Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Quant Imaging Med Surg ; 13(12): 8435-8446, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38106296

RESUMEN

Background: Investigation of fetal cerebral maturation (FCM) is necessary and important to provide crucial prognostic information for normal and high-risk fetuses. The study aimed to develop a valid and quantitative predictive model for assessing FCM using ultrasound and validate the model for fetuses with normal and restricted growth. Methods: This was a multicenter prospective observational study. Fetuses with normal growth recruited from a university teaching hospital (Center 1) and a municipal maternal unit (Center 2) were included in the training set and external validation set 1, respectively. The 124 growth-restricted fetuses enrolled in Center 1 were included in validation set 2. FCM was used to describe the gestational age (GA) in this study. The model was developed based on the sum of fetal cranial parameters (total fetal cranial parameters), including head circumference (HC) and depths of the insula (INS) and sylvian fissure (SF), parieto-occipital fissure (POF), and calcarine fissure (CF). A regression model, constructed based on total fetal cranial parameters and predicted GA, was established using the training set and validated using external validation set 1 and validation set 2. Results: The intra- and interobserver intraclass correlation coefficients for HC, and depths of the INS and SF, POF, and CF were >0.90. An exponential regression equation was used to predict FCM: predicted GA of FCM (weeks) =11.16 × exp (0.003 × total fetal cranial parameters) (P<0.001; adjusted R2=0.973), standard error of estimate, 0.67 weeks. The standard error of the predicted GA of FCM from the model was ±4.7 days. In the validation set 1, the mean standard error of the developed prediction model for FCM was 0.97 weeks. The predictive model showed that FCM was significantly delayed in validation set 2 (2.10±1.31 weeks, P<0.001), considering the GA per the last menstrual period. Conclusions: The predictive performance of the FCM model developed in this study was excellent, and the novel model may be a valuable investigative tool during clinical implementation.

2.
Front Oncol ; 13: 1181982, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37671063

RESUMEN

Background: In a previous training set with a case-controlled design, cutoff values for host EPB41L3 and JAM3 gene methylation were obtained for the detection of cervical intraepithelial neoplasia (CIN) 2 or more severe lesions (CIN2+). This validation trial was conducted to evaluate the role of DNA methylation in screening for CIN2+ by cervical cytology among unselected participants. Methods: From June 1, 2019, to September 1, 2019, in our study center, we collected liquid-based samples from cervical swabs for methylation assays and hrHPV testing in eligible patients. The primary endpoint was the diagnostic accuracy of DNA methylation and hrHPV genotyping for CIN2+ according to confirmed histology results. Results: Among 307 participants, compared with hrHPV testing, the methylation assay for CIN2+ had lower sensitivity (68.7% versus 86.1%, p=0.002) but higher specificity (96.7% versus 0.696, p<0.001). The methylation assay also had favorable sensitivity and specificity in patients with negative hrHPV testing (56.3% and 96.9%) and in patients with cervical adenocarcinoma (73.7% and 92.7%). DNA methylation had higher specificity than the hrHPV assay (100.0% versus 44.4%, p<0.001) for identifying residual CIN2+ in patients without residual lesions. Positive cervical DNA methylation was associated with a diagnostic probability of endometrial carcinoma (odds ratio 15.5 [95% confidence interval 4.1-58.6]) but not of ovarian epithelial carcinoma (1.4 [0.3-6.5]). Conclusions: The host EPB41L3 and JAM3 gene methylation assay in cervical cytology had favorable diagnostic accuracy for CIN2+ and was highly specific for residual CIN2+ lesions The methylation assay is a promising triage tool in hrHPV+ women, or even an independent tool for cervical cancer screening. The methylation status in cervical cytology could also serve as a prognostic biomarker. Its role in detecting endometrial carcinomas is worthy of further exploration.

3.
Biometrics ; 79(2): 1145-1158, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35146750

RESUMEN

An estimated quadratic inference function method is proposed for correlated failure time data with auxiliary covariates. The proposed method makes efficient use of the auxiliary information for the incomplete exposure covariates and preserves the property of the quadratic inference function method that requires the covariates to be completely observed. It can improve the estimation efficiency and easily deal with the situation when the cluster size is large. The proposed estimator which minimizes the estimated quadratic inference function is shown to be consistent and asymptotically normal. A chi-squared test based on the estimated quadratic inference function is proposed to test hypotheses about the regression parameters. The small-sample performance of the proposed method is investigated through extensive simulation studies. The proposed method is then applied to analyze the Study of Left Ventricular Dysfunction (SOLVD) data as an illustration.


Asunto(s)
Interpretación Estadística de Datos , Simulación por Computador
4.
Front Plant Sci ; 13: 1018156, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507414

RESUMEN

Cassava (Manihot esculenta Crantz) is a staple crop for ~800 million people in sub-Saharan Africa. Its production and productivity are being heavily affected by the two viral diseases: cassava brown streak disease (CBSD) and cassava mosaic disease (CMD), impacting greatly on edible root yield. CBSD is currently endemic to central, eastern and southern Africa, if not contained could spread to West Africa the largest cassava producer and consumer in the continent. Genomic selection (GS) has been implemented in Ugandan cassava breeding for accelerated development of virus resistant and high yielding clones. This study leveraged available GS training data in Uganda for pre-emptive CBSD breeding in W. Africa alongside CMD and fresh root yield (FRW). First, we tracked genetic gain through the current three cycles of GS in Uganda. The mean genomic estimated breeding values (GEBVs), indicated general progress from initial cycle zero (C0) to cycle one (C1) and cycle two (C2) for CBSD traits and yield except for CMD. Secondly, we used foliar data of both CBSD and CMD, as well as harvest root necrosis and yield data to perform cross-validation predictions. Cross-validation prediction accuracies of five GS models were tested for each of the three GS cycles and West African (WA) germplasm as a test set. In all cases, cross-validation prediction accuracies were low to moderate, ranging from -0.16 to 0.68 for CBSD traits, -0.27 to 0.57 for CMD and -0.22 to 0.41 for fresh root weight (FRW). Overall, the highest prediction accuracies were recorded in C0 for all traits tested across models and the best performing model in cross-validation was G-BLUP. Lastly, we tested the predictive ability of the Ugandan training sets to predict CBSD in W. African clones. In general, the Ugandan training sets had low prediction accuracies for all traits across models in West African germplasm, varying from -0.18 to 0.1. Based on the findings of this study, the cassava breeding program in Uganda has made progress through application of GS for most target traits, but the utility of the training population for pre-emptive breeding in WA is limiting. In this case, efforts should be devoted to sharing Ugandan germplasm that possess resistance with the W. African breeding programs for hybridization to fully enable deployment of genomic selection as a pre-emptive CBSD breeding strategy in W. Africa.

5.
Front Oncol ; 9: 1269, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824849

RESUMEN

Colorectal cancer (CRC) is one of the most common cancers worldwide, whose morbidity and mortality gradually increased. Here, we aimed to identify and access prognostic long non-coding RNAs (lncRNAs) associated with overall survival (OS) in CRC. Firstly, RNA expression profiles were obtained from The Cancer Genome Atlas (TCGA) database, and 439 CRC patients were enrolled as a training set. Univariate Cox analysis and the least absolute shrinkage and selection operator analysis (LASSO) were performed to identify the prognostic lncRNAs. Multivariable Cox regression analysis was used to establish a prognostic risk formula including three lncRNAs (AP003555.2, AP006284.1, and LINC01602). The low-risk group had a better OS than the high-risk group (P < 0.0001), and the areas under the receiver operating characteristic curve (AUCs) of 3- and 5-year OS were 0.712 and 0.674, respectively. Then, we evaluated the signature in a clinical validation set which were collected from the Affiliated Hospital of Jiangnan University. Compared with the low-risk group, patients' OS were found to be significantly worse in the high-risk group (P = 0.0057). The AUCs of 3- and 5-year OS were 0.701 and 0.694, respectively. Finally, we constructed an lncRNA-microRNA (miRNA)-messenger RNA (mRNA) competing endogenous RNA (ceRNA) network to explore the potential function of three differentially expressed lncRNAs (DElncRNAs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that these DElncRNAs were involved with several cancer-related pathways. In summary, our data provide evidence that the three-lncRNA signature could serve as an independent biomarker to predict prognosis in CRC. This study will also suggest that these three lncRNAs potentially participate in the progression of CRC.

6.
Sensors (Basel) ; 17(5)2017 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-28445404

RESUMEN

This paper developed an approach, the window-based validation set for support vector data description (WVS-SVDD), to determine optimal parameters for support vector data description (SVDD) model to map specific land cover by integrating training and window-based validation sets. Compared to the conventional approach where the validation set included target and outlier pixels selected visually and randomly, the validation set derived from WVS-SVDD constructed a tightened hypersphere because of the compact constraint by the outlier pixels which were located neighboring to the target class in the spectral feature space. The overall accuracies for wheat and bare land achieved were as high as 89.25% and 83.65%, respectively. However, target class was underestimated because the validation set covers only a small fraction of the heterogeneous spectra of the target class. The different window sizes were then tested to acquire more wheat pixels for validation set. The results showed that classification accuracy increased with the increasing window size and the overall accuracies were higher than 88% at all window size scales. Moreover, WVS-SVDD showed much less sensitivity to the untrained classes than the multi-class support vector machine (SVM) method. Therefore, the developed method showed its merits using the optimal parameters, tradeoff coefficient (C) and kernel width (s), in mapping homogeneous specific land cover.

7.
Anal Chim Acta ; 951: 46-57, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-27998485

RESUMEN

Modern spectroscopic and sensor technologies combined with multivariate modelling are increasingly used for the quantitative analysis of complex mixtures. Their performance depends directly on the data design chosen for model training and validation. A well-balanced calibration experiment with the fewest samples possible presents additional challenges when several mixture components (factors) need to be calibrated on the same dataset and subsequently quantified from the same multivariate measurement. This practically important problem stays poorly addressed by the theory of experimental design. This theoretical work systematically formulates the requirements to an optimal calibration/validation dataset and introduces a new family of calibration designs, where the samples are placed along the diagonals of an experimental space that is a hypercube. Such placement is appropriate due to reasonable assumptions about the linear nature of analytical response. Suggested filling schemes allow economical diagonal designs with intrinsic validation to be built for multiple factors presented in as many levels as the number of samples. The most important practical cases of two and three factors are considered in detail, and generalization to higher dimensions is outlined. Diagonal designs of any complexity can be generated using a simple geometrical scheme or with a supplied script.

8.
Biometrics ; 70(3): 568-78, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24766139

RESUMEN

Here, we consider time-to-event data where individuals can experience two or more types of events that are not distinguishable from one another without further confirmation, perhaps by laboratory test. The event type of primary interest can occur only once. The other types of events can recur. If the type of a portion of the events is identified, this forms a validation set. However, even if a random sample of events are tested, confirmations can be missing nonmonotonically, creating uncertainty about whether an individual is still at risk for the event of interest. For example, in a study to estimate efficacy of an influenza vaccine, an individual may experience a sequence of symptomatic respiratory illnesses caused by various pathogens over the season. Often only a limited number of these episodes are confirmed in the laboratory to be influenza-related or not. We propose two novel methods to estimate covariate effects in this survival setting, and subsequently vaccine efficacy. The first is a pathway expectation-maximization (EM) algorithm that takes into account all pathways of event types in an individual compatible with that individual's test outcomes. The pathway EM iteratively estimates baseline hazards that are used to weight possible event types. The second method is a non-iterative pathway piecewise validation method that does not estimate the baseline hazards. These methods are compared with a previous simpler method. Simulation studies suggest mean squared error is lower in the efficacy estimates when the baseline hazards are estimated, especially at higher hazard rates. We use the pathway EM-algorithm to reevaluate the efficacy of a trivalent live-attenuated influenza vaccine during the 2003-2004 influenza season in Temple-Belton, Texas, and compare our results with a previously published analysis.


Asunto(s)
Algoritmos , Interpretación Estadística de Datos , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Evaluación de Resultado en la Atención de Salud/métodos , Humanos , Incidencia , Funciones de Verosimilitud , Pronóstico , Reproducibilidad de los Resultados , Factores de Riesgo , Sensibilidad y Especificidad , Texas/epidemiología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA