Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39275442

RESUMEN

Vehicle localization using mounted sensors is an essential technology for various applications, including autonomous vehicles and road mapping. Achieving high positioning accuracy through the fusion of low-cost sensors is a topic of considerable interest. Recently, applications based on crowdsourced data from a large number of vehicles have received significant attention. Equipping standard vehicles with low-cost onboard sensors offers the advantage of collecting data from multiple drives over extensive road networks at a low operational cost. These vehicle trajectories and road observations can be utilized for traffic surveys, road inspections, and mapping. However, data obtained from low-cost devices are likely to be highly inaccurate. On urban roads, unlike highways, complex road structures and GNSS signal obstructions caused by buildings are common. This study proposes a reliable vehicle localization method using a large amount of crowdsourced data collected from urban roads. The proposed localization method is designed with consideration for the high inaccuracy of the data, the complexity of road structures, and the partial use of high-definition (HD) maps that account for environmental changes. The high inaccuracy of sensor data affects the reliability of localization. Therefore, the proposed method includes a reliability assessment of the localized vehicle poses. The performance of the proposed method was evaluated using data collected from buses operating in Seoul, Korea. The data used for the evaluation were collected 18 months after the creation of the HD maps.

2.
Sensors (Basel) ; 24(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38793933

RESUMEN

This paper presents an enhanced ground vehicle localization method designed to address the challenges associated with state estimation for autonomous vehicles operating in diverse environments. The focus is specifically on the precise localization of position and orientation in both local and global coordinate systems. The proposed approach integrates local estimates generated by existing visual-inertial odometry (VIO) methods into global position information obtained from the Global Navigation Satellite System (GNSS). This integration is achieved through optimizing fusion in a pose graph, ensuring precise local estimation and drift-free global position estimation. Considering the inherent complexities in autonomous driving scenarios, such as the potential failures of a visual-inertial navigation system (VINS) and restrictions on GNSS signals in urban canyons, leading to disruptions in localization outcomes, we introduce an adaptive fusion mechanism. This mechanism allows seamless switching between three modes: utilizing only VINS, using only GNSS, and normal fusion. The effectiveness of the proposed algorithm is demonstrated through rigorous testing in the Carla simulation environment and challenging UrbanNav scenarios. The evaluation includes both qualitative and quantitative analyses, revealing that the method exhibits robustness and accuracy.

3.
Sensors (Basel) ; 23(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37571669

RESUMEN

The recent advancements in Intelligent Transportation Systems (ITS) have revealed significant potential for enhancing traffic management through Advanced Driver Assist Systems (ADASs), with benefits for both safety and environment. This research paper proposes a vehicle localization technique based on Kalman filtering, as accurate positioning of the ego-vehicle is essential for the proper functioning of the Traffic Light Advisor (TLA) system. The aim of the TLA is to calculate the most suitable speed to safely reach and pass the first traffic light in front of the vehicle and subsequently keep that velocity constant to overcome the following traffic light, thus allowing safer and more efficient driving practices, thereby reducing safety risks, and minimizing energy consumption. To overcome Global Positioning Systems (GPS) limitations encountered in urban scenarios, a multi-rate sensor fusion approach based on the Kalman filter with map matching and a simple kinematic one-dimensional model is proposed. The experimental results demonstrate an estimation error below 0.5 m on urban roads with GPS signal loss areas, making it suitable for TLA application. The experimental validation of the Traffic Light Advisor system confirmed the expected benefits with a 40% decrease in energy consumption compared to unassisted driving.

4.
Sensors (Basel) ; 23(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37050721

RESUMEN

Optimizing traffic control systems at traffic intersections can reduce the network-wide fuel consumption, as well as emissions of conventional fuel-powered vehicles. While traffic signals have been controlled based on predetermined schedules, various adaptive signal control systems have recently been developed using advanced sensors such as cameras, radars, and LiDARs. Among these sensors, cameras can provide a cost-effective way to determine the number, location, type, and speed of the vehicles for better-informed decision-making at traffic intersections. In this research, a new approach for accurately determining vehicle locations near traffic intersections using a single camera is presented. For that purpose, a well-known object detection algorithm called YOLO is used to determine vehicle locations in video images captured by a traffic camera. YOLO draws a bounding box around each detected vehicle, and the vehicle location in the image coordinates is converted to the world coordinates using camera calibration data. During this process, a significant error between the center of a vehicle's bounding box and the real center of the vehicle in the world coordinates is generated due to the angled view of the vehicles by a camera installed on a traffic light pole. As a means of mitigating this vehicle localization error, two different types of regression models are trained and applied to the centers of the bounding boxes of the camera-detected vehicles. The accuracy of the proposed approach is validated using both static camera images and live-streamed traffic video. Based on the improved vehicle localization, it is expected that more accurate traffic signal control can be made to improve the overall network-wide energy efficiency and traffic flow at traffic intersections.

5.
Sensors (Basel) ; 21(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502744

RESUMEN

This paper proposes a low-cost sensor system composed of four GNSS-RTK receivers to obtain accurate position and posture estimations for a vehicle in real-time. The four antennas of the receivers are placed so that every three-antennas combination is optimal to get the most precise 3D coordinates with respect to a global reference system. The redundancy provided by the fourth receiver allows to improve estimations even more and to maintain accuracy when one of the receivers fails. A mini computer with the Robotic Operating System is responsible for merging all the available measurements reliably. Successful experiments have been carried out with a ground rover on irregular terrain. Angular estimates similar to those of a high-performance IMU have been achieved in dynamic tests.


Asunto(s)
Robótica , Programas Informáticos , Postura
6.
Sensors (Basel) ; 21(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34450798

RESUMEN

Detecting buildings in the surroundings of an urban vehicle and matching them to building models available on map services is an emerging trend in robotics localization for urban vehicles. In this paper, we present a novel technique, which improves a previous work by detecting building façade, their positions, and finding the correspondences with their 3D models, available in OpenStreetMap. The proposed technique uses segmented point clouds produced using stereo images, processed by a convolutional neural network. The point clouds of the façades are then matched against a reference point cloud, produced extruding the buildings' outlines, which are available on OpenStreetMap (OSM). In order to produce a lane-level localization of the vehicle, the resulting information is then fed into our probabilistic framework, called Road Layout Estimation (RLE). We prove the effectiveness of this proposal, testing it on sequences from the well-known KITTI dataset and comparing the results concerning a basic RLE version without the proposed pipeline.


Asunto(s)
Redes Neurales de la Computación , Robótica
7.
Sensors (Basel) ; 21(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923735

RESUMEN

In this work, we propose and evaluate a pose-graph optimization-based real-time multi-sensor fusion framework for vehicle positioning using low-cost automotive-grade sensors. Pose-graphs can model multiple absolute and relative vehicle positioning sensor measurements and can be optimized using nonlinear techniques. We model pose-graphs using measurements from a precise stereo camera-based visual odometry system, a robust odometry system using the in-vehicle velocity and yaw-rate sensor, and an automotive-grade GNSS receiver. Our evaluation is based on a dataset with 180 km of vehicle trajectories recorded in highway, urban, and rural areas, accompanied by postprocessed Real-Time Kinematic GNSS as ground truth. We compare the architecture's performance with (i) vehicle odometry and GNSS fusion and (ii) stereo visual odometry, vehicle odometry, and GNSS fusion; for offline and real-time optimization strategies. The results exhibit a 20.86% reduction in the localization error's standard deviation and a significant reduction in outliers when compared with automotive-grade GNSS receivers.

8.
Sensors (Basel) ; 21(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805615

RESUMEN

The future of transportation systems is going towards autonomous and assisted driving, aiming to reach full automation. There is huge focus on communication technologies expected to offer vehicular application services, of which most are location-based services. This paper provides a study on localization accuracy limits using vehicle-to-infrastructure communication channels provided by IEEE 802.11p and LTE-V, considering two different vehicular network designs. Real data measurements obtained on our highway testbed are used to model and simulate propagation channels, the position of base stations, and the route followed by the vehicle. Cramer-Rao lower bound, geometric dilution of precision, and least square error for time difference of arrival localization technique are investigated. Based on our analyses and findings, LTE-V outperforms IEEE 802.11p. However, it is apparent that providing larger signal bandwidth dedicated to localization, with network sites positioned at both sides of the highway, and considering the geometry between vehicle and network sites, improve vehicle localization accuracy.

9.
Sensors (Basel) ; 20(5)2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32143499

RESUMEN

This work develops a distributed message-passing approach to cooperative localization for autonomous mobile vehicles that communicate via mm-wave wireless connection in vehicle-to-vehicle networks. Vehicles in the network obtain the measurement information about the relative distance and the angle of arrival from the mm-wave connections made with each other. Some vehicles may obtain knowledge about their absolute position information of different quality, for example, via additional localization feature. The main objective is to estimate the locations of all vehicles using reciprocal exchanges of simple information called a message in a distributed and autonomous way. A simulation is developed to examine the performance of the localization and navigation of vehicles under various network configurations. The results show that it does provide better positioning results in most cases and there are also several cases where the use of the cooperative technique adapts to design parameters such as accuracies of measurement equipment, and initial position estimates, that can affect the localization performance.

10.
Sensors (Basel) ; 20(4)2020 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-32102224

RESUMEN

We propose a free-resolution probability distributions map (FRPDM) and an FRPDM-based precise vehicle localization method using 3D light detection and ranging (LIDAR). An FRPDM is generated by Gaussian mixture modeling, based on road markings and vertical structure point cloud. Unlike single resolution or multi-resolution probability distribution maps, in the case of the FRPDM, the resolution is not fixed and the object can be represented by various sizes of probability distributions. Thus, the shape of the object can be represented efficiently. Therefore, the map size is very small (61 KB/km) because the object is effectively represented by a small number of probability distributions. Based on the generated FRPDM, point-to-probability distribution scan matching and feature-point matching were performed to obtain the measurements, and the position and heading of the vehicle were derived using an extended Kalman filter-based navigation filter. The experimental area is the Gangnam area of Seoul, South Korea, which has many buildings around the road. The root mean square (RMS) position errors for the lateral and longitudinal directions were 0.057 m and 0.178 m, respectively, and the RMS heading error was 0.281°.

11.
Sensors (Basel) ; 20(1)2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-31948087

RESUMEN

With the rapid development of the Internet of Things (IoT), autonomous vehicles have been receiving more and more attention because they own many advantages compared with traditional vehicles. A robust and accurate vehicle localization system is critical to the safety and the efficiency of autonomous vehicles. The global positioning system (GPS) has been widely applied to the vehicle localization systems. However, the accuracy and the reliability of GPS have suffered in some scenarios. In this paper, we present a robust and accurate vehicle localization system consisting of a bistatic passive radar, in which the performance of localization is solely dependent on the accuracy of the proposed off-grid direction of arrival (DOA) estimation algorithm. Under the framework of sparse Bayesian learning (SBL), the source powers and the noise variance are estimated by a fast evidence maximization method, and the off-grid gap is effectively handled by an advanced grid refining strategy. Simulation results show that the proposed method exhibits better performance than the existing sparse signal representation-based algorithms, and performs well in the vehicle localization system.

12.
Sensors (Basel) ; 18(12)2018 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-30545009

RESUMEN

Landmark-based vehicle localization is a key component of both autonomous driving and advanced driver assistance systems (ADAS). Previously used landmarks in highways such as lane markings lack information on longitudinal positions. To address this problem, lane endpoints can be used as landmarks. This paper proposes two essential components when using lane endpoints as landmarks: lane endpoint detection and its accuracy evaluation. First, it proposes a method to efficiently detect lane endpoints using a monocular forward-looking camera, which is the most widely installed perception sensor. Lane endpoints are detected with a small amount of computation based on the following steps: lane detection, lane endpoint candidate generation, and lane endpoint candidate verification. Second, it proposes a method to reliably measure the position accuracy of the lane endpoints detected from images taken while the camera is moving at high speed. A camera is installed with a mobile mapping system (MMS) in a vehicle, and the position accuracy of the lane endpoints detected by the camera is measured by comparing their positions with ground truths obtained by the MMS. In the experiment, the proposed methods were evaluated and compared with previous methods based on a dataset acquired while driving on 80 km of highway in both daytime and nighttime.

13.
Sensors (Basel) ; 18(10)2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30274211

RESUMEN

Self-localization is a crucial task for intelligent vehicles. Existing localization methods usually require high-cost IMU (Inertial Measurement Unit) or expensive LiDAR sensors (e.g., Velodyne HDL-64E). In this paper, we propose a low-cost yet accurate localization solution by using a custom-level GPS receiver and a low-cost camera with the support of HD map. Unlike existing HD map-based methods, which usually requires unique landmarks within the sensed range, the proposed method utilizes common lane lines for vehicle localization by using Kalman filter to fuse the GPS, monocular vision, and HD map for more accurate vehicle localization. In the Kalman filter framework, the observations consist of two parts. One is the raw GPS coordinate. The other is the lateral distance between the vehicle and the lane, which is computed from the monocular camera. The HD map plays the role of providing reference position information and correlating the local lateral distance from the vision and the GPS coordinates so as to formulate a linear Kalman filter. In the prediction step, we propose using a data-driven motion model rather than a Kinematic model, which is more adaptive and flexible. The proposed method has been tested with both simulation data and real data collected in the field. The results demonstrate that the localization errors from the proposed method are less than half or even one-third of the original GPS positioning errors by using low cost sensors with HD map support. Experimental results also demonstrate that the integration of the proposed method into existing ones can greatly enhance the localization results.

14.
Sensors (Basel) ; 18(10)2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241363

RESUMEN

An Extended Line Map (ELM)-based precise vehicle localization method is proposed in this paper, and is implemented using 3D Light Detection and Ranging (LIDAR). A binary occupancy grid map in which grids for road marking or vertical structures have a value of 1 and the rest have a value of 0 was created using the reflectivity and distance data of the 3D LIDAR. From the map, lines were detected using a Hough transform. After the detected lines were converted into the node and link forms, they were stored as a map. This map is called an extended line map, of which data size is extremely small (134 KB/km). The ELM-based localization is performed through correlation matching. The ELM is converted back into an occupancy grid map and matched to the map generated using the current 3D LIDAR. In this instance, a Fast Fourier Transform (FFT) was applied as the correlation matching method, and the matching time was approximately 78 ms (based on MATLAB). The experiment was carried out in the Gangnam area of Seoul, South Korea. The traveling distance was approximately 4.2 km, and the maximum traveling speed was approximately 80 km/h. As a result of localization, the root mean square (RMS) position errors for the lateral and longitudinal directions were 0.136 m and 0.223 m, respectively.

15.
Sensors (Basel) ; 18(8)2018 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-30060582

RESUMEN

Exchange of location and sensor data among connected and automated vehicles will demand accurate global referencing of the digital maps currently being developed to aid positioning for automated driving. This paper explores the limit of such maps' globally-referenced position accuracy when the mapping agents are equipped with low-cost Global Navigation Satellite System (GNSS) receivers performing standard code-phase-based navigation, and presents a globally-referenced electro-optical simultaneous localization and mapping pipeline, called GEOSLAM, designed to achieve this limit. The key accuracy-limiting factor is shown to be the asymptotic average of the error sources that impair standard GNSS positioning. Asymptotic statistics of each GNSS error source are analyzed through both simulation and empirical data to show that sub-50-cm accurate digital mapping is feasible in the horizontal plane after multiple mapping sessions with standard GNSS, but larger biases persist in the vertical direction. GEOSLAM achieves this accuracy by (i) incorporating standard GNSS position estimates in the visual SLAM framework, (ii) merging digital maps from multiple mapping sessions, and (iii) jointly optimizing structure and motion with respect to time-separated GNSS measurements.

16.
Sensors (Basel) ; 18(5)2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29724069

RESUMEN

While WiFi-based indoor localization is attractive, there are many indoor places without WiFi coverage with a strong demand for localization capability. This paper describes a system and associated algorithms to address the indoor vehicle localization problem without the installation of additional infrastructure. In this paper, we propose VeLoc, which utilizes the sensor data of smartphones in the vehicle together with the floor map of the parking structure to track the vehicle in real time. VeLoc simultaneously harnesses constraints imposed by the map and environment sensing. All these cues are codified into a novel augmented particle filtering framework to estimate the position of the vehicle. Experimental results show that VeLoc performs well when even the initial position and the initial heading direction of the vehicle are completely unknown.

17.
Sensors (Basel) ; 17(9)2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-28926996

RESUMEN

Precise and robust localization in a large-scale outdoor environment is essential for an autonomous vehicle. In order to improve the performance of the fusion of GNSS (Global Navigation Satellite System)/IMU (Inertial Measurement Unit)/DMI (Distance-Measuring Instruments), a multi-constraint fault detection approach is proposed to smooth the vehicle locations in spite of GNSS jumps. Furthermore, the lateral localization error is compensated by the point cloud-based lateral localization method proposed in this paper. Experiment results have verified the algorithms proposed in this paper, which shows that the algorithms proposed in this paper are capable of providing precise and robust vehicle localization.

18.
Sensors (Basel) ; 17(6)2017 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-28629165

RESUMEN

In this paper, we propose a cost-effective localization solution for land vehicles, which can simultaneously adapt to the uncertain noise of inertial sensors and bridge Global Positioning System (GPS) outages. First, three Unscented Kalman filters (UKFs) with different noise covariances are introduced into the framework of Interacting Multiple Model (IMM) algorithm to form the proposed IMM-based UKF, termed as IMM-UKF. The IMM algorithm can provide a soft switching among the three UKFs and therefore adapt to different noise characteristics. Further, two IMM-UKFs are executed in parallel when GPS is available. One fuses the information of low-cost GPS, in-vehicle sensors, and micro electromechanical system (MEMS)-based reduced inertial sensor systems (RISS), while the other fuses only in-vehicle sensors and MEMS-RISS. The differences between the state vectors of the two IMM-UKFs are considered as training data of a Grey Neural Network (GNN) module, which is known for its high prediction accuracy with a limited amount of samples. The GNN module can predict and compensate position errors when GPS signals are blocked. To verify the feasibility and effectiveness of the proposed solution, road-test experiments with various driving scenarios were performed. The experimental results indicate that the proposed solution outperforms all the compared methods.

19.
Sensors (Basel) ; 18(1)2017 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-29295602

RESUMEN

A growing number of applications needs GIS mapping information and commercial 3-D roadmaps especially. This paper presents a solution of accessing freely to 3-D map information and updating in the context of transport applications. The method relies on the OSM road networks that is 2-D modeled intrinsically. The objective is to estimate the road elevation and inclination parameters by fusing GPS, OSM and DEM data through a nonlinear filter. An experimental framework, using ASTER GDEM2 data, shows some results of the improvement of the roads modeling that includes their slopes also. The map database can be enriched with the estimated inclinations. The accuracy depends on the GPS and DEM elevation errors (typically a few meters with the GNSS sensors used and the DEM under consideration).

20.
Sensors (Basel) ; 16(8)2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27517936

RESUMEN

Tall buildings are concentrated in urban areas. The outer walls of buildings are vertically erected to the ground and almost flat. Therefore, the vertical corners that meet the vertical planes are present everywhere in urban areas. These corners act as convenient landmarks, which can be extracted by using the light detection and ranging (LIDAR) sensor. A vertical corner feature based precise vehicle localization method is proposed in this paper and implemented using 3D LIDAR (Velodyne HDL-32E). The vehicle motion is predicted by accumulating the pose increment output from the iterative closest point (ICP) algorithm based on the geometric relations between the scan data of the 3D LIDAR. The vertical corner is extracted using the proposed corner extraction method. The vehicle position is then corrected by matching the prebuilt corner map with the extracted corner. The experiment was carried out in the Gangnam area of Seoul, South Korea. In the experimental results, the maximum horizontal position error is about 0.46 m and the 2D Root Mean Square (RMS) horizontal error is about 0.138 m.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA