Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 29, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200606

RESUMEN

The therapeutic effects of extracellular vesicles (EVs) have been identified as a significant factor in intercellular communication in different disease treatments, including osteoarthritis (OA). Compared to the conventional approaches in treating OA, EV therapy is a non-invasive and cell-free method. However, improving the yield of EVs and their therapeutic effects are the main challenges for clinical applications. In this regard, researchers are using the EV engineering potential to overcome these challenges. New findings suggest that the co-culture strategy as an indirect EV engineering method efficiently increases EV production and quality. The co-culture of mesenchymal stem cells (MSCs) and chondrocytes has improved their chondrogenesis, anti-inflammatory effects, and regenerative properties which are mediated by EVs. Hence, co-culture engineering by considerable systems could be useful in producing engineered EVs for different therapeutic applications. Here, we review various co-culture approaches, including diverse direct and indirect, 2D and 3D cell cultures, as well as static and dynamic systems. Meanwhile, we suggest and discuss the advantages of combined strategies to achieve engineered EVs for OA treatment.


Asunto(s)
Vesículas Extracelulares , Osteoartritis , Humanos , Técnicas de Cocultivo , Comunicación Celular , Condrocitos , Osteoartritis/terapia
2.
J Control Release ; 365: 1089-1123, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38065416

RESUMEN

Extracellular vesicles are nanoscale vesicles that can be secreted by all cell types, are intracellular in origin and have the same composition as their parent cells, play a key role in intercellular communication in organismal health and disease, and are now often used as biomarkers of disease and therapeutic agents in biomedical research. When injected locally or systemically, they have the ability to provide a variety of therapeutic effects, for example, regeneration of skin damage or restoration of cardiac function. However, direct injection of extracellular vesicles may result in their rapid clearance from the injection site.In order to maintain the biological activity of extracellular vesicles and to control the release of effective concentrations for better therapeutic efficacy during long-term disease treatment, the design of an optimized drug delivery system is necessary and different systems for the continuous delivery of extracellular vesicles have been developed. This paper first provides an overview of the biogenesis, composition and physiological function of extracellular vesicles, followed by a review of different strategies for extracellular vesicle isolation and methods for engineering extracellular vesicles. In addition, this paper reviews the latest extracellular vesicle delivery platforms such as micro-nanoparticles, injectable hydrogels, microneedles and scaffold patches. At the same time, the research progress and key cases of extracellular vesicle delivery systems in the field of biomedical therapeutics are described. Finally, the challenges and future trends of extracellular vesicle delivery are discussed.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Biomarcadores/metabolismo , Transporte Biológico
3.
ACS Nano ; 17(20): 19613-19624, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37715735

RESUMEN

Small extracellular vesicles (sEVs) are promising for cell-based cardiac repair after myocardial infarction. These sEVs encapsulate potent cargo, including microRNAs (miRs), within a bilayer membrane that aids sEV uptake when administered to cells. However, despite their efficacy, sEV therapies are limited by inconsistencies in the sEV release from parent cells and variability in cargo encapsulation. Synthetic sEV mimics with artificial bilayer membranes allow for cargo control but suffer poor stability and rapid clearance when administered in vivo. Here, we developed an sEV-like vehicle (ELV) using an electroporation technique, building upon our previously published work, and investigated the potency of delivering electroporated ELVs with pro-angiogenic miR-126 both in vitro and in vivo to a rat model of ischemia-reperfusion. We show that electroporated miR-126+ ELVs improve tube formation parameters when administered to 2D cultures of cardiac endothelial cells and improve both echocardiographic and histological parameters when delivered to a rat left ventricle after ischemia reperfusion injury. This work emphasizes the value of using electroporated ELVs as vehicles for delivery of select miR cargo for cardiac repair.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Infarto del Miocardio , Ratas , Animales , Células Endoteliales , MicroARNs/genética , Infarto del Miocardio/terapia , Isquemia
4.
Cancer Lett ; 555: 216036, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36521658

RESUMEN

Breast cancer (BC) still lacks effective management approaches to control metastatic and therapy-resistant disease. Extracellular vesicles (EVs), with a diameter of 50-1000 nm, are secreted by all types of living cells, are protected by a lipid bilayer and encapsulate biological cargos including RNAs, proteins and lipids. They play an important role in intercellular communications and are significantly associated with pathological conditions. Accumulating evidence indicates that cancer cells secrete EVs and communicate with neighboring cells within the tumor microenvironment (TME), which plays an important role in BC metastasis, immune escape and chemoresistance, thus providing a new therapeutic window. EVs can stimulate angiogenesis and extracellular matrix remodeling, establish premetastatic niches, inhibit immune response and promote cancer metastasis. Recent advances have demonstrated that EVs are a potential therapeutic target or carrier and have emerged as promising strategies for BC treatment. In this review, we summarize the role of EVs in BC metastasis, chemoresistance and immune escape, which provides the foundation for developing novel therapeutic approaches. We also focus on current EV-based drug delivery strategies in BC and EV cargo-targeted BC therapy and discuss the limitations and future perspectives of EV-based drug delivery in BC.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Sistemas de Liberación de Medicamentos , Vesículas Extracelulares/metabolismo , Microambiente Tumoral
5.
J Extracell Vesicles ; 11(12): e12287, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36447429

RESUMEN

T cell-derived small extracellular vesicles (sEVs) exhibit anti-cancer effects. However, their anti-cancer potential should be reinforced to enhance clinical applicability. Herein, we generated interleukin-2-tethered sEVs (IL2-sEVs) from engineered Jurkat T cells expressing IL2 at the plasma membrane via a flexible linker to induce an autocrine effect. IL2-sEVs increased the anti-cancer ability of CD8+ T cells without affecting regulatory T (Treg ) cells and down-regulated cellular and exosomal PD-L1 expression in melanoma cells, causing their increased sensitivity to CD8+ T cell-mediated cytotoxicity. Its effect on CD8+ T and melanoma cells was mediated by several IL2-sEV-resident microRNAs (miRNAs), whose expressions were upregulated by the autocrine effects of IL2. Among the miRNAs, miR-181a-3p and miR-223-3p notably reduced the PD-L1 protein levels in melanoma cells. Interestingly, miR-181a-3p increased the activity of CD8+ T cells while suppressing Treg cell activity. IL2-sEVs inhibited tumour progression in melanoma-bearing immunocompetent mice, but not in immunodeficient mice. The combination of IL2-sEVs and existing anti-cancer drugs significantly improved anti-cancer efficacy by decreasing PD-L1 expression in vivo. Thus, IL2-sEVs are potential cancer immunotherapeutic agents that regulate both immune and cancer cells by reprogramming miRNA levels.


Asunto(s)
Vesículas Extracelulares , Melanoma , MicroARNs , Ratones , Animales , Interleucina-2 , MicroARNs/genética , Antígeno B7-H1 , Linfocitos T CD8-positivos , Melanoma/terapia
6.
Stem Cell Res Ther ; 13(1): 129, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35346367

RESUMEN

Extracellular vesicles (EVs) are advanced therapeutic strategies that can be used to efficiently treat diseases. Promising features of EVs include their innate therapeutic properties and ability to be engineered as targeted drug delivery systems. However, regulation of EV uptake is one challenge of EV therapy that must be overcome to achieve an efficient therapeutic outcome. Numerous efforts to improve the factors that affect EV uptake include the selection of a cell source, cell cultivation procedure, extraction and purification methods, storage, and administration routes. Limitations of rapid clearance, targeted delivery, and off-targeting of EVs are current challenges that must be circumvented. EV engineering can potentially overcome these limitations and provide an ideal therapeutic use for EVs. In this paper, we intend to discuss traditional strategies and their limitations, and then review recent advances in EV engineering that can be used to customize and control EV uptake for future clinical applications.


Asunto(s)
Vesículas Extracelulares , Transporte Biológico , Sistemas de Liberación de Medicamentos/métodos , Vesículas Extracelulares/metabolismo
7.
J Cardiovasc Dev Dis ; 8(11)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34821688

RESUMEN

Cell therapies for myocardial infarction, including cardiac ckit+ progenitor cell (CPC) therapies, have been promising, with clinical trials underway. Recently, paracrine signaling, specifically through small extracellular vesicle (sEV) release, was implicated in cell-based cardiac repair. sEVs carry cardioprotective cargo, including microRNA (miRNA), within a complex membrane and improve cardiac outcomes similar to that of their parent cells. However, miRNA loading efficiency is low, and sEV yield and cargo composition vary with parent cell conditions, minimizing sEV potency. Synthetic mimics allow for cargo-loading control but consist of much simpler membranes, often suffering from high immunogenicity and poor stability. Here, we aim to combine the benefits of sEVs and synthetic mimics to develop sEV-like vesicles (ELVs) with customized cargo loading. We developed a modified thin-film hydration (TFH) mechanism to engineer ELVs from CPC-derived sEVs with pro-angiogenic miR-126 encapsulated. Characterization shows miR-126+ ELVs are similar in size and structure to sEVs. Upon administration to cardiac endothelial cells (CECs), ELV uptake is similar to sEVs too. Further, when functionally validated with a CEC tube formation assay, ELVs significantly improve tube formation parameters compared to sEVs. This study shows TFH-ELVs synthesized from sEVs allow for select miRNA loading and can improve in vitro cardiac outcomes.

8.
Pharmaceutics ; 13(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33429869

RESUMEN

Extracellular vesicles are considered a novel therapeutic tool, due to their ability to transfer their cargoes to target cells. Different strategies to directly load extracellular vesicles with RNA species have been proposed. Electroporation has been used for the loading of non-active vesicles; however, the engineering of vesicles already carrying a therapeutically active cargo is still under investigation. Here, we set up a coincubation method to increase the anti-tumor effect of extracellular vesicles isolated from human liver stem cells (HLSC-EVs). Using the coincubation protocol, vesicles were loaded with the anti-tumor miRNA-145, and their effect was evaluated on renal cancer stem cell invasion. Loaded HLSC-EVs maintained their integrity and miR transfer ability. Loaded miR-145, but not miR-145 alone, was protected by RNAse digestion, possibly due to its binding to RNA-binding proteins on HLSC-EV surface, such as Annexin A2. Moreover, miR-145 coincubated HLSC-EVs were more effective in inhibiting the invasive properties of cancer stem cells, in comparison to naïve vesicles. The protocol reported here exploits a well described property of extracellular vesicles to bind nucleic acids on their surface and protect them from degradation, in order to obtain an effective miRNA loading, thus increasing the activity of therapeutically active naïve extracellular vesicles.

9.
Cell Mol Life Sci ; 78(1): 79-91, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32601714

RESUMEN

Worldwide, osteoarthritis (OA) is one of the most common chronic diseases. In OA, profiling gene expression changes occur and cartilage tissue homeostasis is lost. Suggestions for OA treatment include regulation of gene expressions via the use of microRNAs (miRNAs). However, problems exist with the use of miRNAs, the most important of which is the delivery of sufficient amounts of effective miRNAs to save cartilage tissue. The engineering of extracellular vesicles (EVs) with the use of advanced techniques would be an efficient OA treatment. Therefore, we discuss the importance of miRNAs in terms of cartilage tissue regeneration and review recent advances in production of enriched EVs and miRNA delivery by EVs for future clinical applications.


Asunto(s)
Vesículas Extracelulares/química , MicroARNs/uso terapéutico , Osteoartritis/tratamiento farmacológico , Cartílago/fisiología , Diferenciación Celular , Condrocitos/citología , Condrocitos/metabolismo , Electroporación , Vesículas Extracelulares/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , MicroARNs/química , MicroARNs/metabolismo , Osteoartritis/genética , Osteoartritis/patología , Regeneración
10.
Biology (Basel) ; 9(9)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878063

RESUMEN

Intercellular communication is an essential hallmark of multicellular organisms and can be mediated through direct cell-cell contact or transfer of secreted molecules. In the last two decades, a third mechanism for intercellular communication has emerged that involves intercellular transfer of extracellular vesicles (EVs). EVs are membranous vesicles of 30-5000 nm in size. Based on their dimension and biogenesis, EVs can be divided into different categories, such as microvesicles, apoptotic bodies, ectosomes, and exosomes. It has already been demonstrated that protein changes, expressed on the surfaces or in the content of these vesicles, may reflect the status of producing cells. For this reason, EVs, and exosomes in particular, are considered ideal biomarkers in several types of disease-from cancer diagnosis to heart rejection. This aspect opens different opportunities in EVs clinical application, considering the importance given to liquid biopsy in the recent years. Furthermore, extracellular vesicles can be natural or engineered carriers of cytoprotective or cytotoxic factors and applied, as a therapeutic tool, from regenerative medicine to target cancer therapy. This is of pivotal importance in the so called "era of the 4P medicine". This Editorial focuses on recent findings pertaining to EVs in different medical areas, from biomarkers to therapeutic applications.

11.
Mol Ther Methods Clin Dev ; 13: 133-144, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-30788382

RESUMEN

Extracellular vesicles (EVs) carry various molecules involved in intercellular communication and have raised great interest as drug delivery systems. Several engineering methods have been investigated for vesicle loading. Here, we studied the electroporation of EVs isolated from plasma to load antitumor microRNAs (miRNAs). First, we optimized the transfection protocol using miRNA cel-39 by evaluating different parameters (voltage and pulse) for their effect on vesicle morphology, loading capacity, and miRNA transfer to target cells. When compared with direct incubation of EVs with miRNA, mild electroporation allowed more efficient loading and better protection of miRNA from RNase degradation. Moreover, electroporation preserved the naive vesicle cargo, including RNAs and proteins, and their ability to be taken up by target cells, supporting the absence of vesicle damage. EVs engineered with antitumor miRNAs (miR-31 and miR-451a) successfully promoted apoptosis of the HepG2 hepatocellular carcinoma cell line, silencing target genes involved in anti-apoptotic pathways. Our findings indicate an efficient and functional miRNA encapsulation in plasma-derived EVs following an electroporation protocol that preserves EV integrity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA