Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 14(1)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35057095

RESUMEN

Topical delivery has received great attention due to its localized drug delivery, its patient compliance, and its low risk for side effects. Recent developments have focused on studying new drug delivery systems as a strategy for addressing the challenges of current topical treatments. Here we describe the advances on an innovative drug delivery platform called DELOS nanovesicles for topical drug delivery. Previously, the production of DELOS nanovesicles demonstrated potentiality for the topical treatment of complex wounds, achieving well-tolerated liquid dispersions by this route. Here, research efforts have been focused on designing these nanocarriers with the best skin tolerability to be applied even to damaged skin, and on exploring the feasibility of adapting the colloidal dispersions to a more suitable dosage form for topical application. Accordingly, these drug delivery systems have been efficiently evolved to a hydrogel using MethocelTM K4M, presenting proper stability and rheological properties. Further, the integrity of these nanocarriers when being gellified has been confirmed by cryo-transmission electron microscopy and by Förster resonance energy transfer analysis with fluorescent-labeled DELOS nanovesicles, which is a crucial characterization not widely reported in the literature. Additionally, in vitro experiments have shown that recombinant human Epidermal Growth Factor (rhEGF) protein integrated into gellified DELOS nanovesicles exhibits an enhanced bioactivity compared to the liquid form. Therefore, these studies suggest that such a drug delivery system is maintained unaltered when hydrogellified, becoming the DELOS nanovesicles-based hydrogels, an advanced formulation for topical use.

2.
Methods Mol Biol ; 2187: 271-282, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32770512

RESUMEN

Fluorescence-based techniques have been an integral factor in the study of cellular and model membranes. Fluorescence studies carried out on model membranes have provided valuable structural information and have helped reveal mechanistic detail regarding the formation and properties of ordered lipid domains, commonly known as lipid rafts. This chapter focuses on four techniques, based on fluorescence spectroscopy or microscopy, which are commonly used to analyze lipid rafts. The techniques described in this chapter may be used in a variety of ways and in combination with other techniques to provide valuable information regarding lipid order and domain formation, especially in model membranes.


Asunto(s)
Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo , Microdominios de Membrana/metabolismo , Microscopía Fluorescente/métodos , Espectrometría de Fluorescencia/métodos , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA