells. Subcellular localization analysis showed that EcELOVL7a encoded an endoplasmic reticulum (ER) related protein. Overexpression of EcELOVL7a promoted the viral production and virus release during SGIV and RGNNV infection. Furthermore, the lipidome profiling showed that EcELOVL7a overexpression reprogrammed cellular lipid components in vitro, evidenced by the increase of glycerophospholipids, sphingolipids and glycerides components. In addition, VLCFAs including FFA (20:2), FFA (20:4), FFA (22:4), FFA (22:5) and FFA (24:0), were enriched in EcELOVL7a overexpressed cells. Consistently, EcELOVL7a overexpression upregulated the transcription level of the key lipid metabolic enzymes, including fatty acid synthase (FASN), phospholipase A 2α (PLA 2α), and cyclooxygenases -2 (COX-2), LPIN1, and diacylglycerol acyltransferase 1α (DGAT1α). Together, our results firstly provided the evidence that fish ELOVL7a played an essential role in SGIV and RGNNV replication by reprogramming lipid metabolism.


Asunto(s)
Lubina , Infecciones por Virus ADN , Elongasas de Ácidos Grasos , Enfermedades de los Peces , Proteínas de Peces , Metabolismo de los Lípidos , Replicación Viral , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/inmunología , Lubina/inmunología , Lubina/genética , Elongasas de Ácidos Grasos/genética , Nodaviridae/fisiología , Regulación de la Expresión Génica , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Infecciones por Birnaviridae/veterinaria , Infecciones por Birnaviridae/inmunología , Infecciones por Birnaviridae/virología , Perfilación de la Expresión Génica/veterinaria , Iridoviridae/fisiología , Iridovirus/fisiología , Filogenia , Alineación de Secuencia/veterinaria , Secuencia de Aminoácidos , Reprogramación Metabólica
3.
Biol Chem ; 405(3): 189-201, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37677740

RESUMEN

The exact mechanisms involved in flaviviruses virions' release and the specific secretion of viral proteins, such as the Non Structural protein-1 (NS1), are still unclear. While these processes might involve vesicular transport to the cell membrane, NS1 from some flaviviruses was shown to participate in viral assembly and release. Here, we assessed the effect of the Zika virus (ZIKV) NS1 expression on the cellular proteome to identify trafficking-related targets that may be altered in the presence of the viral protein. We detected an increase in the synaptotagmin-9 (SYT9) secretory protein, which participates in the intracellular transport of protein-laden vesicles. We confirmed the effect of NS1 on SYT9 levels by transfection models while also detecting a significant subcellular redistribution of SYT9. We found that ZIKV prM-Env proteins, required for the viral particle release, also increased SYT9 levels and changed its localization. Finally, we demonstrated that ZIKV cellular infection raises SYT9 levels and promotes changes in its subcellular localization, together with a co-distribution with both Env and NS1. Altogether, the data suggest SYT9's implication in the vesicular transport of viral proteins or virions during ZIKV infection, showing for the first time the association of synaptotagmins with the flavivirus' life cycle.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Proteoma , Sinaptotagminas , Proteínas Virales
4.
Int Immunopharmacol ; 127: 111359, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38101217

RESUMEN

Porcine deltacoronavirus (PDCoV), belonging to family Coronaviridae, genus Deltacoronavirus, can cause acute diarrhea in piglets, and also possesses cross-species transmission potential, leading to severe economic losses and threatening public health. However, no approved drug against PDCoV infection is available. Here, we investigated the antiviral effect of chlorogenic acid (CGA), the main active component of Lonicerae Japonicae Flos, against PDCoV infection. The results showed that CGA inhibited the replication of PDCoV significantly both in LLC-PK1 and ST cells, with a selectivity index greater than 80. CGA decreased the synthesis of PDCoV viral RNA and protein, and viral titers in a dose-dependent manner. The results of the time-of-addition assay indicated that CGA mainly affected the early stage of virus replication and viral release. Moreover, CGA significantly reduced apoptosis caused by PDCoV infection, and the application of apoptosis agonist and inhibitor revealed that apoptosis could promote progeny virus release. Further study demonstrated that CGA can inhibit virus release by directly targeting apoptosis caused by PDCoV infection. In conclusion, CGA is an effective agent against PDCoV, which provides a foundation for drug development for the treatment of PDCoV and other coronavirus infections.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Enfermedades de los Porcinos , Animales , Porcinos , Coronavirus/genética , Coronavirus/metabolismo , Deltacoronavirus , Ácido Clorogénico/farmacología , Infecciones por Coronavirus/tratamiento farmacológico , Apoptosis
5.
Virology ; 587: 109877, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37688922

RESUMEN

Porcine epidemic diarrhea virus (PEDV) has catastrophic impacts on the global pig industry. However, there remains no effective drugs for PEDV infection. Ivermectin is an FDA-approved anthelmintic drug used to treat worm infections. In this study, we reported the broad-spectrum antiviral activity of Ivermectin in vitro. Ivermectin can inhibit PEDV infections of different genotypes. Avermectin derivatives can also inhibit PEDV infections. A time of addition assay showed that Ivermectin exhibited potent anti-PEDV activity when added simultaneously with or post virus infection. Furthermore, Ivermectin significantly inhibited the late stage of viral infection by affecting viral release. RNA sequencing indicates Ivermectin induces cell cycle arrest, which may be related to its ability to inhibit viral release. Interestingly, when combined with Niclosamide, Ivermectin demonstrated an enhanced anti-PEDV effect. These findings highlight Ivermectin as a novel antiviral agent with potential for the development of drugs against PEDV infection.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Porcinos , Chlorocebus aethiops , Antivirales/farmacología , Antivirales/metabolismo , Virus de la Diarrea Epidémica Porcina/genética , RNA-Seq , Ivermectina/farmacología , Transducción de Señal , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/genética , Células Vero
6.
Viruses ; 15(9)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37766280

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is an alpha-coronavirus causing acute diarrhea and high mortality in neonatal suckling piglets, resulting in huge economic losses for the global swine industry. The replication, assembly and cell egression of PEDV, an enveloped RNA virus, are mediated via altered intracellular trafficking. The underlying mechanisms of PEDV secretion are poorly understood. In this study, we found that the histone deacetylase (HDAC)-specific inhibitors, trichostatin A (TSA) and sodium butyrate (NaB), facilitate the secretion of infectious PEDV particles without interfering with its assembly. We found that PEDV N protein and its replicative intermediate dsRNA colocalize with coat protein complex II (COPII)-coated vesicles. We also showed that the colocalization of PEDV and COPII is enhanced by the HDAC-specific inhibitors. In addition, ultrastructural analysis revealed that the HDAC-specific inhibitors promote COPII-coated vesicles carrying PEDV virions and the secretion of COPII-coated vesicles. Consistently, HDAC-specific inhibitors-induced PEDV particle secretion was abolished by Sec24B knockdown, implying that the HDAC-specific inhibitors-mediated COPII-coated vesicles are required for PEDV secretion. Taken together, our findings provide initial evidence suggesting that PEDV virions can assemble in the endoplasmic reticulum (ER) and bud off from the ER in the COPII-coated vesicles. HDAC-specific inhibitors promote PEDV release by hijacking the COPII-coated vesicles.

7.
J Virol ; 97(6): e0043723, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37195206

RESUMEN

Enveloped viruses undergo a complex multistep process of assembly, maturation, and release into the extracellular space utilizing host secretory machinery. Several studies of the herpesvirus subfamily have shown that secretory vesicles derived from the trans-Golgi network (TGN) or endosomes transport virions into the extracellular space. However, the regulatory mechanism underlying the release of Epstein-Barr virus, a human oncovirus, remains unclear. We demonstrate that disruption of BBLF1, a tegument component, suppressed viral release and resulted in the accumulation of viral particles on the inner side of the vesicular membrane. Organelle separation revealed the accumulation of infectious viruses in fractions containing vesicles derived from the TGN and late endosomes. Deficiency of an acidic amino acid cluster in BBLF1 reduced viral secretion. Moreover, truncational deletion of the C-terminal region of BBLF1 increased infectious virus production. These findings suggest that BBLF1 regulates the viral release pathway and reveal a new aspect of tegument protein function. IMPORTANCE Several viruses have been linked to the development of cancer in humans. Epstein-Barr virus (EBV), the first identified human oncovirus, causes a wide range of cancers. Accumulating literature has demonstrated the role of viral reactivation in tumorigenesis. Elucidating the functions of viral lytic genes induced by reactivation, and the mechanisms of lytic infection, is essential to understanding pathogenesis. Progeny viral particles synthesized during lytic infection are released outside the cell after the assembly, maturation, and release steps, leading to further infection. Through functional analysis using BBLF1-knockout viruses, we demonstrated that BBLF1 promotes viral release. The acidic amino acid cluster in BBLF1 was also important for viral release. Conversely, mutants lacking the C terminus exhibited more efficient virus production, suggesting that BBLF1 is involved in the fine-tuning of progeny release during the EBV life cycle.


Asunto(s)
Herpesvirus Humano 4 , Vesículas Secretoras , Proteínas Virales , Liberación del Virus , Replicación Viral , Humanos , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/fisiología , Vesículas Secretoras/metabolismo , Vesículas Secretoras/virología , Virión/fisiología , Replicación Viral/fisiología , Células HEK293 , Proteínas Virales/metabolismo , Liberación del Virus/genética
8.
Viruses ; 14(10)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36298711

RESUMEN

Herpes Simplex Virus 1 (HSV-1) is a neurotropic human virus that belongs to the Alphaherpesvirinae subfamily of Herpesviridae. Establishment of its productive infection and progression of disease pathologies depend largely on successful release of virions from the virus-producing cells. HSV-1 is known to exploit many host factors for its release. Recent studies have shown that heparanase (HPSE) is one such host enzyme that is recruited for this purpose. It is an endoglycosidase that cleaves heparan sulfate (HS) from the surface of infected cells. HS is a virus attachment coreceptor that is commonly found on cell surfaces as HS proteoglycans e.g., syndecan-1 (SDC-1). The current model suggests that HSV-1 during the late stage of infection upregulates HPSE, which in turn enhances viral release by removing the virus-trapping HS moieties. In addition to its role in directly enabling viral release, HPSE accelerates the shedding of HS-containing ectodomains of SDC-1, which enhances HSV-1 release via a similar mechanism by upregulating CREB3 and COPII proteins. This review outlines the role of HPSE and SDC-1 as newly assigned host factors that facilitate HSV-1 release during a lytic infection cycle.


Asunto(s)
Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/metabolismo , Sindecano-1/metabolismo , Glucuronidasa/genética , Heparitina Sulfato/metabolismo
9.
J Virol ; 96(21): e0119522, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36286484

RESUMEN

Hepatoviruses are atypical hepatotropic picornaviruses that are released from infected cells without lysis in small membranous vesicles. These exosome-like, quasi-enveloped virions (eHAV) are infectious and the only form of hepatitis A virus (HAV) found circulating in blood during acute infection. eHAV is released through multivesicular endosomes in a process dependent on endosomal sorting complexes required for transport (ESCRT). Capsid protein interactions with the ESCRT-associated Bro1 domain proteins, ALG-2-interacting protein X (ALIX) and His domain-containing protein tyrosine phosphatase (HD-PTP), which are both recruited to the pX domain of 1D (VP1pX), are critical for this process. Previous proteomics studies suggest pX also binds the HECT domain, NEDD4 family E3 ubiquitin ligase, ITCH. Here, we confirm this interaction and show ITCH binds directly to the carboxy-terminal half of pX from both human and bat hepatoviruses independently of ALIX. A small chemical compound (compound 5) designed to disrupt interactions between WW domains of NEDD4 ligases and substrate molecules blocked ITCH binding to pX and demonstrated substantial antiviral activity against HAV. CRISPR deletion or small interfering RNA (siRNA) knockdown of ITCH expression inhibited the release of a self-assembling nanocage protein fused to pX and also impaired the release of eHAV from infected cells. The release could be rescued by overexpression of wild-type ITCH, but not a catalytically inactive ITCH mutant. Despite this, we found no evidence that ITCH ubiquitylates pX or that eHAV release is strongly dependent upon Lys residues in pX. These data indicate ITCH plays an important role in the ESCRT-dependent release of quasi-enveloped hepatovirus, although the substrate molecule targeted for ubiquitylation remains to be determined. IMPORTANCE Mechanisms underlying the cellular release of quasi-enveloped hepatoviruses are only partially understood, yet play a crucial role in the pathogenesis of this common agent of viral hepatitis. Multiple NEDD4 family E3 ubiquitin ligases, including ITCH, have been reported to promote the budding of conventional enveloped viruses but are not known to function in the release of HAV or other picornaviruses from infected cells. Here, we show that the unique C-terminal pX extension of the VP1 capsid protein of HAV interacts directly with ITCH and that ITCH promotes eHAV release in a manner analogous to its role in budding of some conventional enveloped viruses. The catalytic activity of ITCH is required for efficient eHAV release and may potentially function to ubiquitylate the viral capsid or activate ESCRT components.


Asunto(s)
Virus de la Hepatitis A , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Hepatovirus/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Virus de la Hepatitis A/fisiología , Ubiquitina-Proteína Ligasas Nedd4/metabolismo
10.
Mol Ther Oncolytics ; 27: 26-47, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36247810

RESUMEN

Systemic delivery of oncolytic viruses has been widely regarded as an impractical option for antitumor treatment. Here, we selected two target genes as leading components, and significant therapeutic effects were obtained by simultaneously reducing the expression of transforming growth factor ß 1 (TGF-ß1) and heat shock protein 27 (HSP27) in various cancer cell types. Downregulation of HSP27 reduced the cellular levels of tumor progression-related proteins, and the simultaneous downregulation of HSP27 and TGF-ß1 increased tumor cell death beyond that observed with TGF-ß1 downregulation alone. To increase the potential for systemic administration, we generated modified mesenchymal stem cells (MSCs) to act as oncolytic adenovirus factories and carriers and assessed bioavailability in tumors after MSC injection. The MSCs were modified to express 78-kDa glucose-regulated protein (GRP78) and adenovirus early-region 1B 55 kDa (E1B55K). The tightly controlled inducible system permitted selective timing of viral release from carrier MSCs within the tumor. This approach significantly improved viral production, tumor targeting, timely viral release at the tumor site, and antitumor efficacy of the oncolytic adenovirus. These combined results demonstrate that engineered MSCs can significantly enhance the antitumor effects of oncolytic viruses without adverse safety issues, which may greatly extend the clinical applicability of oncolytic adenoviruses.

11.
J Cell Sci ; 135(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36074045

RESUMEN

A feature of HIV-1 replication in macrophages is that viral assembly occurs at the limiting membrane of a compartment often named the virus-containing compartment (VCC). Assembled virions accumulate in the lumen of the VCC, from where they can be released into the extracellular medium via mechanisms that remain poorly described. Here, we show that the actin cytoskeleton contributes to this process by performing experiments combining pharmacological and mechanical perturbations with imaging and biochemical analysis. We found that jasplakinolide inhibited HIV-1 release from macrophages and led to scattering of the compartment. Concomitantly, both the integrin CD18 (ß2-integrin) and the phosphorylated form of PYK2 (also known as PTK2B) were displaced away from the VCC. Inhibition of PYK2 activity promoted retention of viral particles in VCCs that lost their connections to the surface. Finally, in infected macrophages undergoing frustrated phagocytosis, VCCs rapidly trafficked to the basal membrane and released their viral content, in a manner dependent on their association with the actin cytoskeleton. These results highlight that the trafficking of VCCs and virus release are intimately linked to a reorganization of the macrophage actin cytoskeleton that can be modulated by external physical cues.


Asunto(s)
VIH-1 , Quinasa 2 de Adhesión Focal , Integrinas , Macrófagos , Microtúbulos
12.
Viruses ; 14(6)2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35746643

RESUMEN

Herpes simplex virus type-1 (HSV-1) exploits several host factors to enhance its replication and release from infected cells. It induces the production of host enzyme heparanase (HPSE) to aid in egress. While the mechanism by which HPSE assists in viral release is well-characterized, other host factors that are recruited along with HPSE for viral release are less well understood. In this study, we identify cyclic-AMP-responsive element-binding protein3 (CREB3) as a key player in HPSE-facilitated HSV-1 egress. When CREB3 is transiently upregulated in human corneal epithelial cells, HSV-1 release from the infected cells is correspondingly enhanced. This activity is linked to HPSE expression such that HPSE-transfected corneal epithelial (HCE) cells more highly express CREB3 than wild-type cells while the cells knocked out for HPSE show very little CREB3 expression. CREB3-transfected HCE cells showed significantly higher export of HPSE upon infection than wild-type cells. Our data suggests that coat protein complex II (COPII), which mediates HPSE trafficking, is also upregulated via a CREB3-dependent pathway during HSV-1 infection. Finally, the co-transfection of CREB3 and HPSE in HCE cells shows the highest viral release compared to either treatment alone, establishing CREB3 as a key player in HPSE-facilitated HSV-1 egress.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Animales , Chlorocebus aethiops , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células Epiteliales/metabolismo , Glucuronidasa , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Humanos , Células Vero , Replicación Viral
13.
Front Microbiol ; 12: 725741, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659153

RESUMEN

HIV envelope glycoprotein is the most heavily glycosylated viral protein complex identified with over 20 glycans on its surface. This glycan canopy is thought to primarily shield the virus from host immune recognition as glycans are poor immunogens in general, however rare HIV neutralizing antibodies nevertheless potently recognize the glycan epitopes. While CD4 and chemokine receptors have been known as viral entry receptor and coreceptor, for many years the role of viral glycans in HIV entry was controversial. Recently, we showed that HIV envelope glycan binds to L-selectin in solution and on CD4 T lymphocytes. The viral glycan and L-selectin interaction functions to facilitate the viral adhesion and entry. Upon entry, infected CD4 T lymphocytes are stimulated to progressively shed L-selectin and suppressing this lectin receptor shedding greatly reduced HIV viral release and caused aggregation of diminutive virus-like particles within experimental infections and from infected primary T lymphocytes derived from both viremic and aviremic individuals. As shedding of L-selectin is mediated by ADAM metalloproteinases downstream of host-cell stimulation, these findings showed a novel mechanism for HIV viral release and offer a potential new class of anti-HIV compounds.

14.
Virulence ; 12(1): 2352-2365, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34515624

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is emerging as a major threat to the global swine industry. Clinical PEDV infection is associated with severe intestinal lesions, resulting in absorptive dysfunction and high mortality rates in suckling piglets. The extracellular matrix (ECM) is an important component of intestinal tissue, providing a structural framework and conveying tissue-specific signals to nearby enterocytes. In this study, we investigated the extensive ECM remodeling observed in intestinal epithelial cells infected with PEDV and elucidated the associated activated ECM receptor-related pathways. Protein-protein interaction network analysis revealed two significantly differentially expressed genes (cluster of differentiation 44 [CD44] and serpin family E member 1 [SERPINE1]) associated with the ECM. At the transcriptional level, both genes exhibited significant positive correlation with the extent of PEDV replication. Similarly, the expression of CD44 and PAI-1 (encoded by SERPINE1) was also increased in the intestines of piglets during viral infection. Furthermore, CD44 exhibited antiviral activity by enhancing the expression of antiviral cytokines (e.g., interleukin [IL]-6, IL-18, IL-11, and antimicrobial peptide beta-defensin 1) by activating nuclear factor-κB signaling. Conversely, PAI-1 was found to promote the release of progeny virions during PEDV infection, despite a decreased intracellular viral load. Nevertheless, the underlying mechanisms are still unclear. Taken together, our results highlighted the biological roles of specific ECM-regulated genes, i.e., CD44 and SERPINE1 in suppressing and promoting PEDV infection, thereby providing a theoretical foundation for the role of the ECM in intestinal infections and identifying potential therapeutic targets for PEDV.


Asunto(s)
Infecciones por Coronavirus , Matriz Extracelular , Transducción de Señal , Enfermedades de los Porcinos , Animales , Péptidos Antimicrobianos/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/veterinaria , Receptores de Hialuranos/inmunología , Intestinos/virología , Inhibidor 1 de Activador Plasminogénico/inmunología , Virus de la Diarrea Epidémica Porcina , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología
15.
Front Microbiol ; 12: 639445, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613509

RESUMEN

Numerous piercing-sucking insects can persistently transmit viral pathogens in combination with saliva to plant phloem in an intermittent pattern. Insect vectors maintain viruliferous for life. However, the reason why insect vectors discontinuously transmit the virus remains unclear. Rice dwarf virus (RDV), a plant reovirus, was found to replicate and assemble the progeny virions in salivary gland cells of the leafhopper vector. We observed that the RDV virions moved into saliva-stored cavities in the salivary glands of leafhopper vectors via an exocytosis-like mechanism, facilitating the viral horizontal transmission to plant hosts during the feeding of leafhoppers. Interestingly, the levels of viral accumulation in the salivary glands of leafhoppers during the transmitting period were significantly lower than those of viruliferous individuals during the intermittent period. A putative viral release threshold, which was close to 1.79 × 104 copies/µg RNA was proposed from the viral titers in the salivary glands of 52 leafhoppers during the intermittent period. Thus, the viral release threshold was hypothesized to mediate the intermittent release of RDV from the salivary gland cells of leafhoppers. We anticipate that viral release threshold-mediated intermittent transmission by insect vectors is the conserved strategy for the epidemic and persistence of vector-borne viruses in nature.

16.
Pest Manag Sci ; 76(9): 3208-3216, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32358849

RESUMEN

BACKGROUND: The transmission of plant viruses by arthropod vectors is closely related to feeding behavior. For persistently transmitted viruses, virus release means that virus moves through the salivary gland microvillus barriers of insects into plant via the stylet. However, whether virus release is dependent on plant tissue and component recognition by the stylet is unclear. RESULTS: In this study, the small brown planthopper (SBPH) and two rice viruses transmitted by it were used as a model to explore this question. After the viruliferous insects penetrated a stretched membrane without plant tissue structure and ingested liquid food (rice sap, nutrient solution or water), both viruses were detected in the liquid food after only a 6 min inoculation access period, suggesting that the viruses were released from SBPH salivary gland independent of plant tissue and component recognition by the stylet. In subsequent electrical penetration graph (EPG) analysis, N4a-like and N4b-like waveforms, similar to N4a (phloem salivation before ingestion) and N4b (sieve element ingestion), were observed during SBPH penetrating the membrane, exhibiting normal feeding activity of planthopper on membrane, which further demonstrated that virus release from salivary gland was along with feeding activity, without the stylet sensing plant tissue. EPG analysis and identification of salivary proteins indicated more active feeding behavior and efficient salivation in viruliferous planthoppers. CONCLUSION: These results suggest that the rice virus is released from insect salivary gland independent of plant tissue and component recognition by the stylet, and the simple virus release mode facilitates virus transmission by vectors. © 2020 Society of Chemical Industry.


Asunto(s)
Hemípteros , Oryza , Animales , Floema , Glándulas Salivales , Liberación del Virus
17.
J Biol Chem ; 295(23): 7941-7957, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32341071

RESUMEN

Chikungunya fever is a re-emerging zoonotic disease caused by chikungunya virus (CHIKV), a member of the Alphavirus genus in the Togaviridae family. Only a few studies have reported on the host factors required for intracellular CHIKV trafficking. Here, we conducted an imaging-based siRNA screen to identify human host factors for intracellular trafficking that are involved in CHIKV infection, examined their interactions with CHIKV proteins, and investigated the contributions of these proteins to CHIKV infection. The results of the siRNA screen revealed that host endosomal sorting complexes required for transport (ESCRT) proteins are recruited during CHIKV infection. Co-immunoprecipitation analyses revealed that both structural and nonstructural CHIKV proteins interact with hepatocyte growth factor-regulated tyrosine kinase substrate (HGS), a component of the ESCRT-0 complex. We also observed that HGS co-localizes with the E2 protein of CHIKV and with dsRNA, a marker of the replicated CHIKV genome. Results from gene knockdown analyses indicated that, along with other ESCRT factors, HGS facilitates both genome replication and post-translational steps during CHIKV infection. Moreover, we show that ESCRT factors are also required for infections with other alphaviruses. We conclude that during CHIKV infection, several ESCRT factors are recruited via HGS and are involved in viral genome replication and post-translational processing of viral proteins.


Asunto(s)
Fiebre Chikungunya/metabolismo , Fiebre Chikungunya/virología , Virus Chikungunya/crecimiento & desarrollo , Virus Chikungunya/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Replicación Viral , Virus Chikungunya/genética , Células HEK293 , Humanos , Replicación Viral/genética
18.
mSphere ; 5(2)2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188752

RESUMEN

Simian virus 40 VP4 was discovered in 2007 as a later expressed viral protein initiated from a downstream Met on the VP2/VP3 transcript. VP4's role as a viroporin involved in viral release was supported in a series of additional articles that characterized the ability of VP4 to associate with and permeabilize biological membranes. This commentary is our response to the perspective from Henriksen and Rinaldo (mSphere 5:e00019-20, 2020, https://doi.org/10.1128/mSphere.00019-20) that challenges the existence of SV40 VP4.


Asunto(s)
Virus 40 de los Simios , Proteínas Virales , Membrana Celular
19.
J Virol ; 94(7)2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31941771

RESUMEN

Along with other immune checkpoints, T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is expressed on exhausted CD4+ and CD8+ T cells and is upregulated on the surface of these cells upon infection by human immunodeficiency virus type 1 (HIV-1). Recent reports have suggested an antiviral role for Tim-3. However, the molecular determinants of HIV-1 which modulate cell surface Tim-3 levels have yet to be determined. Here, we demonstrate that HIV-1 Vpu downregulates Tim-3 from the surface of infected primary CD4+ T cells, thus attenuating HIV-1-induced upregulation of Tim-3. We also provide evidence that the transmembrane domain of Vpu is required for Tim-3 downregulation. Using immunofluorescence microscopy, we determined that Vpu is in close proximity to Tim-3 and alters its subcellular localization by directing it to Rab 5-positive (Rab 5+) vesicles and targeting it for sequestration within the trans- Golgi network (TGN). Intriguingly, Tim-3 knockdown and Tim-3 blockade increased HIV-1 replication in primary CD4+ T cells, thereby suggesting that Tim-3 expression might represent a natural immune mechanism limiting viral spread.IMPORTANCE HIV infection modulates the surface expression of Tim-3, but the molecular determinants remain poorly understood. Here, we show that HIV-1 Vpu downregulates Tim-3 from the surface of infected primary CD4+ T cells through its transmembrane domain and alters its subcellular localization. Tim-3 blockade increases HIV-1 replication, suggesting a potential negative role of this protein in viral spread that is counteracted by Vpu.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Regulación hacia Abajo , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Membrana Celular/metabolismo , Regulación de la Expresión Génica , Células HEK293 , VIH-1/metabolismo , Células HeLa , Humanos , Interferón beta/metabolismo , ARN Interferente Pequeño/metabolismo , Red trans-Golgi/metabolismo
20.
Trends Microbiol ; 28(3): 224-235, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31732320

RESUMEN

To enhance infection, enveloped viruses exploit adhesion molecules expressed on the surface of host cells. Specifically, phosphatidylserine (PS) receptors - including members of the human T cell immunoglobulin and mucin domain (TIM)-family - have gained attention for their ability to mediate the entry of many enveloped viruses. However, recent evidence that TIM-1 can restrict viral release reveals a new role for these PS receptors. Additionally, viral factors such as the HIV-1 accessory protein Nef can antagonize this antiviral activity of TIM-1 while host restriction factors such as SERINC5 can enhance it. In this review, we examine the various roles of PS receptors, specifically TIM-family proteins, and the intricate relationship between host and viral factors. Elucidating the multifunctional roles of PS receptors in virus-host interaction is important for understanding viral pathogenesis and developing novel antiviral therapeutics.


Asunto(s)
Infecciones por VIH/patología , VIH-1/fisiología , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Interacciones Huésped-Patógeno/fisiología , Receptores Virales/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Liberación del Virus/fisiología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA