Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38676096

RESUMEN

We propose and study a nanoscale strong coupling effect between metamaterials and polymer molecular vibrations using metallic split-ring resonators (SRRs). Specifically, we first provided a numerical investigation of the SRR design, which was followed by an experimental demonstration of strong coupling between mid-infrared magnetic dipole resonance supported by the SRRs fabricated on a calcium fluoride substrate and polymethyl methacrylate molecular vibrations at 1730 cm-1. Characterized by the anti-crossing feature and spectral splitting behaviors in the transmission spectra, these results demonstrate efficient nanoscale manipulation of light-matter interactions between phonon vibrations and metamaterials.

2.
Ultrasonics ; 135: 107110, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37499283

RESUMEN

We investigate the effect of amplitude-modulated acoustic irradiation on the dynamics of a charged bubble vibrating in a liquid. We show that the potential V(x) of the bubble, and the number and stability of its equilibria, depend on the magnitude of the charge it carries. Under high-frequency amplitude-modulation, a modulation threshold, Gth, was found for the onset of increased bubble amplitude oscillations. For some pressure field values, charge can facilitate the control of chaotic dynamics via reversed period-doubling bifurcation sequences. There is evidence for peak-shouldering and shock waves. The Mach number increases rapidly with the drive amplitude G. In the supersonic regime, for G>1.90Pa, the high-frequency modulation raises both Blake's and the transient cavitation thresholds. We found a decrease in the bubble's maximum charge threshold, and threshold modulation amplitude for the occurrence Vibrational resonance (VR). VR occurs due to the modulated oscillatory pressure field, and the influence on VR of the electrostatic charge, and other parameters of the system are investigated. In contrast to the cases of VR reported earlier, where the amplitude G of the high-frequency driving is typically much higher than the amplitude of the low-frequency driving (Ps), the VR resonance peaks occur here at relatively low G values (0

3.
Molecules ; 28(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36903532

RESUMEN

In this contribution, we report a computational study of the vibrational Resonance Raman (vRR) spectra of cytosine in water, on the grounds of potential energy surfaces (PES) computed by time-dependent density functional theory (TD-DFT) and CAM-B3LYP and PBE0 functionals. Cytosine is interesting because it is characterized by several close-lying and coupled electronic states, challenging the approach commonly used to compute the vRR for systems where the excitation frequency is in quasi-resonance with a single state. We adopt two recently developed time-dependent approaches, based either on quantum dynamical numerical propagations of vibronic wavepackets on coupled PES or on analytical correlation functions for cases in which inter-state couplings were neglected. In this way, we compute the vRR spectra, considering the quasi-resonance with the eight lowest-energy excited states, disentangling the role of their inter-state couplings from the mere interference of their different contributions to the transition polarizability. We show that these effects are only moderate in the excitation energy range explored by experiments, where the spectral patterns can be rationalized from the simple analysis of displacements of the equilibrium positions along the different states. Conversely, at higher energies, interference and inter-state couplings play a major role, and the adoption of a fully non-adiabatic approach is strongly recommended. We also investigate the effect of specific solute-solvent interactions on the vRR spectra, by considering a cluster of cytosine, hydrogen-bonded by six water molecules, and embedded in a polarizable continuum. We show that their inclusion remarkably improves the agreement with the experiments, mainly altering the composition of the normal modes, in terms of internal valence coordinates. We also document cases, mostly for low-frequency modes, in which a cluster model is not sufficient, and more elaborate mixed quantum classical approaches, in explicit solvent models, need to be applied.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122071, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36455465

RESUMEN

The large order Rayleigh-Schrödinger perturbation theory (RSPT) was applied for calculating vibrational states of linear molecules. Two molecules (CO2 and C2H2) were used as test cases with using of isomorphic Watson Hamiltonian and quartic force fields. For CO2 the Sayvetz condition can remove all degeneracies for purely vibrational states and the non-degenerate perturbation theory can be applied. However, an existence of two degenerate modes in C2H2 requires using the upgraded degenerate version of RSPT that was employed in this context for the first time. The dominating divergent behavior of such series requires the resummation technique that mimics the multivalued nature of the underlying solutions, and the applied quartic Padé-Hermite approximants (QPHA) provided full solution of the problem. Moreover, some mathematical properties of QPHA proved to be an efficient tool for studying resonance effects through the Katz theorem that controls the singular points of the eigenvalues on the complex plane. In the case of C2H2, not only all earlier observed classical resonances were confirmed and quantified, but also subtle interpolyad resonances (K2/55,K3/4555), proposed recently by Herman (2011) were described as well. Following the analysis, we found several novel resonances, of which we proposed one independent interpolyad resonance K2/4444. The complete analysis of such critical points provided the full resonance picture of all studied molecules.

5.
Nano Lett ; 21(19): 8311-8316, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34550705

RESUMEN

Vibrational resonance is a generic phenomenon found in many different bistable systems whereby a weak low-frequency signal is amplified by use of an additional nonresonant high-frequency modulation. The realization of weak signal enhancement in integrated nonlinear optical nanocavities is of great interest for nanophotonic applications where optical signals may be of low power. Here, we report experimental observation of vibrational resonance in a thermo-optically bistable photonic crystal optomechanical resonator with an amplification up to +16 dB. The characterization of the bistability can interestingly be done using a mechanical resonance of the membrane, which is submitted to a strong thermoelastic coupling with the cavity.

6.
Philos Trans A Math Phys Eng Sci ; 379(2198): 20200240, 2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-33840210

RESUMEN

In this paper, we first propose a brief overview of nonlinear resonance applications in the context of image processing. Next, we introduce a threshold detector based on these resonance properties to investigate the perception of subthreshold noisy images. By considering a random perturbation, we revisit the well-known stochastic resonance (SR) detector whose best performances are achieved when the noise intensity is tuned to an optimal value. We then introduce a vibrational resonance detector by replacing the noisy perturbation with a spatial high-frequency signal. To enhance the image perception through this detector, it is shown that the noise level of the input images must be lower than the optimal noise value of the SR-based detector. Under these conditions, considering the same noise level for both detectors, we establish that the vibrational resonance (VR)-based detector significantly outperforms the SR-based detector in terms of image perception. Moreover, we show that whatever the perturbation amplitude, the best perception through the VR detector is ensured when the perturbation frequency exceeds the image size. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.

7.
Philos Trans A Math Phys Eng Sci ; 379(2198): 20200267, 2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-33840211

RESUMEN

Recent findings have revealed that not only neurons but also astrocytes, a special type of glial cells, are major players of neuronal information processing. It is now widely accepted that they contribute to the regulation of their microenvironment by cross-talking with neurons via gliotransmitters. In this context, we here study the phenomenon of vibrational resonance in neurons by considering their interaction with astrocytes. Our analysis of a neuron-astrocyte pair reveals that intracellular dynamics of astrocytes can induce a double vibrational resonance effect in the weak signal detection performance of a neuron, exhibiting two distinct wells centred at different high-frequency driving amplitudes. We also identify the underlying mechanism of this behaviour, showing that the interaction of widely separated time scales of neurons, astrocytes and driving signals is the key factor for the emergence and control of double vibrational resonance. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.

8.
Philos Trans A Math Phys Eng Sci ; 379(2198): 20200245, 2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-33840212

RESUMEN

Energy harvesting of ambient vibrations using a combination of a mechanical structure (oscillator) and an electrical transducer has become a valuable technique for powering small wireless sensors. Bistable mechanical oscillators have recently attracted the attention of researchers as they can be used to harvest energy within a wider band of frequencies. In this study, the response of a bistable harvester to different forms of ambient vibration is analysed. In particular, harmonic noise, which has a narrow spectrum, similarly to harmonic signals, yet is stochastic, like broad-spectrum white noise, is considered. Links between bistable harvester responses and stochastic and vibrational resonance are explored. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.

9.
Philos Trans A Math Phys Eng Sci ; 379(2198): 20200236, 2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-33840216

RESUMEN

The concept of resonance in nonlinear systems is crucial and traditionally refers to a specific realization of maximum response provoked by a particular external perturbation. Depending on the system and the nature of perturbation, many different resonance types have been identified in various fields of science. A prominent example is in neuroscience where it has been widely accepted that a neural system may exhibit resonances at microscopic, mesoscopic and macroscopic scales and benefit from such resonances in various tasks. In this context, the two well-known forms are stochastic and vibrational resonance phenomena which manifest that detection and propagation of a feeble information signal in neural structures can be enhanced by additional perturbations via these two resonance mechanisms. Given the importance of network architecture in proper functioning of the nervous system, we here present a review of recent studies on stochastic and vibrational resonance phenomena in neuronal media, focusing mainly on their emergence in complex networks of neurons as well as in simple network structures that represent local behaviours of neuron communities. From this perspective, we aim to provide a secure guide by including theoretical and experimental approaches that analyse in detail possible reasons and necessary conditions for the appearance of stochastic resonance and vibrational resonance in neural systems. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.


Asunto(s)
Modelos Neurológicos , Red Nerviosa/fisiología , Neuronas/fisiología , Animales , Simulación por Computador , Conectoma/estadística & datos numéricos , Fenómenos Electrofisiológicos , Neuroimagen Funcional , Humanos , Conceptos Matemáticos , Dinámicas no Lineales , Procesos Estocásticos , Transmisión Sináptica/fisiología , Vibración
10.
Philos Trans A Math Phys Eng Sci ; 379(2198): 20210003, 2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-33840217

RESUMEN

Nonlinearity is ubiquitous in both natural and engineering systems. The resultant dynamics has emerged as a multidisciplinary field that has been very extensively investigated, due partly to the potential occurrence of nonlinear phenomena in all branches of sciences, engineering and medicine. Driving nonlinear systems with external excitations can yield a plethora of intriguing and important phenomena-one of the most prominent being that of resonance. In the presence of additional harmonic or stochastic excitation, two exotic forms of resonance can arise: vibrational resonance or stochastic resonance, respectively. Several promising state-of-the-art technologies that were not covered in part 2 of this theme issue are discussed here. They include inter alia the improvement of image quality, the design of machines and devices that exert vibrations on materials, the harvesting of energy from various forms of ambient vibration and control of aerodynamic instabilities. They form an important part of the theme issue as a whole, which is dedicated to an overview of vibrational and stochastic resonances in driven nonlinear systems. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.

11.
Philos Trans A Math Phys Eng Sci ; 379(2192): 20200241, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33455547

RESUMEN

The paper presents the results of the experimental study of an application of the phenomenon of vibrational resonance (VR) for enhancement of the response of a bistable vertical-cavity surface-emitting laser (VCSEL) to the effect of optical modulating signals. Specifically, two different cases were investigated: (a) the control of all-optical switching caused by a modulated orthogonal optical injection from another VCSEL and (b) the amplification of autodyne signals from a vibrating diffusely reflecting surface in the self-mixing optical interferometry. It is experimentally demonstrated that an application of the phenomenon of VR in both cases studied leads to a strong amplification of the input optical signals by a factor from 10 to 200 depending on the experimental conditions with respect to the initial values. The effect of the asymmetry of a bistable potential on the amplification factor was also studied. The results obtained can be used to improve all-optical switchings for application in communication systems and enhancement of autodyne signals in self-mixing optical interferometry. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 1)'.

12.
Philos Trans A Math Phys Eng Sci ; 379(2192): 20200232, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33455549

RESUMEN

Combined effects of the damping and forcing in the underdamped time-delayed Duffing oscillator are considered in this paper. We analyse the generation of a certain damping-induced unpredictability due to the gradual suppression of interwell oscillations. We find the minimal amount of the forcing amplitude and the right forcing frequency to revert the effect of the dissipation, so that the interwell oscillations can be restored, for different time delay values. This is achieved by using the delay-induced resonance, in which the time delay replaces one of the two periodic forcings present in the vibrational resonance. A discussion in terms of the time delay of the critical values of the forcing for which the delay-induced resonance can tame the dissipation effect is finally carried out. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 1)'.

13.
Philos Trans A Math Phys Eng Sci ; 379(2192): 20200231, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33455551

RESUMEN

We consider a two-level quantum system interacting with two classical time-periodic electromagnetic fields. The frequency of one of the fields far exceeds that of the other. The effect of the high-frequency field can be averaged out of the dynamics to realize an effective transition frequency of the field-dressed two-level system. We examine the linear response, second harmonic response and Stokes and anti-Stokes Raman response of the dressed two-level system, to the weak frequency field. The vibrational resonance enhancement in each case is demonstrated for optimal strength of the high-frequency field. Our theoretical scheme is corroborated by full numerical simulation of the two-level, two-field dynamics governed by loss-free Bloch equations. We suggest that quantum optics can offer an interesting arena for the study of the vibrational resonance. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 1)'.

14.
Philos Trans A Math Phys Eng Sci ; 379(2192): 20200227, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33455553

RESUMEN

The vibrational resonance (VR) phenomenon has received a great deal of research attention over the two decades since its introduction. The wide range of theoretical and experimental results obtained has, however, been confined to VR in systems with constant mass. We now extend the VR formalism to encompass systems with position-dependent mass (PDM). We consider a generalized classical counterpart of the quantum mechanical nonlinear oscillator with PDM. By developing a theoretical framework for determining the response amplitude of PDM systems, we examine and analyse their VR phenomenona, obtain conditions for the occurrence of resonances, show that the role played by PDM can be both inductive and contributory, and suggest that PDM effects could usefully be explored to maximize the efficiency of devices being operated in VR modes. Our analysis suggests new directions for the investigation of VR in a general class of PDM systems. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 1)'.

15.
Philos Trans A Math Phys Eng Sci ; 379(2192): 20200226, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33455554

RESUMEN

Nonlinear systems are abundant in nature. Their dynamics have been investigated very extensively, motivated partly by their multidisciplinary applicability, ranging from all branches of physical and mathematical sciences through engineering to the life sciences and medicine. When driven by external forces, nonlinear systems can exhibit a plethora of interesting and important properties-one of the most prominent being that of resonance. In the presence of a second, higher frequency, driving force, whether stochastic or deterministic/periodic, a resonance phenomenon arises that can generally be termed stochastic resonance or vibrational resonance. Operating a system in or out of resonance promises applications in several advanced technologies, such as the creation of novel materials at the nano, micro and macroscales including, but not limited to, materials having photonic band gaps, quantum control of atoms and molecules as well as miniature condensed matter systems. Motivated in part by these potential applications, this 2-part Theme Issue provides a concrete up-to-date overview of vibrational and stochastic resonances in driven nonlinear systems. It assembles state-of-the-art, original contributions on such induced resonances-addressing their analysis, occurrence and applications from either the theoretical, numerical or experimental perspectives, or through combinations of these. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 1)'.

16.
Philos Trans A Math Phys Eng Sci ; 379(2192): 20200235, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33455555

RESUMEN

Vibrational resonance (VR) intentionally applies high-frequency periodic vibrations to a nonlinear system, in order to obtain enhanced efficiency for a number of information processing tasks. Note that VR is analogous to stochastic resonance where enhanced processing is sought via purposeful addition of a random noise instead of deterministic high-frequency vibrations. Comparatively, due to its ease of implementation, VR provides a valuable approach for nonlinear signal processing, through detailed modalities that are still under investigation. In this paper, VR is investigated in arrays of nonlinear processing devices, where a range of high-frequency sinusoidal vibrations of the same amplitude at different frequencies are injected and shown capable of enhancing the efficiency for estimating unknown signal parameters or for detecting weak signals in noise. In addition, it is observed that high-frequency vibrations with differing frequencies can be considered, at the sampling times, as independent random variables. This property allows us here to develop a probabilistic analysis-much like in stochastic resonance-and to obtain a theoretical basis for the VR effect and its optimization for signal processing. These results provide additional insight for controlling the capabilities of VR for nonlinear signal processing. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 1)'.

17.
Rep Prog Phys ; 84(8)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-33434894

RESUMEN

The introduction of engineered resonance phenomena on surfaces has opened a new frontier in surface science and technology. Pillared phononic crystals, metamaterials, and metasurfaces are an emerging class of artificial structured media, featuring surfaces that consist of pillars-or branching substructures-standing on a plate or a substrate. A pillared phononic crystal exhibits Bragg band gaps, while a pillared metamaterial may feature both Bragg band gaps and local resonance hybridization band gaps. These two band-gap phenomena, along with other unique wave dispersion characteristics, have been exploited for a variety of applications spanning a range of length scales and covering multiple disciplines in applied physics and engineering, particularly in elastodynamics and acoustics. The intrinsic placement of pillars on a semi-infinite surface-yielding a metasurface-has similarly provided new avenues for the control and manipulation of wave propagation. Classical waves are admitted in pillared media, including Lamb waves in plates and Rayleigh and Love waves along the surfaces of substrates, ranging in frequency from hertz to several gigahertz. With the presence of the pillars, these waves couple with surface resonances richly creating new phenomena and properties in the subwavelength regime and in some applications at higher frequencies as well. At the nanoscale, it was shown that atomic-scale resonances-stemming from nanopillars-alter the fundamental nature of conductive thermal transport by reducing the group velocities and generating mode localizations across the entire spectrum of the constituent material well into the terahertz regime. In this article, we first overview the history and development of pillared materials, then provide a detailed synopsis of a selection of key research topics that involve the utilization of pillars or similar branching substructures in different contexts. Finally, we conclude by providing a short summary and some perspectives on the state of the field and its promise for further future development.

18.
Proc Natl Acad Sci U S A ; 116(37): 18263-18268, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30093387

RESUMEN

Recent work suggests that the long-lived coherences observed in both natural and artificial light-harvesting systems (such as the Fenna-Matthews-Olson complex) could be attributed to the mixing of the pigments' electronic and vibrational degrees of freedom. To investigate the underlying mechanism of these long coherence lifetimes, a sophisticated description of interactions between the molecular aggregates and the nonequilibrium fluctuations in the surrounding environment is necessary. This is done by implementing the hierarchical equations of motion approach on model homodimers, a method used in the intermediate coupling regime for many molecular aggregates wherein the nonequilibrium environment phonons play nontrivial roles in exciton dynamics. Here we report a character change in the vibronic states-reflective of property mixing between the electronic and vibrational states-induced by an interplay between system coupling parameters within the exciton-vibrational near-resonance regime. This mixing dictates vital aspects of coherence lifetime; by tracking the degree of mixing, we are able to elucidate the relationship between coherence lifetime and both the electronic energy fluctuation and the vibrational relaxation dephasing pathways.

19.
Cogn Neurodyn ; 12(5): 509-518, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30250629

RESUMEN

A randomly connected network is constructed with similar characteristics (e.g., the ratio of excitatory and inhibitory neurons, the connection probability between neurons, and the axonal conduction delays) as that in the mammalian neocortex and the effects of high-frequency electrical field on the response of the network to a subthreshold low-frequency electrical field are studied in detail. It is found that both the amplitude and frequency of the high-frequency electrical field can modulate the response of the network to the low-frequency electric field. Moreover, vibrational resonance (VR) phenomenon induced by the two types of electrical fields can also be influenced by the network parameters, such as the neuron population, the connection probability between neurons and the synaptic strength. It is interesting that VR is found to be related with the ratio of excitatory neurons that are under high-frequency electrical stimuli. In summary, it is suggested that the interaction of excitatory and inhibitory currents is also an important factor that can influence the performance of VR in neural networks.

20.
Artículo en Inglés | MEDLINE | ID: mdl-28800431

RESUMEN

A new gas-phase infrared (IR) spectrum of acryloyl fluoride (ACRF, CH2CHCFO) with a resolution of 0.1cm-1 in the range 4000-450cm-1 was measured. Theoretical ab initio molecular structures, full quartic potential energy surfaces (PES), and cubic surfaces of dipole moments and polarizability tensor components (electro-optical properties, EOP) of the s-trans and s-cis conformers of the ACRF were calculated by the second-order Møller-Plesset electronic perturbation theory with a correlation consistent Dunning triple-ζ basis set. The numerical-analytic implementation of the second-order operator canonical Van Vleck perturbation theory was employed for predicting anharmonic IR and Raman scattering (RS) spectra of ACRF. To improve the anharmonic predictions, harmonic frequencies were replaced by their counterparts evaluated with the higher-level CCSD(T)/cc-pVTZ model, to form a "hybrid" PES. The original operator representation of the Hamiltonian is analytically reduced to a quasi-diagonal form, integrated in the harmonic oscillator basis and diagonalized to account for strong resonance couplings. Double canonical transformations of EOP expansions enabled prediction of integral intensities of both fundamental and multi-quanta transitions in IR/RS spectra. Enhanced band shape analysis reinforced the assignments. A thorough interpretation of the new IR experimental spectra and existing matrix-isolation literature data for the mixture of two conformers of ACRF was accomplished, and a number of assignments clarified.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA