Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 834
Filtrar
1.
J Food Sci ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269290

RESUMEN

In recent years, red-fleshed apple has attracted a lot of attention due to its pleasant appearance, taste, and being a valuable source of anthocyanins. Generally, different types of this apple are known as ornamental apple plants that are rarely found in various regions around the world like New Zealand, Kazakhstan, Kyrgyzstan, Australia, China, and Turkey. This study focused on the accumulation and changes of the bioactive and aroma-related volatile components at different production stages of a red-fleshed apple vinegar. The aim of this study is to produce an anthocyanin- and vitamin C-rich vinegar (NAV) from red-fleshed Niedzwetzky's apple for the first time. According to the results, in this vinegar, it was determined high concentrations of total phenolic content (904.8 mg-GAE/mL), total flavonoid content (0.25 mg-EGCE/mL), vitamin C content (3024.3 mg-AAE/mL), and 1,1-diphenyl-2-picrylhydrazyl (8.33 mmol-TE/mL), as well as FRAP (13.57 mmol-ISE/mL), respectively. Moreover, total anthocyanin content value was found to be 6.46 mg/g. One of the components that provide the specified functional effect in this vinegar is chlorogenic acid, which constitutes the main phenolic compound, and the other one is cyanidin-3-glucoside, which is the major anthocyanin in this vinegar. The main volatile components associated with the aroma of vinegar are -acetic acid, -phenylacetic acid (5067.7 µg/100 mL), -phenethyl alcohol (3096.1 µg/100 mL), and -nonanoic acid (2939.0 µg/100 mL) compounds. Consequently, it is recommended to expand the range of Niedzwetzky's apples in the production and consumption of food products such as functional vinegar. Thus, a new vinegar with high functional properties will be introduced to the worldwide food industry. PRACTICAL APPLICATION: In this study, vinegar was produced from the small and dark-red-flesh-colored fruits of Niedzwetzky's apple tree, which is known in a small part of the world and is generally used as an ornamental plant due to its red-pink flowers. It has been determined that the produced vinegar has high bioavailability due to the apples with red inner flesh and high anthocyanin content and has a desirable aromatic content. Thus, a food product with high functional quality and desirable aroma, accessible to consumers all over the world, has been produced from a little-known fruit.

2.
Int J Mol Sci ; 25(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39273704

RESUMEN

Rapeseed is an important oil crop in the world. Wood vinegar could increase the yield and abiotic resistance of rapeseed. However, little is known about the underlying mechanisms of wood vinegar or its valid chemical components on rapeseed. In the present study, wood vinegar and butyrolactone (γ-Butyrolactone, one of the main components of wood vinegar) were applied to rapeseed at the seedling stage, and the molecular mechanisms of wood vinegar that affect rapeseed were studied by combining transcriptome and metabolomic analyses. The results show that applying wood vinegar and butyrolactone increases the biomass of rapeseed by increasing the leaf area and the number of pods per plant, and enhances the tolerance of rapeseed under low temperature by reducing membrane lipid oxidation and improving the content of chlorophyll, proline, soluble sugar, and antioxidant enzymes. Compared to the control, 681 and 700 differentially expressed genes were in the transcriptional group treated with wood vinegar and butyrolactone, respectively, and 76 and 90 differentially expressed metabolites were in the metabolic group. The combination of transcriptome and metabolomic analyses revealed the key gene-metabolic networks related to various pathways. Our research shows that after wood vinegar and butyrolactone treatment, the amino acid biosynthesis pathway of rapeseed may be involved in mediating the increase in rapeseed biomass, the proline metabolism pathway of wood vinegar treatment may be involved in mediating rapeseed's resistance to low-temperature stress, and the sphingolipid metabolism pathway of butyrolactone treatment may be involved in mediating rapeseed's resistance to low-temperature stress. It is suggested that the use of wood vinegar or butyrolactone are new approaches to increasing rapeseed yield and low-temperature resistance.


Asunto(s)
4-Butirolactona , Regulación de la Expresión Génica de las Plantas , Metabolómica , Transcriptoma , Metabolómica/métodos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacología , Transcriptoma/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácido Acético , Frío , Brassica napus/crecimiento & desarrollo , Brassica napus/efectos de los fármacos , Brassica napus/genética , Brassica napus/metabolismo , Respuesta al Choque por Frío/efectos de los fármacos , Perfilación de la Expresión Génica , Madera/química , Madera/efectos de los fármacos , Metaboloma/efectos de los fármacos , Brassica rapa/crecimiento & desarrollo , Brassica rapa/efectos de los fármacos , Brassica rapa/metabolismo , Brassica rapa/genética
3.
Plants (Basel) ; 13(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273912

RESUMEN

Biomass pyrolysis by-products, such as biochar (BC) and wood vinegar (WV), are widely used as soil conditioners and efficiency enhancers in agriculture. A pot experiment was conducted to examine the effects of WV, both alone and in combination with BC, on soil properties in mildly saline soil and on cotton stress tolerance. The results demonstrated that BC and WV application, either individually or together, increased soil nutrient content. The combined application was more effective than the individual applications, resulting in a 5.18-20.12% increase in organic matter, a 2.65-15.04% increase in hydrolysable nitrogen, a 2.23-58.05% increase in effective phosphorus, and a 2.71-29.38% increase in quick-acting potassium. Additionally, the combined application of WV and BC led to greater improvements in cotton plant height, net photosynthetic rate (Pn), leaf nitrate reductase (NR), superoxide dismutase (SOD), and catalase (CAT) activities compared to the application of BC or WV alone. The enhancements in this study varied across different parameters. Plant height showed an increase of 14.32-21.90%. Net photosynthetic rate improved by 13.56-17.60%. Leaf nitrate reductase increased by 5.47-37.79%. Superoxide dismutase and catalase showed improvements of 5.82-64.95% and 10.36-71.40%, respectively (p < 0.05). Moreover, the combined treatment outperformed the individual applications of WV and BC, resulting in a significant decrease in MDA levels by 2.47-51.72% over the experimental period. This combined treatment ultimately enhanced cotton stress tolerance. Using the entropy weight method to analyze the results, it was concluded that the combined application of WV and BC could enhance soil properties in mildly saline soils, increase cotton resistance, and hold significant potential for widespread application.

4.
ACG Case Rep J ; 11(9): e01482, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39238884

RESUMEN

Acute pancreatitis, a common gastrointestinal ailment in the United States, often lacks a clear etiology, with one-third of cases deemed idiopathic. We discuss an 84-year-old woman with acute pancreatitis possibly linked to a recently introduced weight loss supplement containing apple cider vinegar. Literature review unveils scant data regarding the risks of acute pancreatitis associated with less rigorously studied and regulated supplements, such as apple cider vinegar products. Considering the morbidity and financial burden associated with acute pancreatitis, there is a pressing need to report and disseminate awareness of diverse etiologies, encompassing drug and supplement-induced cases. This case report endeavors to address this need.

5.
Front Plant Sci ; 15: 1435943, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39233914

RESUMEN

Insects' host preferences are regulated by multiple factors whose interactions are only partly understood. Here we make use of an in-depth, untargeted metabolomic approach combining molecular networking (MN) and supervised Analysis of variance Multiblock Orthogonal Partial Least Squares (AMOPLS) to untangle egg-laying preferences of Drosophila suzukii, an invasive, highly polyphagous and destructive fruit pest originating from Southeast Asia. Based on behavioural experiments in the laboratory as well as field observation, we selected eight genetically related Vitis vinifera cultivars (e.g., Ancellotta, Galotta, Gamaret, Gamay, Gamay précoce, Garanoir, Mara and Reichensteiner) exhibiting significant differences in their susceptibility toward D. suzukii. The two most and the two least attractive red cultivars were chosen for further metabolomic analyses of their grape skins. The combination of MN and statistical AMOPLS findings with semi-quantitative detection information enabled us to identify flavonoids as interesting markers for differences in the attractiveness of the four studied grape cultivars towards D. suzukii. Overall, dihydroflavonols were accumulated in unattractive grape cultivars, while attractive grape cultivars were richer in flavonols. Crucially, both dihydroflavonols and flavonols were abundant metabolites in the semi-quantitative analysis of the extracted molecules from the grape skin. We discuss how these two flavonoid classes might influence the egg-laying behaviour of D. suzukii females and how they could serve as potential markers for D. suzukii infestations in grapes that can be potentially extended to other fruits. We believe that our novel, integrated analytical approach could also be applied to the study of other biological relationships characterised by multiple evolving parameters.

6.
Phytochem Anal ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107233

RESUMEN

INTRODUCTION: Frankincense is used for analgesic, tumor-suppressive, and anti-inflammatory treatments in Traditional Chinese Medicine but poses toxicological concerns. Vinegar processing is a common technique used to reduce the toxicity of frankincense. OBJECTIVE: This study aimed to investigate the chemical composition and quality evaluation of raw and vinegar-processing frankincense by multiple UPLC-MS/MS techniques. Additionally, we purposed refining the vinegar processing technique and identifying potentially harmful ingredients in the raw frankincense. METHODOLOGY: Sub-chronic oral toxicity studies were conducted on raw and vinegar-processing frankincense in rats. The composition of frankincense was identified by UPLC-Q-TOF-MS/MS. Chemometrics were used to differentiate between raw and vinegar-processing frankincense. Potential chemical markers were identified by selecting differential components, which were further exactly determined by UPLC-QQQ-MS/MS. Moreover, the viability of the HepG2 cells of those components with reduced contents after vinegar processing was assessed. RESULTS: The toxicity of raw frankincense is attenuated by vinegar processing, among which vinegar-processing frankincense (R40) (herb weight: rice vinegar weight = 40:1) exhibited the lowest toxicity. A total of 83 components were identified from frankincense, including 40 triterpenoids, 37 diterpenoids, and 6 other types. The contents of six components decreased after vinegar-processing, with the lowest levels in R40. Three components, specifically 3α-acetoxy-11-keto-ß-boswellic acid (AKBA), 3α-acetoxy-α-boswellic acid (α-ABA), and 3α-acetoxy-ß-boswellic acid (ß-ABA), inhibited the viability of HepG2 cells. The processing of frankincense with vinegar at a ratio of 40:1 could be an effective method of reducing the toxicity in raw frankincense. CONCLUSION: Our research improves understanding of the toxic substance basis and facilitates future assessments of frankincense quality.

7.
BMC Oral Health ; 24(1): 918, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118082

RESUMEN

BACKGROUND: Vital pulp therapy maintained functionality, vitality, and asymptomatic teeth. Compared to normal root canal treatment, pulpotomy was more helpful for irreversible pulpitis in adult permanent teeth. The research was aimed to assess effectiveness of vital pulp therapy using mineral trioxide aggregate with Apple Vinegar and Ethylene diamine tetra acetic acid (17%) for five minutes in adult carious exposed pulp of permanent teeth. METHODS: Forty patients between 18 and 50 years old with a clinical diagnosis of symptomatic irreversible pulpitis but no periapical radiolucency were then divided randomly into two groups based on the irrigation method; ethylene diamine tetraacetic acid or apple vinegar. If pulpal bleeding could not be managed in less than six minutes, the assigned procedure was abandoned. After mineral trioxide aggregate application as a pulpotomy agent, glass ionomer and composite restoration were placed. Using a visual analogue scale, the pre and post-operative pain were recorded after 2,6,24,48, and 72 h. Success was assessed using radiographic and clinical examination data at three, six, and twelve months. RESULTS: The success rate was discovered to be non-statistically significant in both groups after a year follow-up. Apple vinegar had a lower mean value than ethylene diamine tetra acetic acid at the preoperative baseline pain level, which was significant.Postoperatively, the ethylene diamine tetraacetic acid group reported the greatest mean value after two hours while Apple vinegar group reported the lowest mean values after 48 h (P < 0.05). After 72 h, pain level recorded insignificant difference. CONCLUSION: Apple vinegar yielded a marginally successful outcome but substantially improved pain alleviation. TRIAL REGISTRATION: The trial was registered in Clinical trials.gov with this identifier NCT05970536 on 23/7/2023.


Asunto(s)
Compuestos de Aluminio , Compuestos de Calcio , Quelantes , Combinación de Medicamentos , Óxidos , Pulpitis , Silicatos , Humanos , Adulto , Pulpitis/terapia , Femenino , Masculino , Silicatos/uso terapéutico , Compuestos de Calcio/uso terapéutico , Persona de Mediana Edad , Compuestos de Aluminio/uso terapéutico , Quelantes/uso terapéutico , Adolescente , Adulto Joven , Óxidos/uso terapéutico , Ácido Edético/uso terapéutico , Ácido Acético/uso terapéutico , Pulpotomía/métodos , Resultado del Tratamiento , Cerámica , Dimensión del Dolor
8.
Int J Mol Sci ; 25(15)2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39126070

RESUMEN

Foods contaminants pose a challenge for food producers and consumers. Due to its spontaneous formation during heating and storage, hydroxymethylfurfural (HMF) is a prevalent contaminant in foods rich in carbohydrates and proteins. Colorimetric assays, such as the Seliwanoff test, offer a rapid and cost-effective method for HMF quantification but require careful optimization to ensure accuracy. We addressed potential interference in the Seliwanoff assay by systematically evaluating parameters like incubation time, temperature, and resorcinol or hydrochloric acid concentration, as well as the presence of interfering carbohydrates. Samples were analyzed using a UV-Vis spectrophotometer in scan mode, and data obtained were validated using HPLC, which also enabled quantification of unreacted HMF for assessing the protocol's accuracy. Incubation time and hydrochloric acid percentage positively influenced the colorimetric assay, while the opposite effect was observed with the increase in resorcinol concentration. Interference from carbohydrates was eliminated by reducing the acid content in the working reagent. HPLC analyses corroborated the spectrophotometer data and confirmed the efficacy of the proposed method. The average HMF content in balsamic vinegar samples was 1.97 ± 0.94 mg/mL. Spectrophotometric approaches demonstrated to efficiently determine HMF in complex food matrices. The HMF levels detected in balsamic vinegars significantly exceeded the maximum limits established for honey. This finding underscores the urgent need for regulations that restrict contaminant levels in various food products.


Asunto(s)
Furaldehído , Espectrofotometría , Furaldehído/análogos & derivados , Furaldehído/análisis , Espectrofotometría/métodos , Cromatografía Líquida de Alta Presión/métodos , Resorcinoles/análisis , Resorcinoles/química , Contaminación de Alimentos/análisis , Análisis de los Alimentos/métodos , Ácido Acético/análisis , Ácido Acético/química
9.
J Sci Food Agric ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210561

RESUMEN

BACKGROUND: The co-application of biochar and wood vinegar has demonstrated the potential to enhance premium crop production. The present study reveals the effects of co-applying rice husk biochar and wood vinegar (both foliar and soil application) on soil properties and the growth of Chinese cabbage (Brassica chinensis L.) in a two-season pot experiment. RESULTS: The soil pH, electrical conductivity and dissolved organic carbon contents in combination treatments of wood vinegar and biochar were increased more when wood vinegar was applied to soils rather than to leaves, and the parameters were observed to surpass those for chemical fertilizer treatments. The biomass of Chinese cabbage shoots was significantly increased by 60.8- and 27.3-fold in the combined treatments compared to the control when 1% wood vinegar was sprayed to the leaves (WF1) in 2022 and 2023, respectively. Higher contents of vitamin C, soluble protein and soluble sugar were also observed in the combined wood vinegar and biochar treatments compared to chemical fertilizer treatments and the control; for example, the vitamin C content of plant shoot in WF1 was 21.3 times that of the control. The yield and quality of plants were decreased across all treatments in 2023 compared to 2022 but the combination treatments still displayed superiority. CONCLUSION: The co-application of wood vinegar and biochar enhances the growth and improve the quality of Chinese cabbage through improving the soil properties and plant photosynthesis. Moreover, the foliage application of wood vinegar is more preferable compared to soil application. © 2024 Society of Chemical Industry.

10.
Food Chem ; 460(Pt 3): 140783, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39137579

RESUMEN

New vinegar needs a long maturing time to improve its poor flavor before sale, which greatly increases its production cost. Therefore, it is urgent to explore regulation technologies to accelerate vinegar flavor maturation. Based on literature and our research, this review introduces the latest advances in flavor regulation technologies of vinegar including microbial fortification/multi starters fermentation, key production processes optimization and novel physical processing technologies. Microbial fortification or multi starters fermentation accelerates vinegar flavor maturation via enhancing total acids, esters and aroma precursors content in vinegar. Adjusting raw materials composition, fermentation temperature, and oxygen flow reasonably increase alcohols, organic acids, polyphenols and esters levels via generating more corresponding precursors in vinegar, thereby improving its flavor. Furthermore, novel processing technologies greatly promote conversion of alcohols into acids and esters in vinegar, shortening flavor maturation time for over six months. Meanwhile, the corresponding mechanisms are discussed and future research directions are addressed.


Asunto(s)
Ácido Acético , Fermentación , Aromatizantes , Gusto , Ácido Acético/metabolismo , Ácido Acético/química , Aromatizantes/química , Aromatizantes/metabolismo , Manipulación de Alimentos , Bacterias/metabolismo , Bacterias/genética , Bacterias/química , Odorantes/análisis
11.
Food Chem ; 460(Pt 2): 140646, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089018

RESUMEN

The study aimed to mine and characterize novel antimicrobial peptides (AMPs) from the Shanxi aged vinegar microbiome. Utilizing machine learning techniques, AlphaFold2 structure prediction and molecular dynamics simulations, six novel AMPs were innovatively mined from 98,539 peptides based on metagenomic data, of which one peptide secreted by Lactobacillus (named La-AMP) was experimentally validated to have remarkable bactericidal effects against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with high stability and no hemolytic activity. Scanning electron microscopy revealed that La-AMP caused irreversible damage to cell membranes of S. aureus and E. coli, a finding further confirmed by calcein-AM/propidium iodide staining. Additionally, La-AMP induced nucleic acid leakage and reactive oxygen species accumulation in bacterial cells. It was found to bind to DNA gyrase through salt bridges, hydrogen bonds, and hydrophobic interactions, ultimately inducing apoptosis. Thus, La-AMP exhibited encouraging promise as a valuable bioactive component for the development of natural preservatives.


Asunto(s)
Ácido Acético , Escherichia coli , Metagenómica , Simulación de Dinámica Molecular , Staphylococcus aureus , Staphylococcus aureus/efectos de los fármacos , Ácido Acético/química , Ácido Acético/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/metabolismo , Péptidos Antimicrobianos/genética , Antibacterianos/farmacología , Antibacterianos/química , Microbiota , Pruebas de Sensibilidad Microbiana , Humanos , Lactobacillus/química , Lactobacillus/metabolismo
12.
Int J Biol Macromol ; 277(Pt 3): 134436, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098689

RESUMEN

Traditional vinegars are naturally produced from sugar- or starch-containing raw materials, through alcoholic fermentation followed by acetic fermentation. Fermentation is a spontaneous and complex process involving interactions between various microorganisms. In this study, we produced vinegar using traditional methods from six fruits: rosehip, pear, fig, wild pear, apple, and plum. Bacteria that produce bacterial cellulose (BC) were isolated from these vinegars and identified. In addition, we investigated the properties of BC produced from these bacteria. The strains isolated from vinegars were identified as Gluconobacter oxydans strain MG2022, Acetobacter tropicalis strain MG2022, Acetobacter fabarum strain MG2022, Komagataeibacter saccharivorans strain MG2022, K. saccharivorans strain EG2022, and Acetobacter lovaniensis strain OD2022. In total, 0.83-2.04 g/L BC was produced and the bacterial strain isolated from pear vinegar yielded the most BC. BC produced by the bacterial strain isolated from wild pear vinegar had the highest thermal stability and crystallinity (87.44 %). Overall, this study shows that different fruits contain different BC-producing bacteria in their natural flora and vinegars obtained from fruits can be used in BC production. Also, different BC-producing bacteria can be isolated from different vinegars, and BC produced by these bacteria might have different properties.


Asunto(s)
Ácido Acético , Celulosa , Celulosa/química , Celulosa/metabolismo , Celulosa/biosíntesis , Ácido Acético/metabolismo , Ácido Acético/química , Fermentación , Acetobacter/metabolismo , Acetobacter/aislamiento & purificación , Bacterias/metabolismo , Bacterias/clasificación , Frutas/microbiología , Filogenia
13.
Heliyon ; 10(11): e32344, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38961972

RESUMEN

Aims: Rice vinegar is a traditional fermented seasoning in Japan, and its production remained unchanged for over 800 years until the Edo period. However, based on the available information regarding rice vinegar production methods from this period and the results of reproduction experiments, we speculated that unlike the modern-day acetic fermented vinegar, rice vinegar produced during the Edo period was lactic fermented. Main methods: To verify this assumption, we analyzed the flavor components of Honcho, a lactic fermented product prepared using a method described in books, including "Honchoshokkan" from the Edo period, by capillary electrophoresis/time-of-flight mass spectrometry, high-performance liquid chromatography, gas chromatography mass spectrometry, and taste sensor analysis. Sensory evaluation was also conducted to assess validation as a seasoning. Results: Honcho contains 2 % lactic acid, which gives it its acidity, and small amounts of other nonvolatile acids, but significantly lower levels of acetic acid (0.188 ± 0.015 g/100 mL, p < 0.01). It contains more than double the free amino acids of Kurozu, a modern rice vinegar, and more glutamic acid. Boiling to remove ethanol from yeast fermentation concentrated the free amino acids 1.5 times. Sensor taste analysis showed Honcho had weaker acidity but stronger umami taste than commercial rice vinegar. The volatile compounds related to acetic acid fermentation were significantly different between Honcho and Kurozu. Boiling increased Honcho's acidity, mainly through non-volatile acids. Significance: These findings provide evidence to indicate that Honcho was an acidic seasoning for heat-cooking, which is uncommon in Japanese cuisine today and is mentioned in Edo period books. This seasoning contains many amino acids, implying that it adds umami flavor, not only the sourness of modern vinegar.

14.
Int J Environ Health Res ; : 1-22, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965904

RESUMEN

The present investigation examines the antimicrobial and antifungal characteristics of natural deep eutectic solvents (NADES) and apple vinegar in relation to a diverse array of bacterial and fungal strains. The clinical bacterial strains, including gram-negative and gram-positive, and the fungal pathogen Candida albicans, were subjected to solid medium diffusion to determine the inhibitory effects of these compounds. The results show that NADES has superior antimicrobial and antifungal action compared to apple vinegar. The observed inhibitory zones for apple vinegar and NADES varied in length from 16.5 to 24.2 and 16 to 52.5 mm, respectively. The results obtained indicate that no synergy is observed for this mixture (50% AV + 50% NADES). The range of values for bactericidal concentrations (MBC) and minimal inhibitory concentrations (MIC) was 0.0125 to 0.2 and 0.0125 to 0.4 µl/ml, respectively. Antibacterial and antifungal chemicals may be found in apple vinegar and NADES, with NADES offering environmentally safe substitutes for traditional antibiotics. Additional investigation is suggested to refine these compounds for a wide range of bacteria, which could create antimicrobial solutions that are both highly effective and specifically targeted, thereby offering extensive potential in medicine and the environment.

15.
Nutrients ; 16(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38999910

RESUMEN

(1) Background: There is a balance between nutrition, glycemic control, and immune response. Their roles in physiological mechanisms are essential for maintaining life quality. This study aimed to evaluate hawthorn vinegar's metabolic effects, and describe its possible mechanism. We also pointed out several vinegar production methods to clarify the antioxidant features. (2) Methods: In the study, three vinegar techniques were applied to vinegar: traditional production of hawthorn vinegar (N), thermal pasteurization (P), and ultrasound method (U). Thirty-two female adult Wistar albino rats were randomly separated into four groups: Control, N1 (regular vinegar; 1 mL/kg bw), P1 (pasteurized vinegar; 1 mL/kg bw), and U1(ultrasound treated vinegar; 1 mL/kg bw). Vinegar was administered by oral gavage daily for 45 days. Initial and final weights, the percentage changes of body weight gains, and Gamma-Glutamyl Transferase (GGT) values of plasma and liver were measured. The total protein, globulin, and albumin values of plasma, liver, and intestinal tissue were determined. In addition, plasma glucagon-like peptide-1 (GLP-1) and glucose concentrations were evaluated. (3) Results: There was a statistical increase in total intestinal protein value and an increasing tendency in total protein in plasma and liver in group U1 compared to group Control. However, the GGT concentrations in plasma and liver were slightly lower in group U1 than in group Control. In addition, there were significant increases in plasma GLP-1 values in all experimental groups compared to the Control group (p: 0.015; 576.80 ± 56.06, 773.10 ± 28.92, 700.70 ± 17.05 and 735.00 ± 40.70; respectively groups control, N1, P1, and U1). Also, liver GLP-1 concentrations in groups P1 and U1 were higher than in group Control (p: 0.005; 968.00 ± 25.54, 1176 ± 17.54 and 1174.00 ± 44.06, respectively groups control, P1 and U1). On the other hand, significant decreases were found in plasma glucose concentrations in groups N1 and U1 as to the Control group (p: 0.02; Control: 189.90 ± 15.22, N1: 133.10 ± 7.32 and U1: 142.30 ± 4.14). Besides, liver glucose levels were lower in all experimental groups than in group Control statistically (p: 0.010; 53.47 ± 0.97, 37.99 ± 1.46, 44.52 ± 4.05 and 44.57 ± 2.39, respectively groups control, N1, P1, and U1). (4) Conclusions: The findings suggest that hawthorn vinegar can balance normal physiological conditions via intestinal health, protein profiles, and glycemic control. Additionally, ultrasound application of vinegar may improve the ability of hawthorn vinegar, and have positive effects on general health.


Asunto(s)
Ácido Acético , Glucemia , Crataegus , Péptido 1 Similar al Glucagón , Ratas Wistar , Péptido 1 Similar al Glucagón/sangre , Péptido 1 Similar al Glucagón/metabolismo , Animales , Femenino , Glucemia/metabolismo , Ratas , Crataegus/química , Hígado/metabolismo , Proteínas/metabolismo , Antioxidantes/metabolismo
16.
J Agric Food Chem ; 72(31): 17455-17464, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39072618

RESUMEN

We tested the ability of wood distillate (WD) to interact with urea in agricultural soil. WD is a sustainable material that has been addressed as a promising alternative to synthetic soil corroborants. However, there is little information about the effect of WD on the nitrogen cycle. In this study, soils with different amounts of WD and with/without urea were tested for ammonium, urease, nitrate/nitrite, and potential nitrification activity at different points in a 30 day time frame. High concentrations of WD (1-2%) inhibited the hydrolysis of urea and the oxidation of ammonium to nitrate. Thermal desorption coupled to GC-MS and high-performance liquid chromatography-tandem mass spectrometry characterization allowed us to reveal that WD-urea interactions mainly involve lignin-derived compounds in the distillate, such as catechol, resorcinol, and syringol. This study provides the first evidence of a strong interaction between WD and urea in soil that could be used to develop slow-release fertilizers.


Asunto(s)
Fertilizantes , Madera , Madera/química , Urea/química , Urea/metabolismo , Ureasa/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Nitrificación , Compuestos de Amonio/química
17.
J Colloid Interface Sci ; 676: 283-297, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39029254

RESUMEN

Electrocatalytic carbon dioxide reduction (ECO2R) to formate is the most technically and economically feasible approach to achieve electrochemical CO2 value addition. Here, a few-layer graphene is prepared from vinegar residue. Then a series of heteroatom-doped vertical graphene electrodes (X-rGO, X=P/S/N/B/, NS/NP/NB, NSP/NSB/NPB/NSPB) are prepared. The NS-rGO has improved ECO2R to formate selectivity (Faraday Efficiency (FEHCOO-) = 78.7 %) thanks to the synergistic effect between N and S. Carbon quantum dots (CQDs) are introduced into the electrode, the doped heteroatoms are further removed by high-temperature to form the defects-rich electrode (NS-CQDs-rGO-1100), which has better catalytic performance (FEHCOO-=90 %, stability over 10 h) with electrochemical double layer capacitance of 12.5 mF cm-2. The intrinsic effect of heteroatom doping and defects on the ECO2R activity of the electrodes are explored by density functional theory calculation. This work broadens the field of preparation of graphene and opens the door to the development of cost-effective electrocatalysts for efficient ECO2R.

18.
Prev Nutr Food Sci ; 29(2): 220-227, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38974593

RESUMEN

Here, we aimed to isolate an acetic acid bacterium that is suitable for the production of unripe Citrus unshiu vinegar from traditional fermented vinegars. We compared the halo sizes of isolates to select a strain with superior acetic acid production capabilities and selected Komagataeibacter kakiaceti P6 (P6) as the final strain. Using Acetobacter pasteurianus CY (CY) and A. pasteurianus KACC 17058 (KACC 17058) as controls, we analyzed the total phenolic compounds, total flavonoid content, antioxidant activities, and organic acids of the selected strain to verify its suitability for acetic acid fermentation. On the 30th day of the fermentation period, P6 showed a total acidity of 4.86%, which was higher than that of control groups (CY, 4.16%; KACC 17058, 4.01%). The total phenolic compounds, total flavonoid content, 1,1-diphenyl-2-picrylhydrazyl scavenging activity, and ferric ion reducing antioxidant power values significantly increased during fermentation with P6 compared with the initial C. unshiu wine, and no significant differences were observed from the vinegars produced by CY and KACC 17058. Moreover, organic acid analysis revealed that the unripe C. unshiu vinegar produced with P6 had an acetic acid content of 26.15 mg/mL, which was significantly higher than those produced with CY and KACC 17058, indicating that the P6 strain effectively produces acetic acid without adversely affecting other quality aspects during fermentation. In conclusion, the novel P6 strain is expected to be used as a starter for fermenting unripe C. unshiu vinegar, and its excellent acetic acid production capabilities suggest potential applications for other vinegars.

19.
Pest Manag Sci ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989631

RESUMEN

BACKGROUND: Spinosyns are a group of naturally occurring and semi-synthetic insecticides with widespread utility in agriculture, including organic production systems. One example is spinetoram (Delegate), which is the only registered insecticide in New York State (for control of Drosophila melanogaster in vineyards) to which vinegar flies have not yet evolved high levels of resistance. However, low levels of resistance have been found in vineyard populations of D. melanogaster, and a highly resistant strain was obtained after only five selections (in the laboratory). We identified the nAChR α6 mutation (G275A) responsible for the resistance and developed a rapid, high-throughput assay for resistance. RESULTS: Surveys of collections made in 2023 show low levels of the resistance allele in four populations. A correlation was observed between vineyard use of spinetoram and frequency of the resistance allele, but not between county-wide use of spinosyns and frequency of the resistance allele. CONCLUSIONS: One of the sites we monitored was previously surveyed in 2019 and the frequency of the resistance allele detected in 2023 had increased. Implications of these findings to resistance management of D. melanogaster are discussed. © 2024 Society of Chemical Industry.

20.
Antibiotics (Basel) ; 13(7)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39061308

RESUMEN

Acetic acid bacteria (AAB) are major contributors to the production of fermented vinegar, offering various cultural, culinary, and health benefits. Although the residual unpasteurized AAB after vinegar production are not pathogens, these are necessary and require safety evaluations, including antibiotic resistance, before use as a starter. In this research, we investigated the antibiotic resistance profiles of 26 AAB strains, including various species of Komagataeibacter and Acetobacter, against 10 different antibiotics using the E-test method. All strains exhibited resistance to aztreonam and clindamycin. Komagataeibacter species demonstrated a 50% resistance rate to ciprofloxacin, analogous to Acetobacter species, but showed twice the resistance rates to chloramphenicol and erythromycin. Genomic analysis of K. saccharivorans CV1 identified intrinsic resistance mechanisms, such as multidrug efflux pumps, thereby enhancing our understanding of antibiotic resistance in acetic acid-producing bacteria. These findings enhance understanding of antibiotic resistance in AAB for food safety and new antimicrobial strategies, suggesting the need for standardized testing methods and molecular genetic study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA