Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39270707

RESUMEN

The present work provides insight into the structural, vibrational, and elastic properties of scheelite-type alkali-metal perrhenates AReO4 (A = Na, K, Rb, Cs) from first-principles calculations. Sodium, potassium, and rubidium perrhenates are isostructural and crystallize in a tetragonal structure whereas caesium perrhenate crystallizes in an orthorhombic structure. All phonon frequencies and their corresponding mode assignments were estimated, through the linear response method within density-functional-perturbation theory. The phonon density of states highlights the predominant participation of the oxygen anions and both the A-type and rhenium (Re) cations in the low-frequency range. In contrast, oxygen and Re atoms exhibit higher and moderate contributions to the remaining phonon frequency spectrum. Considerable splitting of the longitudinal and traverse optic modes was observed. Elastic constants and phonon dispersion calculations confirm the mechanical and dynamical stability of all the studied AReO4 compounds. A redshift was observed due in the frequency of the phonons following the sequence Na→Cs. The calculated low bulk modulus (ranging from 28.36 GPa to 14.15 GPa) and shear modulus values indicate a low resistance to deformation of the perrhenates. The values of these moduli decrease in the order of Na→Cs which is associated with the increase in the ionic radius of the anion. The response to pressure was found to be anisotropic. This characteristic and the ductile nature of the alkali-metal perrhenates, were confirmed through an elastic analysis. .

2.
J Mol Model ; 30(10): 321, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225948

RESUMEN

CONTEXT AND RESULTS: The structure, mechanical, electronic, vibration, and hydrogen bonding properties of a novel high-energy and low-sensitivity 5, 5'-dinitroamino-3, 3'-azo-oxadiazole 4, 7-diaminopyridazino [4, 5-c] furoxan salt have been studied by density functional theory. The calculated vibrational properties show that the low-frequency mode is mainly contributed by the vibration of the -NO2 group, and the high-frequency mode is mainly contributed by the vibration of the -NH2 group and the N7-H3 bond which protonates the cation. In addition, it is analyzed that the first bond to break may be the N-NO2 bond. The calculated hydrogen bond properties indicate that the hydrogen bond between water molecules and cations is N7-H3… O5 (1.563 Å), which is the shortest hydrogen bond among all hydrogen bonds. The presence of this exceptionally short hydrogen bond renders the N7-H3 and H6-O5 bonds resistant to disruption at high frequencies, underscoring the pivotal role of hydrogen bonding in stabilizing the structure of energetic materials. Given the absence of experimental and theoretical data on the electronic, mechanical, and vibrational properties of the material thus far, our calculations offer valuable theoretical insights into the ionic salts of high energy and low sensitivity. COMPUTATIONAL METHODS: All calculations have been carried out based on density functional theory (DFT) and implemented in the CASTEP code. The mode-conserving pseudopotential is utilized to describe the plane wave expansion function, while the PBE functional within the generalized gradient approximation (GGA) is employed to characterize the exchange-correlation interaction. Additionally, dispersion correction is applied using Grimme's DFT-D method.

3.
J Mol Model ; 30(9): 304, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120824

RESUMEN

CONTEXT: Energy-containing materials such as explosives have attracted considerable interest recently. In the field of high-energy materials, tetrazine and its derivatives can largely meet the requirements of high nitrogen content and oxygen balance. Nitrogen-rich energetic salts are important research subjects. Nitrogen-rich salt of 3,6-dinitramino-1,2,4,5-tetrazine is a high-energy nitrogen-rich material, but there are few related studies. This paper systematically studies the crystal structure and electronic, vibrational, and thermodynamic properties of (NH4)2(DNAT). The lattice parameters of (NH4)2(DNAT) are observed to align well with the experimental values. The properties of electrons are analyzed by band structure and density of states (DOS). The phonon dispersion curves indicate that the compound is dynamically stable. The vibrational modes of bonds and chemical groups are described in detail, and the peaks in the Raman and infrared spectra are assigned to different vibration modes. Based on the vibration characteristics, thermodynamic properties such as enthalpy (H), Helmholtz free energy (F), entropy (S), Gibbs free energy (G), constant volume heat capacity (CV), and Debye temperature (Θ) are analyzed. This article can pave the way for subsequent work or provide data support to other researchers, promoting further research. METHODS: In this study, we utilized the density functional theory (DFT) for our calculations. The exchange-correlation potential and van der Waals interactions were characterized based on the GGA-PBE + G function calculation. We obtained Brillouin zone integrals using Monkhorst-Pack k-point grids, with the k-point of the Brillouin zone set to a 2 × 2 × 2 grid. During the self-consistent field operation, we set the total energy convergence tolerance to 5 × 10-6 eV per atom. The cut-off energy for the calculation was established at 830 eV. Additionally, the states of H (1s1), C (2s2 2p2), N (2s2 2p3), and O (2s2 2p4) were treated as valence electrons in our study.

4.
Appl Spectrosc ; : 37028241267938, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39094005

RESUMEN

This study investigates the combined effects of nanoscale surface roughness and electron-phonon interaction on the vibrational modes of cadmium telluride (CdTe) using resonant Raman spectroscopy. Raman spectra simulations aided in identifying the active phonon modes and their dependence on roughness. Our results reveal that increasing surface roughness leads to an asymmetric line shape in the first-order longitudinal optical (1LO) phonon mode, attributed to an increase in the electron-phonon interaction. This asymmetry broadens the entire Raman spectrum. Conversely, the overtone (second-order longitudinal optical [2LO]) mode exhibits a symmetrical line shape that intensifies with roughness. Additionally, we identify and discuss the contributions of surface optical phonon mode and multiphonon modes to the Raman spectra, highlighting their dependence on roughness. This work offers a deeper understanding of how surface roughness and electron-phonon scattering influence the line shape of CdTe resonant Raman spectra, providing valuable insights into its vibrational properties.

5.
J Phys Condens Matter ; 36(39)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38914097

RESUMEN

Discovering high thermal conductivity materials is essential for various practical applications, particularly in electronic cooling. The significance of two-dimensional (2D) materials lies in their unique properties that emerge due to their reduced dimensionality, making them highly promising for a wide range of applications. Hexagonal boron nitride (BN), both monolayer and bilayer forms, has garnered attention for its fascinating properties. In this work, we focus on bilayer boron phosphide (BP), which is isostructural to its BN analogue. The lattice thermal conductivity of both bilayer BN and BP have been calculated usingab-initiodensity functional theory, machine learning with the moment tensor potential method, and the temperature-dependent effective-potential method (TDEP). The TDEP approach gives more accurate results for both BN and BP materials. The lattice thermal conductivity of bilayer BP is lower than that of bilayer BN at room temperature, attributed to increased phonon anharmonicity. This study highlights the importance of understanding phonon scattering mechanisms in determining the thermal conductivity of 2D materials, contributing to the broader understanding and potential applications of these materials in future technologies.

6.
J Phys Condens Matter ; 36(36)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38776956

RESUMEN

Sb2Te3, a binary chalcogenide-based 3D topological insulator, attracts significant attention for its exceptional thermoelectric performance. We report the vibrational properties of magnetically doped Sb2Te3thermoelectric material. Ni doping induces defect/disorder in the system and plays a positive role in engineering the thermoelectric properties through tuning the vibrational phonon modes. Synchrotron powder x-ray diffraction study confirms good crystalline quality and single-phase nature of the synthesized samples. The change in structural parameters, includingBisoand strain, further corroborate with structural disorder. Detailed modification of phonon modes with doping and temperature variation is analysed from temperature-dependent Raman spectroscopic measurement. Compressive lattice strain is observed from the blue shift of Raman peaks owing to Ni incorporation in Sb site. An attempt is made to extract the lattice thermal conductivity from total thermal conductivity estimated through optothermal Raman studies. Hall concentration data support the change in temperature-dependent resistivity and thermopower. Remarkable increase in thermopower is observed after Ni doping. Simulation of the Pisarenko model, indicating the convergence of the valence band, explains the observed enhancement of thermopower in Sb2-xNixTe3. The energy gap between the light and heavy valence band at Γ point is found to be 30 meV (for Sb2Te3), which is reduced to 3 meV (in Sb1.98Ni0.02Te3). A significant increase in thermoelectric power factor is obtained from 715 µWm-1K-2for pristine Sb2Te3to 2415 µWm-1K-2for Ni-doped Sb2Te3sample. Finally, the thermoelectric figure of merit,ZTis found to increase by four times in Sb1.98Ni0.02Te3than that of its pristine counterpart.

7.
J Phys Condens Matter ; 36(28)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38579735

RESUMEN

Disorder hyperuniformity is a recently discovered exotic state of many-body systems that possess a hidden order in between that of a perfect crystal and a completely disordered system. Recently, this novel disordered state has been observed in a number of quantum materials including amorphous 2D graphene and silica, which are endowed with unexpected electronic transport properties. Here, we numerically investigate 1D atomic chain models, including perfect crystalline, disordered stealthy hyperuniform (SHU) as well as randomly perturbed atom packing configurations to obtain a quantitative understanding of how the unique SHU disorder affects the vibrational properties of these low-dimensional materials. We find that the disordered SHU chains possess lower cohesive energies compared to the randomly perturbed chains, implying their potential reliability in experiments. Our inverse partition ratio (IPR) calculations indicate that the SHU chains can support fully delocalized states just like perfect crystalline chains over a wide range of frequencies, i.e.ω∈(0,100)cm-1, suggesting superior phonon transport behaviors within these frequencies, which was traditionally considered impossible in disordered systems. Interestingly, we observe the emergence of a group of highly localized states associated withω∼200cm-1, which is characterized by a significant peak in the IPR and a peak in phonon density of states at the corresponding frequency, and is potentially useful for decoupling electron and phonon degrees of freedom. These unique properties of disordered SHU chains have implications in the design and engineering of novel quantum materials for thermal and phononic applications.

8.
Molecules ; 29(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38675673

RESUMEN

Layered double hydroxides (LDHs) are fascinating clay-like materials that display versatile properties, making them an extremely fertile playground for diverse applications, ranging from bio-compatible materials to the pharmaceutical industry to catalysis and photocatalysis. When intercalating organic and bio-organic species between the inorganic layers, such materials are named hybrid LDHs. The structure-property relation in these systems is particularly relevant, since most of the properties of the materials may be fine-tuned if a comprehensive understanding of the microscopic structure in the interlamellar space is achieved, especially with respect to the reorganization under water uptake (swelling). In this work, we combined experiments and simulations to rationalize the behavior of LDHs intercalating three carboxylates, the general structure of which can be given as [Mg4Al2(OH)12]A2-·XH2O (with A2- = succinate, aspartate, or glutamate and X representing increasing water content). Following this strategy, we were able to provide an interpretation of the different shapes observed for the experimental water adsorption isotherms and for the evolution of the infrared carboxylate band of the anions. Apart from small differences, due to the different reorganization of the conformational space under confinement, the behavior of the two amino acids is very similar. However, such behavior is quite different in the case of succinate. We were able to describe the different response of the anions, which has a significant impact on the isotherm and on the size of the interlamellar region, in terms of a different interaction mechanism with the inorganic layer.

9.
Sci Rep ; 14(1): 5114, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429395

RESUMEN

A three-dimensional finite element model is used to investigate the vibrational properties of double-walled silicon carbide nano-cones with various dimensions. The dependence of the vibrational properties of double-walled silicon carbide nano-cones on their length, apex angles and boundary conditions are evaluated. Current model consists a combination of beam and spring elements that simulates the interatomic interactions of bonding and nonbonding. The Lennard-Jones potential is employed to model the interactions between two non-bonding atoms. The fundamental frequency and mode shape of the double-walled silicon carbide nano-cones are calculated.

10.
J Phys Condens Matter ; 36(21)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38354421

RESUMEN

In this study, the freestanding form of ultra-thin CuI crystals, which have recently been synthesized experimentally, and their strain-dependent properties are investigated by means of density functional theory calculations. Structural optimizations show that CuI crystallizes in a double-layered hexagonal crystal (DLHC) structure. While phonon calculations predict that DLHC CuI crystals are dynamically stable, subsequent vibrational spectrum analyzes reveal that this structure has four unique Raman-active modes, allowing it to be easily distinguished from similar ultra-thin two-dimensional materials. Electronically, DLHC CuI is found to be a semiconductor with a direct band gap of 3.24 eV which is larger than that of its wurtzite and zincblende phases. Furthermore, it is found that in both armchair (AC) and zigzag (ZZ) orientations the elastic instabilities occur over the high strain strengths indicating the soft nature of CuI layer. In addition, the stress-strain curve along the AC direction reveal that DLHC CuI undergoes a structural phase transition between the 4% and 5% tensile uniaxial strains as indicated by a sudden drop of the stress in the lattice. Moreover, the phonon band dispersions show that the phononic instability occurs at much smaller strain along the ZZ direction than that of along the AC direction. Furthermore, the external strain direction can be deduced from the predicted Raman spectra through the splitting rates of the doubly degenerate in-plane vibrations. The mobility of the hole carriers display highly anisotropic characteristic as the applied strain reaches 5% along the AC direction. Due to its anomalous strain-dependent electronic features and elastically soft nature, DLHC of CuI is a potential candidate for future electro-mechanical applications.

11.
Nanomaterials (Basel) ; 14(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38334542

RESUMEN

We report on DFT-TDDFT studies of the structural, electronic and vibrational properties of B24N24 nanocapsules and the effect of encapsulation of homonuclear diatomic halogens (Cl2, Br2 and I2) and chalcogens (S2 and Se2) on the interaction of the B24N24 nanocapsules with the divalent magnesium cation. In particular, to foretell whether these BN nanostructures could be proper negative electrodes for magnesium-ion batteries, the structural, vibrational and electronic properties, as well as the interaction energy and the cell voltage, which is important for applications, have been computed for each system, highlighting their differences and similarities. The encapsulation of halogen and chalcogen diatomic molecules increases the cell voltage, with an effect enhanced down groups 16 and 17 of the periodic table, leading to better performing anodes and fulfilling a remarkable cell voltage of 3.61 V for the iodine-encapsulated system.

12.
Materials (Basel) ; 16(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37687674

RESUMEN

This paper presents an improved theoretical view of ab initio thermodynamics for polar GaN surfaces under gallium-rich conditions. The study uses density functional theory (DFT) calculations to systematically investigate the adsorption of gallium atoms on GaN polar surfaces, starting from the clean surface and progressing to the metallic multilayer. First principles phonon calculations are performed to determine vibrational free energies. Changes in the chemical potential of gallium adatoms are determined as a function of temperature and surface coverage. Three distinct ranges of Ga coverage with very low, medium, and high chemical potential are observed on the GaN(000-1) surface, while only two ranges with medium and high chemical potential are observed on the GaN(000-1) surface. The analysis confirms that a monolayer of Ga adatoms on the GaN(000-1) surface is highly stable over a wide range of temperatures. For a second adlayer at higher temperatures, it is energetically more favorable to form liquid droplets than a uniform crystalline adlayer. The second Ga layer on the GaN(0001) surface shows pseudo-crystalline properties even at a relatively high temperature. These results provide a better thermodynamic description of the surface state under conditions typical for molecular beam epitaxy and offer an interpretation of the observed growth window.

13.
PNAS Nexus ; 2(9): pgad289, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37746327

RESUMEN

We show through simulations of amorphous solids prepared in open-boundary conditions that they possess significantly fewer low-frequency vibrational modes compared to their periodic boundary counterparts. Specifically, using measurements of the vibrational density of states, we find that the D(ω)∼ω4 law changes to D(ω)∼ωδ with δ≈5 in two dimensions and δ≈4.5 in three dimensions. Crucially, this enhanced stability is achieved when utilizing slow annealing protocols to generate solid configurations. We perform an anharmonic analysis of the minima corresponding to the lowest frequency modes in such open-boundary systems and discuss their correlation with the density of states. A study of various system sizes further reveals that small systems display a higher degree of localization in vibrations. Lastly, we confine open-boundary solids in order to introduce macroscopic stresses in the system, which are absent in the unconfined system and find that the D(ω)∼ω4 behavior is recovered.

14.
Nanotechnology ; 34(46)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37567162

RESUMEN

The structural evolution of black arsenic-phosphorous (b-AsxP1-x) alloys with varying arsenic concentrations was investigated under hydrostatic pressure usingin situRaman spectroscopy. High-pressure experiments were conducted using a diamond anvil cell, which revealed pressure-induced shifts in vibrational modes associated with P-P bonds (A1g,A2g,B2g), As-As bonds (A1g,A2g,B2g), and As-P bonds in b-AsxP1-xalloys. Two distinct pressure regimes were observed. In the first regime (region I), all vibrational modes exhibited a monotonic upshift, indicating phonon hardening due to hydrostatic pressure. In the second regime (region II), As0.4P0.6and As0.6P0.4alloys displayed a linear blueshift (or negligible change in some modes) at a reduced rate, suggesting local structural reorganization with less compression on the bonds. Notably, the alloy with the highest As concentration, As0.8P0.2, exhibited anomalous behavior in the second pressure regime, with a downward shift observed in all As-As and As-P Raman modes (and some P-P modes). Interestingly, the emergence of new peaks corresponding to theEgmode andA1gmode of the gray-As phase was observed in this pressure range, indicating compressive strain-induced structural changes. The anomalous change in region II confirms the formation of a new local structure, characterized by elongation of the P-P, As-As, and As-P bonds along the zigzag direction within the b-AsxP1-xphase, possibly near the grain boundary. Additionally, a gray-As phase undergoes compressive structural changes. This study underscores the significance of pressure in inducing structural transformations and exploring novel phases in two-dimensional materials, including b-AsxP1-xalloys.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123170, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37517265

RESUMEN

Currently, only one crystal structure of LLM-105 (2,6-diamino-3,5-dinitropyrazine-1-oxide) (P21/n) has been discovered, and there are still debates on its phase transition point and phase diagram. Based on previous work, we performed crystal structure, Raman spectra, and vibrational properties calculations on LLM-105 crystal. Our results indicate that the crystal structure of LLM-105 remains stable until compressed to 49 GPa, beyond which it may undergo two phase transitions at pressure intervals of 49.0-49.1 GPa and 51.4-51.5 GPa, respectively. Analysis of Raman shift results suggests that these two phase transitions may be reversible, with an intermediate phase possibly acting as a transition phase. Additionally, based on the quasi-harmonic approximation, we fitted the experimental data of LLM-105 lattice expansion state, obtaining the volume at zero pressure and using it for Raman spectra calculations. The results demonstrated the accuracy of this quasi-harmonic approximation method in describing the redshift of Raman peaks during the heating process and the excitation ratio of Raman peaks in different wavenumber ranges.

16.
J Comput Chem ; 44(23): 1898-1911, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37300426

RESUMEN

The presence of carboxyl groups in a molecule delivers an affinity to metal cations and a sensitivity to the chemical environment, especially for an environment that can give rise to intermolecular hydrogen bonds. Carboxylate groups can also induce intramolecular interactions, such as the formation of hydrogen bonds with donor groups, leading to an impact on the conformational space of biomolecules. In the latter case, the protonation state of the amino groups plays an important role. In order to provide an accurate description of the modifications induced in a carboxylated molecule by the formation of hydrogen bonds, one needs a compromise between a quantum chemical description of the system and the necessity to take into account explicit solvent molecules. In this work, we propose a bottom-up approach to study the conformational space and the carboxylate stretching band of (bio)organic anions. Starting from the anions in a continuum solvent, we then move to calculations using a microsolvation approach including one explicit water molecule per polar group, immersed in a continuum. Finally, we run QM/MM molecular dynamics simulations to analyze the solvation properties and to explore the anions conformational space. The results thus obtained are in good agreement with the description given by the microsolvation approach and they bring a more detailed description of the solvation shell and of the intermolecular hydrogen bonds.

17.
Materials (Basel) ; 16(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37241276

RESUMEN

Graphitic carbon nitride (g-C3N4) has emerged as one of the most promising solar-light-activated polymeric metal-free semiconductor photocatalysts due to its thermal physicochemical stability but also its characteristics of environmentally friendly and sustainable material. Despite the challenging properties of g-C3N4, its photocatalytic performance is still limited by the low surface area, together with the fast charge recombination phenomena. Hence, many efforts have been focused on overcoming these drawbacks by controlling and improving the synthesis methods. With regard to this, many structures including strands of linearly condensed melamine monomers, which are interconnected by hydrogen bonds, or highly condensed systems, have been proposed. Nevertheless, complete and consistent knowledge of the pristine material has not yet been achieved. Thus, to shed light on the nature of polymerised carbon nitride structures, which are obtained from the well-known direct heating of melamine under mild conditions, we combined the results obtained from XRD analysis, SEM and AFM microscopies, and UV-visible and FTIR spectroscopies with the data from the Density Functional Theory method (DFT). An indirect band gap and the vibrational peaks have been calculated without uncertainty, thus highlighting a mixture of highly condensed g-C3N4 domains embedded in a less condensed "melon-like" framework.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122489, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36809738

RESUMEN

FOX-7 (1,1-diamino-2,2-dinitroethene) as one of the widely studied insensitive high explosives exists five polymorphs (α, ß, γ, α', ε) whose crystal structures have been determined by XRD (X-rays Diffraction) and which are investigated by a density functional theory (DFT) approach in this work. The calculation results show that the GGA PBE-D2 method can reproduce the experimental crystal structure of FOX-7 polymorphs better. The calculated Raman spectra of FOX-7 polymorphs were compared in detail and fully with the experimental Raman spectra data and it was found that the calculated Raman spectra frequencies have an overall red-shift in middle band (800-1700 cm-1), and that the maximum deviation does not exceed 4 % (The maximum point is the mode of CC in plane bending). The high-temperature phase transform path (α â†’ ß â†’ Î³) and the high-pressure phase transform path (α â†’ α'→ε) can be well represented in the computational Raman spectra. In addition, crystal structure of ε-FOX-7 was performed up to 70 GPa to probe Raman spectra and vibrational properties. The results showed that the NH2 Raman shift is jittering with pressure (not smooth compared to other vibrational modes) and NH2 anti-symmetry-stretching appears red-shifted. The vibration of hydrogen mixes in all of other vibrational modes. This work shows that the dispersion-corrected GGA PBE method can reproduce the experimental structure, vibrational properties and Raman spectra very well.

19.
J Phys Condens Matter ; 34(50)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36228627

RESUMEN

Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) is a typical energetic molecular crystal with excellent detonation performance and good thermal stability, has been widely used in military and civilian purposes. In this work, the vibrational properties of HMX combined with structure and electronic properties are studied to understand its pressure response against uniaxial compressions. The calculated eigenvalues of stress tensors show significant anisotropy of intermolecular interactions. Especially, the direction of shear stressτxyandτxzin [100] compression have an abrupt change nearV/V0= 0.84. Further, Raman spectra under each uniaxial compression are simulated to inspect the molecular configuration of HMX. Compared to the blue shifts of [010] and [001] orientations, the discontinuous Raman shifts of atV/V0= 0.86-0.84 in [100] orientation suggest that HMX would undergoes a possible structural transformation at the pressure of 6.82-9.15 GPa. Structural analysis implies that the subtle rotation of NO2group is changed by intermolecular interactions of HMX. Moreover, the abnormal evolution of band gap is observed atV/V0= 0.84 in [100] orientation, which is associated with the structure modification of HMX. Overall, the compression behaviors of HMX under uniaxial compressions would provide a useful insight for the actual shock compression conditions.

20.
Molecules ; 27(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807213

RESUMEN

Praseodymium sulfate was obtained by the precipitation method and the crystal structure was determined by Rietveld analysis. Pr2(SO4)3 is crystallized in the monoclinic structure, space group C2/c, with cell parameters a = 21.6052 (4), b = 6.7237 (1) and c = 6.9777 (1) Å, ß = 107.9148 (7)°, Z = 4, V = 964.48 (3) Å3 (T = 150 °C). The thermal expansion of Pr2(SO4)3 is strongly anisotropic. As was obtained by XRD measurements, all cell parameters are increased on heating. However, due to a strong increase of the monoclinic angle ß, there is a direction of negative thermal expansion. In the argon atmosphere, Pr2(SO4)3 is stable in the temperature range of T = 30-870 °C. The kinetics of the thermal decomposition process of praseodymium sulfate octahydrate Pr2(SO4)3·8H2O was studied as well. The vibrational properties of Pr2(SO4)3 were examined by Raman and Fourier-transform infrared absorption spectroscopy methods. The band gap structure of Pr2(SO4)3 was evaluated by ab initio calculations, and it was found that the valence band top is dominated by the p electrons of oxygen ions, while the conduction band bottom is formed by the d electrons of Pr3+ ions. The exact position of ZPL is determined via PL and PLE spectra at 77 K to be at 481 nm, and that enabled a correct assignment of luminescent bands. The maximum luminescent band in Pr2(SO4)3 belongs to the 3P0 → 3F2 transition at 640 nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA