Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Animals (Basel) ; 14(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39199912

RESUMEN

This paper addresses the potential for technology to support husbandry and enrichment opportunities that enhance the welfare of zoo and sanctuary-housed nocturnal and crepuscular species. This topic was investigated through the medium of a multidisciplinary workshop (Moon Jam) that brought together species experts, zoo designers, Animal-Computer Interaction researchers and post-graduate students in collaborative discussions and design sessions. We explain the context through an examination of existing research and current practices, and report on specific challenges raised and addressed during the Moon Jam, highlighting and discussing key themes that emerged. Finally, we offer a set of guidelines to support the integration of technology into the design of animal husbandry and enrichment that support wellbeing, to advance the best practices in keeping and managing nocturnal and crepuscular animals.

2.
Biology (Basel) ; 13(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38927243

RESUMEN

Bats are a diverse and ecologically important group of mammals that exhibit remarkable diversity in their feeding habits. These diverse feeding habits are thought to be reflected in the composition and function of their gut microbiota, which plays important roles in nutrient acquisition, immune function, and overall health. Despite the rich biodiversity of bat species in South America, there is a lack of microbiome studies focusing on bats from this region. Such studies could offer major insights into conservation efforts and the preservation of biodiversity in South America. In this work, we aimed to compare the gut microbiota of four bat species with different feeding habits from Southern Brazil, including nectarivorous, frugivorous, insectivorous, and hematophagous bats. Our findings demonstrate that feeding habits can have a significant impact on the diversity and composition of bat gut microbiotas, with each species exhibiting unique metabolic potentials related to their dietary niches. In addition, the identification of potentially pathogenic bacteria suggests that the carriage of microbial pathogens by bats may vary, depending on feeding habits and host-specific factors. These findings provide novel insights into the relationship between bat feeding habits and gut microbiota composition, highlighting the need to promote diverse habitats and food sources to support these ecologically important species.

3.
Life (Basel) ; 14(2)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38398775

RESUMEN

In this work, we examined the levels of vitamin E in the heart, liver, and kidneys of four species of adult male bats with distinct feeding habits. Our results indicate consistent vitamin E levels in the heart across all four bat species, suggesting the presence of regulatory mechanisms. Additionally, the liver displayed notably higher vitamin E levels in nectarivorous and frugivorous bats, while hematophagous bats exhibited lower levels, indicating a link between dietary intake and liver vitamin E levels. Furthermore, correlation analysis provided additional insights into the relationships between vitamin E and key antioxidant parameters in the livers of bats. On the other hand, no correlation was observed between vitamin E and key antioxidant parameters in the heart. Intriguingly, vitamin E was not detected in the kidneys, likely due to physiological factors and the prioritization of vitamin E mobilization in the heart, where it serves critical physiological functions. This unexpected absence of vitamin E in bat kidneys highlights the unique metabolic demands and prioritization of vitamin mobilization in wild animals like bats, compared to conventional animal models. These findings provide insight into the intricate distribution and utilization of vitamin E in bats, emphasizing the influence of dietary intake and metabolic adaptations on vitamin E levels in different organs.

4.
Proc Biol Sci ; 290(2011): 20231739, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37989240

RESUMEN

Predicting the spatial occurrence of wildlife is a major challenge for ecology and management. In Latin America, limited knowledge of the number and locations of vampire bat roosts precludes informed allocation of measures intended to prevent rabies spillover to humans and livestock. We inferred the spatial distribution of vampire bat roosts while accounting for observation effort and environmental effects by fitting a log Gaussian Cox process model to the locations of 563 roosts in three regions of Peru. Our model explained 45% of the variance in the observed roost distribution and identified environmental drivers of roost establishment. When correcting for uneven observation effort, our model estimated a total of 2340 roosts, indicating that undetected roosts (76%) exceed known roosts (24%) by threefold. Predicted hotspots of undetected roosts in rabies-free areas revealed high-risk areas for future viral incursions. Using the predicted roost distribution to inform a spatial model of rabies spillover to livestock identified areas with disproportionate underreporting and indicated a higher rabies burden than previously recognized. We provide a transferrable approach to infer the distribution of a mostly unobserved bat reservoir that can inform strategies to prevent the re-emergence of an important zoonosis.


Asunto(s)
Quirópteros , Virus de la Rabia , Rabia , Animales , Humanos , Rabia/epidemiología , Rabia/veterinaria , Rabia/prevención & control , Zoonosis , América Latina , Ganado
5.
Vet Res Commun ; 47(4): 2339-2350, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37422609

RESUMEN

Bats represent the second order of mammals with the highest number of species worldwide with over 1,616 species, and almost 10% of them are recorded in Mexico. These mammals have a great diversity of ectoparasites, in particular soft ticks of the genus Ornithodoros. Desmodus rotundus is one of the bat species that has scarcely been studied in terms of tick species richness in Mexico, with three tick species reported in five of the 32 Mexican states. For this reason, the aim of the present work was to identify ticks associated with D. rotundus from Central Mexico. Fieldwork was undertaken in the municipality El Marqués, Ejido Atongo A, Querétaro, Mexico. Bats were captured using mist nets and were visually inspected for tick presence. The ectoparasites were identified morphologically and molecularly with the use of mitochondrial markers 16SrDNA and cytochrome oxidase subunit I (COI). A total of 30 D. rotundus (1 female, 29 males) were captured, from which 20 larvae identified as Ornithodoros yumatensis were recovered. Molecular analysis confirmed the presence of this species with identity values of 99-100% with sequences of this species from the southwestern US, and the Yucatán Peninsula, Mexico. This is the first report of ticks associated with bats for the state of Querétaro, providing the first sequences of the COI gene from Mexican populations of O. yumatensis and shows an increase in the distribution of this soft tick across Central Mexico.


Asunto(s)
Quirópteros , Ornithodoros , Masculino , Animales , Femenino , Ornithodoros/genética , México , Quirópteros/genética , Código de Barras del ADN Taxonómico/veterinaria , Larva , Filogenia
6.
Mamm Biol ; : 1-21, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37363038

RESUMEN

The common vampire bat (Desmodus rotundus) maintains a diverse, sanguivorous diet, utilizing a broad range of prey taxa. As anthropogenic change alters the distribution of this species, shifts in predator-prey interactions are expected. Understanding prey richness and patterns of prey selection is, thus, increasingly informative from ecological, epidemiological, and economic perspectives. We reviewed D. rotundus diet and assessed the geographical, taxonomical, and behavioral features to find 63 vertebrate species within 21 orders and 45 families constitute prey, including suitable host species in regions of invasion outside D. rotundus' range. Rodentia contained the largest number of species utilized by D. rotundus, though cattle were the most commonly reported prey source, likely linked to the high availability of livestock and visibility of bite wounds compared to wildlife. Additionally, there was tendency to predate upon species with diurnal activity and social behavior, potentially facilitating convenient and nocturnal predation. Our review highlights the dietary heterogeneity of D. rotundus across its distribution. We define D. rotundus as a generalist predator, or parasite, depending on the ecological definition of its symbiont roles in an ecosystem (i.e., lethal vs. non-lethal blood consumption). In view of the eminent role of D. rotundus in rabies virus transmission and its range expansion, an understanding of its ecology would benefit public health, wildlife management, and agriculture. Supplementary Information: The online version contains supplementary material available at 10.1007/s42991-023-00358-3.

7.
Life (Basel) ; 12(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36556485

RESUMEN

Unlike most animals, most bats cannot synthesize vitamin C endogenously. Consequently, this vitamin must be obtained from the diet. Among the bat species, there are several food groups, such as frugivorous, nectarivorous, insectivorous, and hematophagous. In this work, we measured and compared vitamin C levels in different organs of four species of bats, all collected in southern Brazil. When analyzing and comparing the levels of vitamin C in the four bat species, (regardless of the organ), no significant differences were observed. However, when analyzing and comparing the levels of vitamin C in the four organs (regardless of the species), significant differences were observed, with the highest concentrations in the heart, followed by the liver and brain, while the lowest concentration was measured in the kidneys. Additional differences in the levels of Vitamin C were only observed when each organ was analyzed according to the species/diet. These results indicate a high degree of metabolic homeostasis in bats despite the marked difference in the type of diet.

8.
Pathogens ; 11(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36015061

RESUMEN

Desmodus rotundus bats show a complex social structure and developed adaptive characteristics, considered key features of a pathogen disseminator, such as the rabies virus, among bats and other mammals, including cattle and humans. Our aim was to understand the correlation between the environment and the ecological features of these bats in bovine rabies outbreaks. Geostatistical analyses were performed, covering 104 cattle positives for rabies, between 2016 and 2018, in 25 municipalities, in addition to the characteristics of D. rotundus colonies mapped during this period in the state of São Paulo, Brazil. Data from the shelters showed that 86.15% were artificial, mainly abandoned houses (36.10%) and manholes (23.87%), in addition to demonstrating a correlation between these shelters and a higher concentration of bovine rabies cases. Due to their adaptive capacity, these bats choose shelters close to the food source, such as livestock. In Brazil, D. rotundus is the main transmitter of rabies and the cause of outbreaks in cattle and deaths in humans, considering the advance of humans in previously preserved ecosystems. There seems to be a correlation between the impact of anthropic changes on the environment, mainly for the expansion of pasture for cattle and the outbreaks of bovine rabies in this area.

9.
Viruses ; 14(4)2022 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-35458422

RESUMEN

Pathogenicity and pathology of rabies virus (RABV) varies according to the variant, but the mechanisms are not completely known. In this study, gene expression profile in brains of mice experimentally infected with RABV isolated from a human case of dog rabies (V2) or vampire bat-acquired rabies (V3) were analyzed. In total, 138 array probes associated with 120 genes were expressed differentially between mice inoculated with V2 and sham-inoculated control mice at day 10 post-inoculation. A single probe corresponding to an unannotated gene was identified in V3 versus control mice. Gene ontology (GO) analysis revealed that all of the genes upregulated in mice inoculated with V2 RABV were involved in the biological process of immune defense against pathogens. Although both variants are considered pathogenic, inoculation by the same conditions generated different gene expression results, which is likely due to differences in pathogenesis between the dog and bat RABV variants. This study demonstrated the global gene expression in experimental infection due to V3 wild-type RABV, from the vampire bat Desmodus rotundus, an important source of infection for humans, domestic animals and wildlife in Latin America.


Asunto(s)
Quirópteros , Virus de la Rabia , Rabia , Animales , Perros , Ratones , Análisis por Micromatrices , Transcriptoma , Virulencia
10.
Virus Genes ; 58(3): 214-226, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35366197

RESUMEN

In the Neotropical region, the white-winged vampire bat (Diaemus youngi) is the rarest of the three species of vampire bats. This bat species feeds preferentially on bird blood, and there is limited information on the viruses infecting D. youngi. Hence, this study aimed to expand the knowledge about the viral diversity associated with D. youngi by sampling and pooling the lungs, liver, kidneys, heart, and intestines of all animals using high-throughput sequencing (HTS) on the Illumina MiSeq platform. A total of three complete and 10 nearly complete circular virus genomes were closely related to gemykrogvirus (Genomoviridae family), smacovirus (Smacoviridae family), and torque teno viruses (TTVs) (Anelloviridae family). In addition, three sequences of bat paramyxovirus were detected and found to be closely related to viruses reported in Pomona roundleaf bats and rodents. The present study provides a snapshot of the viral diversity associated with white-winged vampire bats and provides a baseline for comparison to viruses detected in future outbreaks.


Asunto(s)
Quirópteros , Virus , Animales , Virus ADN/genética , ADN Circular/genética , Filogenia , Viroma/genética , Virus/genética
11.
Trop Anim Health Prod ; 54(2): 130, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35258761

RESUMEN

Desmodus rotundus is one of the wild animal species that has benefitted by habitat alteration and its population has increased due to livestock activities. Common vampire bat population management has been implemented across Mexico due to the economic losses to livestock production, inflicted by vampire bat attacks and rabies transmission. Yucatan is one of the seven most impacted states in Mexico by the number of cattle rabies cases per year. However, there is little research on D. rotundus populations such as the frequency and attack patterns to cattle. This study's objective was to analyze the relationship between D. rotundus abundance and number of bovines attacked in livestock landscapes in Yucatan. The study used data gathered by the State Committee for Protection and Promotion of Livestock in Yucatan through the National Campaign for Common Vampire Bat Population Control. Data collected from January 2014 to December 2017 was analyzed using Pearson correlation. Distribution maps on Desmodus rotundus abundance and number of bovines attacked were also created. Higher abundance of Desmodus rotundus and number of cattle attacks were observed in the central region of Yucatan, particularly in Izamal municipality. Positive correlations were found between (1) abundance of Desmodus rotundus and number of cattle in the region, (2) total number of cattle and number of cattle attacked, and (3) abundance of Desmodus rotundus and number of cattle attacked. We can conclude that there is a relationship between Desmodus rotundus abundance and frequency of cattle attacks in most municipalities across Yucatan. Some outstanding exceptions were observed, which require further detailed investigations.


Asunto(s)
Enfermedades de los Bovinos , Quirópteros , Virus de la Rabia , Rabia , Animales , Bovinos , Enfermedades de los Bovinos/prevención & control , México/epidemiología , Rabia/veterinaria
12.
Biol Lett ; 17(11): 20210389, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34727703

RESUMEN

The 'social microbiome' can fundamentally shape the costs and benefits of group-living, but understanding social transmission of microbes in free-living animals is challenging due to confounding effects of kinship and shared environments (e.g. highly associated individuals often share the same spaces, food and water). Here, we report evidence for convergence towards a social microbiome among introduced common vampire bats, Desmodus rotundus, a highly social species in which adults feed only on blood, and engage in both mouth-to-body allogrooming and mouth-to-mouth regurgitated food sharing. Shotgun sequencing of samples from six zoos in the USA, 15 wild-caught bats from a colony in Belize and 31 bats from three colonies in Panama showed that faecal microbiomes were more similar within colonies than between colonies. To assess microbial transmission, we created an experimentally merged group of the Panama bats from the three distant sites by housing these bats together for four months. In this merged colony, we found evidence that dyadic gut microbiome similarity increased with both clustering and oral contact, leading to microbiome convergence among introduced bats. Our findings demonstrate that social interactions shape microbiome similarity even when controlling for past social history, kinship, environment and diet.


Asunto(s)
Quirópteros , Microbioma Gastrointestinal , Animales , Heces , Alimentos , Humanos
13.
Yale J Biol Med ; 94(2): 311-329, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34211351

RESUMEN

Rabies is an acute, progressive encephalitis caused by a lyssavirus, with the highest case fatality of any conventional infectious disease. More than 17 different lyssaviruses have been described, but rabies virus is the most widely distributed and important member of the genus. Globally, tens of thousands of human fatalities still occur each year. Although all mammals are susceptible, most human fatalities are caused by the bites of rabid dogs, within lesser developed countries. A global plan envisions the elimination of human rabies cases caused via dogs by the year 2030. The combination of prophylaxis of exposed humans and mass vaccination of dogs is an essential strategy for such success. Regionally, the Americas are well on the way to meet this goal. As one example of achievement, Costa Rica, a small country within Central America, reported the last autochthonous case of human rabies transmitted by a dog at the end of the 1970s. Today, rabies virus transmitted by the common vampire bat, Desmodus rotundus, as well as other wildlife, remains a major concern for humans, livestock, and other animals throughout the region. This review summarizes the historical occurrence of dog rabies and its elimination in Costa Rica, describes the current occurrence of the disease with a particular focus upon affected livestock, discusses the ecology of the vampire bat as the primary reservoir relevant to management, details the clinical characteristics of recent human rabies cases, and provides suggestions for resolution of global challenges posed by this zoonosis within a One Health context.


Asunto(s)
Quirópteros , Virus de la Rabia , Rabia , Animales , Costa Rica , Perros , Rabia/prevención & control , Rabia/veterinaria , Estados Unidos , Zoonosis
14.
Trop Med Infect Dis ; 6(2)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207822

RESUMEN

Rabies is listed as one of the World Health Organisation's (WHO) Neglected Tropical Diseases Worldwide, with a significant impact in South America. This paper explores the dynamics of rabies cases in humans, pets (dogs and cats), livestock and wildlife (bats in particular) in South America during the period 2009-2018. The data used in this study were derived from the two main databases for rabies in South America: the OIE-WAHIS from the World Organisation for Animal Health (OIE) and PANAFTOSA's Regional Information System for the Epidemiological Surveillance of Rabies (SIRVERA). Being a neglected disease with possible underreporting in some areas, the reported rabies cases may not always represent the real disease burden. The analysis focuses on the evolution of the number of cases in time and their spatial distribution, as well as on the main source of infections in humans, determined by laboratory assays of the antigenic variant or through epidemiological investigations. Additionally, Generalised Linear Mixed Models (GLMM) were used to evaluate the risk factors associated with the occurrence of human cases. Our results show that the highest impact of the disease in terms of number of cases was reported on livestock, while the overall number of cases (in animals and humans) progressively decreased along the study period. The spatial distribution of rabies in livestock showed two main clusters in the north-western (mainly Colombia) and in the south-eastern part of the affected area (Brazil), and a third smaller cluster in Peru. A cluster in dogs was observed in Bolivia. Out of the 192 human cases reported during the study period, 70% of them were transmitted by bats. The number of human cases reported during the study period were significantly associated with the number of rabies cases reported in livestock, pets and wildlife. Despite the overall decreasing case report rate, the disease still represents a major animal and public health concern in South America, and new strategies for compiling systematic information, networking and education are needed, as well as the education and training of veterinary staff.

15.
J Comp Pathol ; 185: 96-107, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34119238

RESUMEN

Pathology records of bats submitted to the University of Georgia from managed care settings were reviewed to identify naturally occurring diseases. Fifty-nine cases were evaluated during an 11-year period (2008-2019), including representatives from four families: Pteropodidae (Yinpterochiroptera), Phyllostomidae, Vespertilionidae and Molossidae (Yangochiroptera). Pathology reports were reviewed to determine the primary pathological process resulting in death or the decision to euthanize. Cases were categorized as non-infectious (34/59; 58%), infectious/inflammatory (17/59; 29%) or undetermined due to advanced autolysis (8/59; 14%). Musculoskeletal diseases and reproductive losses were the most frequent pathological processes. Among the infectious processes identified, bacterial infections of the reproductive and haemolymphatic systems were most frequently observed. The first two reports of neoplasia in small flying foxes (Pteropus hypomelanus) are described. Bats under managed care present with a wide range of histopathological lesions. In this cohort, non-infectious disease processes were common.


Asunto(s)
Enfermedades de los Animales/epidemiología , Quirópteros , Animales , Animales de Zoológico , Estudios Retrospectivos
16.
J Exp Biol ; 224(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34047777

RESUMEN

Prey that are signalling in aggregation become more conspicuous with increasing numbers and tend to attract more predators. Such grouping may, however, benefit prey by lowering the risk of being captured because of the predator's difficulty in targeting individuals. Previous studies have investigated anti-predatory benefits of prey aggregation using visual predators, but it is unclear whether such benefits are gained in an auditory context. We investigated whether katydids of the genus Mecopoda gain protection from their acoustically eavesdropping bat predator Megaderma spasma when calling in aggregation. In a choice experiment, bats approached calls of prey aggregations more often than those of prey calling alone, indicating that prey calling in aggregation are at higher risk. In prey capture tasks, however, the average time taken and the number of flight passes made by bats before capturing a katydid were significantly higher for prey calling in aggregation than when calling alone, indicating that prey face lower predation risk when calling in aggregation. Another common anti-predatory strategy, calling from within vegetation, increased the time taken by bats to capture katydids calling alone but did not increase the time taken to capture prey calling from aggregations. The increased time taken to capture prey calling in aggregation compared with solitary calling prey offers an escape opportunity, thus providing prey that signal acoustically in aggregations with anti-predatory benefits. For bats, greater detectability of calling prey aggregations is offset by lower foraging efficiency, and this trade-off may shape predator foraging strategies in natural environments.


Asunto(s)
Quirópteros , Ortópteros , Animales , Humanos , Conducta Predatoria
17.
Viruses ; 13(3)2021 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-33804644

RESUMEN

The common vampire bat (Desmodus rotundus) is a hematophagous species responsible for paralytic rabies and bite damage that affects livestock, humans and wildlife from Mexico to Argentina. Current measures to control vampires, based upon coumarin-derived poisons, are not used extensively due in part to the high cost of application, risks for bats that share roosts with vampires and residual environmental contamination. Observations that vampire bat bites may induce resistance in livestock against vampire bat salivary anticoagulants encourage research into novel vaccine-based alternatives particularly focused upon increasing livestock resistance to vampire salivary components. We evaluated the action of vampire bat saliva-Freund's incomplete adjuvant administered to sheep with anticoagulant responses induced by repeated vampire bites in a control group and examined characteristics of vampire bat salivary secretion. We observed that injections induced a response against vampire bat salivary anticoagulants stronger than by repeated vampire bat bites. Based upon these preliminary findings, we hypothesize the utility of developing a control technique based on induction of an immunologically mediated resistance against vampire bat anticoagulants and rabies virus via dual delivery of appropriate host and pathogen antigens. Fundamental characteristics of host biology favor alternative strategies than simple culling by poisons for practical, economical, and ecologically relevant management of vampire populations within a One Health context.


Asunto(s)
Quirópteros/virología , Vacunas Antirrábicas/inmunología , Virus de la Rabia/inmunología , Rabia/prevención & control , Saliva/inmunología , Vacunación , Adyuvantes Inmunológicos/administración & dosificación , Animales , Anticoagulantes/análisis , Anticoagulantes/sangre , Anticoagulantes/metabolismo , Quirópteros/inmunología , Femenino , Ganado , Rabia/inmunología , Vacunas Antirrábicas/administración & dosificación , Saliva/química , Saliva/virología , Ovinos
18.
J Proteome Res ; 20(5): 2547-2559, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33840197

RESUMEN

Bats are increasingly studied as model systems for longevity and as natural hosts for some virulent viruses. Yet the ability to characterize immune mechanisms of viral tolerance and to quantify infection dynamics in wild bats is often limited by small sample volumes and few species-specific reagents. Here, we demonstrate how proteomics can overcome these limitations by using data-independent acquisition-based shotgun proteomics to survey the serum proteome of 17 vampire bats (Desmodus rotundus) from Belize. Using just 2 µL of sample and relatively short separations of undepleted serum digests, we identified 361 proteins across 5 orders of magnitude. Levels of immunological proteins in vampire bat serum were then compared to human plasma via published databases. Of particular interest were antiviral and antibacterial components, circulating 20S proteasome complex and proteins involved in redox activity. Lastly, we used known virus proteomes to putatively identify Rh186 from Macacine herpesvirus 3 and ORF1a from Middle East respiratory syndrome-related coronavirus, indicating that mass spectrometry-based techniques show promise for pathogen detection. Overall, these results can be used to design targeted mass-spectrometry assays to quantify immunological markers and detect pathogens. More broadly, our findings also highlight the application of proteomics in advancing wildlife immunology and pathogen surveillance.


Asunto(s)
Quirópteros , Animales , Humanos , Modelos Biológicos , Proteoma , Especificidad de la Especie
19.
Proc Biol Sci ; 288(1947): 20210418, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33784867

RESUMEN

The bitter taste sensation is important to warn mammals of the ingestion of potentially toxic food compounds. For mammals, whose nutrition relies on highly specific food sources, such as blood in the case of vampire bats, it is unknown if bitter sensing is involved in prey selection. By contrast to other bat species, vampire bats exhibit numerous bitter taste receptor pseudogenes, which could point to a decreased importance of bitter taste. However, electrophysiological and behavioural studies suggest the existence of functional bitter taste transmission. To determine the agonist spectra of the three bitter taste receptors that are conserved in all three vampire bat species, we investigated the in vitro activation of Desmodus rotundus T2R1, T2R4 and T2R7. Using a set of 57 natural and synthetic bitter compounds, we were able to identify agonists for all three receptors. Hence, we confirmed a persisting functionality and, consequently, a putative biological role of bitter taste receptors in vampire bats. Furthermore, the activation of the human TAS2R7 by metal ions is shown to be conserved in D. rotundus.


Asunto(s)
Quirópteros , Animales , Quirópteros/genética , Humanos , Iones , Seudogenes , Receptores Acoplados a Proteínas G/genética , Gusto
20.
Integr Zool ; 16(5): 659-669, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33289344

RESUMEN

Bats represent the largest dietary radiation in a single mammalian order, and have become an emerging model group for studying dietary evolution. Taste receptor genes have proven to be molecular signatures of dietary diversification in bats. For example, all 3 extant species of vampire bats have lost many bitter taste receptor genes (Tas2rs) in association with their dietary shift from insectivory to sanguivory. Indeed, only 8 full-length Tas2rs were identified from the high-quality genome of the common vampire bat (Desmodus rotundus). However, it is presently unknown whether these bitter receptors are functional, since the sense of taste is less important in vampire bats, which have an extremely narrow diet and rely on other senses for acquiring food. Here, we applied a molecular evolutionary analysis of Tas2rs in the common vampire bat compared with non-vampire bats. Furthermore, we provided the first attempt to deorphanize all bitter receptors of the vampire bat using a cell-based assay. We found that all Tas2r genes in the vampire bat have a level of selective pressure similar to that in non-vampire bats, suggesting that this species must have retained some bitter taste functions. We demonstrated that 5 of the 8 bitter receptors in the vampire bat can be activated by some bitter compounds, and observed that the vampire bat generally can not detect naturally occurring bitter compounds examined in this study. Our study demonstrates functional retention of bitter taste in vampire bats as suggested by cell-based functional assays, calling for an in-depth study of extra-oral functions of bitter taste receptors.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Gusto/fisiología , Evolución Molecular , Regulación de la Expresión Génica , Humanos , Preparaciones Farmacéuticas , Filogenia , Receptores Acoplados a Proteínas G/genética , Selección Genética , Gusto/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA