Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biomed Sci ; 31(1): 47, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724973

RESUMEN

The field of regenerative medicine has witnessed remarkable advancements with the emergence of induced pluripotent stem cells (iPSCs) derived from a variety of sources. Among these, urine-derived induced pluripotent stem cells (u-iPSCs) have garnered substantial attention due to their non-invasive and patient-friendly acquisition method. This review manuscript delves into the potential and application of u-iPSCs in advancing precision medicine, particularly in the realms of drug testing, disease modeling, and cell therapy. U-iPSCs are generated through the reprogramming of somatic cells found in urine samples, offering a unique and renewable source of patient-specific pluripotent cells. Their utility in drug testing has revolutionized the pharmaceutical industry by providing personalized platforms for drug screening, toxicity assessment, and efficacy evaluation. The availability of u-iPSCs with diverse genetic backgrounds facilitates the development of tailored therapeutic approaches, minimizing adverse effects and optimizing treatment outcomes. Furthermore, u-iPSCs have demonstrated remarkable efficacy in disease modeling, allowing researchers to recapitulate patient-specific pathologies in vitro. This not only enhances our understanding of disease mechanisms but also serves as a valuable tool for drug discovery and development. In addition, u-iPSC-based disease models offer a platform for studying rare and genetically complex diseases, often underserved by traditional research methods. The versatility of u-iPSCs extends to cell therapy applications, where they hold immense promise for regenerative medicine. Their potential to differentiate into various cell types, including neurons, cardiomyocytes, and hepatocytes, enables the development of patient-specific cell replacement therapies. This personalized approach can revolutionize the treatment of degenerative diseases, organ failure, and tissue damage by minimizing immune rejection and optimizing therapeutic outcomes. However, several challenges and considerations, such as standardization of reprogramming protocols, genomic stability, and scalability, must be addressed to fully exploit u-iPSCs' potential in precision medicine. In conclusion, this review underscores the transformative impact of u-iPSCs on advancing precision medicine and highlights the future prospects and challenges in harnessing this innovative technology for improved healthcare outcomes.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Células Madre Pluripotentes Inducidas , Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Células Madre Pluripotentes Inducidas/citología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Evaluación Preclínica de Medicamentos/métodos , Orina/citología , Medicina Regenerativa/métodos
2.
Artículo en Inglés | MEDLINE | ID: mdl-38571344

RESUMEN

BACKGROUND: Acute Kidney Injury (AKI) is defined as a sudden loss of kidney function, which is often caused by drugs, toxins, and infections. The large spectrum of AKI implies diverse pathophysiological mechanisms. In many cases, AKI can be lethal, and kidney replacement therapy is frequently needed. However, current treatments are not satisfying. Developing novel therapies for AKI is essential. Adult stem cells possess regenerative ability and play an important role in medical research and disease treatment. METHODS: In this study, we isolated and characterized a distinct human urine-derived stem cell, which expressed both proximal tubular cell and mesenchymal stem cell genes as well as certain unique genes. RESULTS: It was found that these cells exhibited robust protective effects on tubular cells and anti- inflammatory effects on macrophages in vitro. In an ischemia-reperfusion-induced acute kidney injury NOD-SCID mouse model, transplantation of USCs significantly protected the kidney morphology and functions in vivo. CONCLUSION: In summary, our results highlighted the effectiveness of USCs in protecting from PTC injury and impeding macrophage polarization, as well as the secretion of pro-inflammatory interleukins, suggesting the potential of USCs as a novel cell therapy in AKI.

3.
Heliyon ; 10(6): e27306, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38509987

RESUMEN

Currently, stem cells are a prominent focus of regenerative engineering research. However, due to the limitations of commonly used stem cell sources, their application in therapy is often restricted to the experimental stage and constrained by ethical considerations. In contrast, urine-derived stem cells (USCs) offer promising advantages for clinical trials and applications. The noninvasive nature of the collection process allows for repeated retrieval within a short period, making it a more feasible option. Moreover, studies have shown that USCs have a protective effect on organs, promoting vascular regeneration, inhibiting oxidative stress, and reducing inflammation in various acute and chronic organ dysfunctions. The application of USCs has also been enhanced by advancements in biomaterials technology, enabling better targeting and controlled release capabilities. This review aims to summarize the current state of research on USCs, providing insights for future applications in basic and clinical settings.

4.
Tissue Eng Part B Rev ; 30(2): 176-197, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37603497

RESUMEN

The potential of urine-derived stem cells (USCs) for tissue engineering and regenerative medicine has attracted much attention during the last few decades. However, it has been suggested that the effects of the USCs may be endowed by their paracrine extracellular vesicles (EVs) rather than their differentiation. Compared with the USCs, the USC-EVs can cross the barriers more easily and safely, and their inclusions may mediate intercellular communication and promote the tissue repair. This article has summarized the current knowledge and applications about the USC-EVs in tissue engineering and regenerative medicine, and discussed the prospects and challenges for using them as an alternative to cell therapy. Impact statement Urine-derived stem cells (USCs) represent a newly discovered type of stem cells, and studies have proved that the beneficial effects of the USCs may be manifested through their paracrine extracellular vesicles (EVs) rather than through their own differentiation, which opens up new avenues for tissue engineering and regenerative medicine strategies. Therefore, this review aims to summarize the latest research progress and potential clinical applications of the USC-EVs, highlighting the promising potential of the USC-EVs as a therapeutic option in kidney regeneration, genital regeneration, nerve regeneration, bone and cartilage regeneration, and wound healing.


Asunto(s)
Vesículas Extracelulares , Medicina Regenerativa , Humanos , Ingeniería de Tejidos , Riñón , Regeneración , Células Madre
5.
J Orthop Translat ; 39: 100-112, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36879794

RESUMEN

Background: The inadequate regeneration of natural tissue (mainly fibrocartilage) between tendon and bone during rotator cuff (RC) repair results in an unsatisfactory quality of RC healing. Cell-free therapy based on stem cell exosomes is a safer and more promising approach for tissue regeneration. Here, we investigated the effect of exosomes from human urine-derived stem cells (USCs) and their subpopulations (CD133+USCs) on RC healing. Methods: USCs were isolated from urine and sorted by flow cytometry to obtain CD133+ urine-derived stem cells (CD133+ USCs). Urine-derived stem cell exosomes (USC-Exos) and CD133+ urine-derived stem cell exosomes (CD133+ USC-Exos) were subsequently isolated from the cell supernatant and identified by transmission electron microscopy (TEM), particle size analysis, and Western blot. We performed in vitro functional assays to evaluate the effects of USC-Exos and CD133+ USC-Exos on human bone marrow mesenchymal stem cells (BMSCs) proliferation, migration, osteogenic differentiation, and chondrogenic differentiation. In vivo experiments were performed by local injection of exosome-hydrogel complexes for the treatment of RC injury. The effects of CD133+ USC-Exos and USC-Exos on RC healing were assessed from imaging, histological, and biomechanical tests. Results: CD133+ USCs were positive for CD29, CD44, CD73, CD90, CD133, but negative for CD34 and CD45. Differentiation ability test results showed that both USCs and CD133+ USCs had the potential for osteogenic, chondrogenic, and adipogenic differentiation, but CD133+ USCs had stronger chondrogenic differentiation ability. CD133+ USC-Exos and USC-Exos could be efficiently taken up by BMSCs and promote their migration, osteogenic and chondrogenic differentiation. However, CD133+ USC-Exos could promote the chondrogenic differentiation of BMSCs more than USC-Exos. Compared with USC-Exos, CD133+ USC-Exos could promote the healing of bone-tendon interface (BTI) more effectively, which might be related to its ability to promote the differentiation of BMSCs into chondroblasts. Although the two exosomes exhibited the same effect in promoting subchondral bone repair in BTI, the CD133+ USC-Exos group had higher histological scores and stronger biomechanical properties. Conclusion: CD133+ USC-Exos hydrogel complex may become a promising therapeutic approach for RC healing based on stem cell exosomes. The translational potential of this article: This is the first study to assess the specific role of CD133+ USC-Exos in RC healing which may be related to the activation of BMSCs by CD133+ USC-Exos towards chondrogenic differentiation. Further, our study provides a reference for possible future treatment of BTI by applying CD133+ USC-Exos hydrogel complex.

6.
Bioact Mater ; 23: 353-367, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36474659

RESUMEN

Articular cartilage has a limited capacity to self-heal once damaged. Tissue-specific stem cells are a solution for cartilage regeneration; however, ex vivo expansion resulting in cell senescence remains a challenge as a large quantity of high-quality tissue-specific stem cells are needed for cartilage regeneration. Our previous report demonstrated that decellularized extracellular matrix (dECM) deposited by human synovium-derived stem cells (SDSCs), adipose-derived stem cells (ADSCs), urine-derived stem cells (UDSCs), or dermal fibroblasts (DFs) provided an ex vivo solution to rejuvenate human SDSCs in proliferation and chondrogenic potential, particularly for dECM deposited by UDSCs. To make the cell-derived dECM (C-dECM) approach applicable clinically, in this study, we evaluated ex vivo rejuvenation of rabbit infrapatellar fat pad-derived stem cells (IPFSCs), an easily accessible alternative for SDSCs, by the abovementioned C-dECMs, in vivo application for functional cartilage repair in a rabbit osteochondral defect model, and potential cellular and molecular mechanisms underlying this rejuvenation. We found that C-dECM rejuvenation promoted rabbit IPFSCs' cartilage engineering and functional regeneration in both ex vivo and in vivo models, particularly for the dECM deposited by UDSCs, which was further confirmed by proteomics data. RNA-Seq analysis indicated that both mesenchymal-epithelial transition (MET) and inflammation-mediated macrophage activation and polarization are potentially involved in the C-dECM-mediated promotion of IPFSCs' chondrogenic capacity, which needs further investigation.

7.
Pharmaceutics ; 14(8)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36015295

RESUMEN

Epithelial tissue injury can occur on any surface site of the body, particularly in the skin or urethral mucosa tissue, due to trauma, infection, inflammation, and toxic compounds. Both internal and external body epithelial tissue injuries can significantly affect patients' quality of life, increase healthcare spending, and increase the global economic burden. Transplantation of epithelial tissue grafts is an effective treatment strategy in clinical settings. Autologous bio-engineered epithelia are common clinical skin substitutes that have the specific advantages of avoiding tissue rejection, obviating ethical concerns, reducing the risk of infection, and decreasing scarring compared to donor grafts. However, epithelial cells are often obtained from the individual's skin and mucosa through invasive methods, which cause further injury or damage. Urine-derived stem cells (USC) of kidney origin, obtained via non-invasive acquisition, possess high stemness properties, self-renewal ability, trophic effects, multipotent differentiation potential, and immunomodulatory ability. These cells show versatile potential for tissue regeneration, with extensive evidence supporting their use in the repair of epidermal and urothelial injuries. We discuss the collection, isolation, culture, characterization, and differentiation of USC. We also discuss the use of USC for cellular therapies as well as the administration of USC-derived paracrine factors for epidermal and urothelial tissue repair. Specifically, we will discuss 3D constructions involving multiple types of USC-loaded hydrogels and USC-seeded scaffolds for use in cosmetic production testing, drug development, and disease modeling. In conclusion, urine-derived stem cells are a readily accessible autologous stem cell source well-suited for developing personalized medical treatments in epithelial tissue regeneration and drug testing.

8.
Cell Calcium ; 103: 102548, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35144096

RESUMEN

Muscular diseases are characterized by a wide genetic diversity and the Ca2+-signalling machinery is often perturbed. Its characterization is therefore pivotal and requires appropriate cellular models. Muscle biopsies are the best approach but are invasive for the patient and difficult to justify if the biopsy is not for diagnostic purposes. To circumvent this, interest is mounting in urine-derived stem cells that can be differentiated into skeletal muscle cells. In the present study, we isolated stem cells from urine (USC) samples of healthy donors and differentiated them by MyoD lentiviral vector transduction into skeletal muscle cells (USC-SkMC). As expected, USCs and USC-SkMCs are characterized by a radically different pattern of expression of stem and skeletal muscle markers. Characterization of cells in the present manuscript focused on Ca2+-signalling. Undifferentiated and differentiated cells differed in the expression of key proteins involved in Ca2+-homeostasis and also displayed different Ca2+-responses to external stimuli, confirming that during differentiation there was a transition from a non-excitable to an excitable phenotype. In USCs, the main mechanism of calcium entry was IP3 dependent, suggesting a major involvement of receptor-operated Ca2+ entry. Indeed, U-73122 (a PLC inhibitor) significantly inhibited the Ca2+increase triggered by ATP both in calcium and calcium-free conditions. In USC-SkMCs both store- and receptor-operated calcium entry were active. Furthermore, a caffeine challenge led to Ca2+ release both in the presence or absence of extracellular calcium, which was inhibited by ryanodine, suggesting the presence and functionality of ryanodine receptors in USC-SkMCs. Lastly, the voltage-operated calcium channels are operative in USC-SkMCs, unlike in USCs, since stimulation with high concentration of KCl induced a significant calcium transient, partially reversed by verapamil. Our data therefore support the use of skeletal muscle cells derived from USCs as an easily amenable tool to investigate Ca2+-homeostasis, in particular in those (neuro)muscular diseases that lack valid alternative models.


Asunto(s)
Calcio , Células Madre , Calcio/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Células Madre/metabolismo
9.
Zhonghua Nan Ke Xue ; 28(5): 387-394, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-37477476

RESUMEN

Objective: To investigate the improving effect of human urine-derived stem cell-derived exosomes (USC-Exo) on the endothelial function and erectile function of male rats with diabetic ED (DED) and explore their action mechanism. METHODS: USC-Exo were extracted from the culture medium of USC by ultracentrifugation and identified. Cavernous sinus endothelial cells (CCEC) were collected from SD male rats and cultured in endothelial cell growth medium-2 (EGM-2) (the normal control group), EGM-2 + L-glucose at 25 mM (the high glucose group), EGM-2 + L-glucose at 25 mmol/L) + USC-Exo at 10 µg/ml (the Exo group), and EGM-2 + L-glucose at 25 mmol/L + USC-Exo at 10 µg/ml) + 3-methyladenine at 2 mmol/L (the 3-MA group), respectively. Changes of the autophagic flux in the CCECs transfected with mRFP-GFP-LC3 adenovirus were detected under the fluorescence microscope. The proliferation and tube-forming ability of the cells were assessed by CCK8 and Matrigel assays, respectively. DED was induced by intraperitoneal injection of streptozotocin in 10 of the rats, which were equally and randomly divided into a DED and an Exo group, and another 5 normal male rats were taken as controls. The rats in the normal and DED groups were injected intracavernously with 100 µl of PBS, and those in the Exo group with 100 µl of USC-Exo at the concentration of 1 µg/µl. Four weeks after treatment, the maximum intracavernous pressure (ICPmax) and mean arterial pressure (MAP) were measured, the endothelial marker CD31 detected by immunofluorescence assay, the expressions of the CD31, Beclin1 and LC3 I/II proteins examined by Western blot, and the number of autophagosomes in the cavernous endothelial cells determined under the transmission electron microscope. RESULTS: USC-Exo significantly increased the number of autophagosomes in the CCEC in the high glucose group compared with that in the normal controls (39.5 ± 6.2 vs 12.5 ± 5.4, P < 0.05). The expression of Beclin1 and proliferation of the CCEC were significantly higher in the Exo than in the high glucose group (P < 0.05). The autophagy inhibitor 3-MA evidently reversed the increasing effect of USC-Exo on the proliferation of the CCEC. The tube-forming ability of the CCEC was significantly increased in the Exo group compared with that in the high glucose group (15.3 ± 3.2 vs 6.3 ± 2.1, P < 0.05), which was also reversed in the 3-MA group. Both ICPmax and the ICPmax/MAP ratio were significantly higher in the Exo than in the DED group (ï¼»86.6 ± 12.6ï¼½ vs ï¼»37.9 ± 10.9ï¼½ mmHg, P < 0.05; 89.3 ± 14.1 vs 41.7 ± 11.5, P < 0.05), and so were the expressions of CD31, Beclin1 and LC3 I/II (P< 0.05) and the number of autophagosomes in the cavernosal endothelial cells (3.7 ± 0.6 vs 1.0 ± 1.0, P < 0.05). CONCLUSIONS: USC-Exo can significantly improve the endothelial and erectile functions of DED rats by increasing the autophagy of cavernosal endothelial cells.


Asunto(s)
Diabetes Mellitus , Disfunción Eréctil , Exosomas , Humanos , Ratas , Masculino , Animales , Células Endoteliales/metabolismo , Beclina-1/metabolismo , Ratas Sprague-Dawley , Células Madre , Glucosa/metabolismo
10.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638875

RESUMEN

Pluripotent adult stem cells have potential applications in cell therapy and tissue engineering. Urine-derived stem cells (UDSCs) differentiate into various cell types. Here, we attempted to differentiate human UDSCs (hUDSCs) into smooth muscle cells (SMCs) using transforming growth factor-beta 1 (TGF-ß1) and/or PD98059, an extracellular signal-regulated kinase (ERK) inhibitor. Both quantitative polymerase chain reaction (qPCR) and Western blot analysis showed that the expression of messenger ribonucleic acid (mRNA) and proteins for alpha-smooth muscle actin (α-SMA), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC), which are specific markers for SMCs, increased on day 9 after differentiation and again on day 14. The differentiated cells from human UDSCs (hUDSCs) with a combination of TGF-ß1 and PD98059 showed the highest expression of SMC marker proteins. Immunocytochemical staining performed to assess the molecular expression revealed CNN and α-SMA colocalizing in the cytoplasm. The cells that differentiated from hUDSCs with a combination of TGF-ß1 and PD98059 showed the strongest expression for CNN1, α-SMA, and SM-MHC. Functional testing of the differentiated cells revealed a stronger contractile capacity for the cells differentiated with a combination of PD98059 and TGF-ß1 than those differentiated with a single factor. These results suggest the combination of PD98059 and TGF-ß1 to be a more effective differentiation method and that differentiated SMCs could be used for restoring the functions of the sphincter muscle or bladder.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Flavonoides/farmacología , Células Musculares , Células Madre , Factor de Crecimiento Transformador beta1/farmacología , Orina/citología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Células Musculares/citología , Células Musculares/metabolismo , Células Madre/citología , Células Madre/metabolismo
11.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-907255

RESUMEN

Urine-derived stem cell(USC) refers to a type of mesenchymal stem cell obtained from urine.Due to its simple and quick extraction, non-invasive access, and no ethical issues, it has many advantages over other stem cells in clinical research, and has attracted the attention of the academic community.This article summarizes recent research progress in the aspects of urine-derived stem cell isolation and culture, cell characterizations, source, application, and exosomes.

12.
Int J Biol Sci ; 16(3): 435-446, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32015680

RESUMEN

Purpose: Drug-induced nephrotoxicity can occur in patients with pre-existing renal dysfunction or renal ischemia, potentially leading to chronic kidney disease (CKD) and end-stage renal disease (ESRD). Prompt treatment of CKD and the related side effects is critical in preventing progression to ESRD. The goal of this study was to demonstrate the therapeutic potential of urine-derived stem cells (USC) to treat chronic kidney disease-induced by nephrotoxic drugs and renal ischemia. Materials and methods: Human USC were collected, expanded and characterized by flow cytometry. A CKD model was induced by creating an ischemia-reperfusion injury and gentamicin administration. Twenty-eight adult immunodeficient rats were divided into three groups: PBS-treated group (n=9), USC-treated group (n=9), and sham group with age-matched control animals (n=10). Cell suspension of USC (5 x 106 / 100µl / kidney) or PBS was injected bilaterally into the renal parenchyma 9 weeks after CKD model creation. Renal function was evaluated by collection blood and urine samples to measure serum creatinine and glomerulus filtration rate. The kidneys were harvested 12 weeks after cell injection. Histologically, the extent of glomerulosclerosis and tubular atrophy, the amount of collagen deposition, interstitial fibrosis, inflammatory monocyte infiltration, and expression of transforming growth factor beta 1 (TGF-ß1), and superoxide dismutase 1 (SOD-1) were examined. Results: USC expressed renal parietal epithelial cells (CD24, CD29 and CD44). Renal function, measured by GFR and serum Cr in USC-treated group were significantly improved compared to PBS-treated animals (p<0.05). The degree of glomerular sclerosis and atrophic renal tubules, the amount of fibrosis, and monocyte infiltration significantly decreased in USC-treated group compared to the PBS group (p<0.05). The level of TGF-ß1 expression in renal tissues was also significantly lower in the PBS group, while the level of SOD-1 expression was significantly elevated in the USC group, compared to PBS group (p<0.05). Conclusions: The present study demonstrates the nephron-protective effect of USC on renal function via anti-inflammatory, anti-oxidative stress, and anti-fibrotic activity in a dual-injury CKD rat model. This provides an alternative treatment for CKD in certain clinical situations, such as instances where CKD is due to drug-induced nephrotoxicity and renal ischemia.


Asunto(s)
Diferenciación Celular/fisiología , Insuficiencia Renal Crónica/terapia , Daño por Reperfusión/terapia , Adipogénesis/fisiología , Animales , Fibrosis/metabolismo , Fibrosis/terapia , Humanos , Isquemia/metabolismo , Isquemia/terapia , Riñón/metabolismo , Riñón/patología , Masculino , Osteogénesis/fisiología , Ratas , Ratas Desnudas , Insuficiencia Renal Crónica/metabolismo , Daño por Reperfusión/metabolismo
13.
J Cell Mol Med ; 24(1): 640-654, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31667951

RESUMEN

Endogenous neurogenesis holds promise for brain repair and long-term functional recovery after ischaemic stroke. However, the effects of exosomes from human urine-derived stem cells (USC-Exos) in neurogenesis remain unclear. This study aimed to investigate whether USC-Exos enhanced neurogenesis and promoted functional recovery in brain ischaemia. By using an experimental stroke rat model, we found that intravenous injection of USC-Exos enhanced neurogenesis and alleviated neurological deficits in post-ischaemic stroke rats. We used neural stem cells (NSCs) subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) as an in vitro model of ischaemic stroke. The in vitro results suggested that USC-Exos promoted both proliferation and neuronal differentiation of NSCs after OGD/R. Notably, a further mechanism study revealed that the pro-neurogenesis effects of USC-Exos may be partially attributed to histone deacetylase 6 (HDAC6) inhibition via the transfer of exosomal microRNA-26a (miR-26a). Taken together, this study indicates that USC-Exos can be used as a novel promising strategy for brain ischaemia, which highlights the application of USC-Exos.


Asunto(s)
Isquemia Encefálica/terapia , Exosomas/trasplante , Histona Desacetilasa 6/metabolismo , MicroARNs/genética , Células-Madre Neurales/citología , Neurogénesis , Accidente Cerebrovascular/terapia , Orina/citología , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Exosomas/metabolismo , Histona Desacetilasa 6/genética , Humanos , Masculino , Células-Madre Neurales/metabolismo , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología
14.
J Orthop Surg Res ; 14(1): 419, 2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31818319

RESUMEN

BACKGROUND: Segmental bone defects caused by trauma, tumors, or infection are a serious challenge for orthopedists in the world. Recent developments in tissue engineering have provided a new treatment for segmental bone defects. Urine-derived stem cells (USCs) can be obtained noninvasively and might be a new kind of seed cells used in bone tissue regeneration. Therefore, the first aim of the present study was to investigate the biological characteristics of USCs. The second aim of the present study was to study the osteogenic effect of surface mineralized biphasic calcium phosphate ceramics (BCPs) loaded with USCs in vitro and in vivo. METHODS: We isolated USCs from the urine of healthy adult donors and evaluated the biological characteristics of USCs in vitro. We mineralized the surface of BCPs by simulated body fluid (SBF). Cell adhesion and proliferation of USCs on the surface mineralized BCPs were evaluated. Osteogenic proteins and genes of USCs on the surface mineralized BCPs were texted by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR) assay. Critical-sized segmental bone defects model in New Zealand white rabbits were established and randomly divided into 4 groups (surface mineralized BCPs loaded with USCs, BCPs loaded with USCs, surface mineralized BCPs, and BCPs) based on the implant they received. The therapeutic efficacy of the scaffolds in a large bone defect at post-implantation was evaluated by imaging and histological examination. RESULTS: USCs isolated in our study expressed stem cell-specific phenotypes and had a stable proliferative capacity and multipotential differentiation capability. Surface mineralized BCPs promoted osteogenic proteins and genes expression of USCs without affecting the proliferation of USCs. After 10 weeks, the amount of new bone formation was the highest in the group of surface mineralized BCPs loaded with USCs. CONCLUSION: USCs, from non-invasive sources, have good application prospects in the field of bone tissue engineering. Surface mineralized BCPs can significantly enhance osteogenic potential of USCs without changing biological characteristics of BCPs. Surface mineralized BCPs loaded with USCs are effective in repairing of critical-sized segmental bone defects in rabbits.


Asunto(s)
Regeneración Ósea/fisiología , Fosfatos de Calcio/administración & dosificación , Cerámica/farmacología , Trasplante de Células Madre/métodos , Células Madre/fisiología , Cúbito/lesiones , Adulto , Animales , Fosfatos de Calcio/química , Células Cultivadas , Cerámica/química , Humanos , Masculino , Conejos , Distribución Aleatoria , Propiedades de Superficie/efectos de los fármacos , Andamios del Tejido , Cúbito/cirugía
15.
Int J Med Sci ; 16(12): 1668-1676, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31839754

RESUMEN

The loss of pancreatic ß-cells is a cause of diabetes. Therefore, replacement of pancreatic ß-cells is a logical strategy for the treatment of diabetes, and the generation of insulin-producing cells (IPCs) from stem cells has been widely investigated as an alternative source for pancreatic ß-cells. Here, we isolated stem cells from human urine and investigated their differentiation potential into IPCs. We checked the expression of surface stem cell markers and stem cell transcription factors, and found that the isolated human urine-derived stem cells (hUDSCs) expressed the stem cell markers CD44, CD90, CD105 and stage-specific embryonic antigen (SSEA)-4. In addition, these cells expressed octamer binding transcription factor (Oct)4 and vimentin. hUDSCs could differentiate into adipocytes and osteocytes, as evidenced by Oil-red O staining and Alizarin Red S-staining of differentiated cells, respectively. When we directly differentiated hUDSCs into IPCs, the differentiated cells expressed mRNA for pancreatic transcription factors such as neurogenin (Ngn)3 and pancreatic and duodenal homeobox (Pdx)1. Differentiated IPCs expressed insulin and glucagon mRNA and protein, and these IPCs also secreted insulin in response to glucose stimulation. In conclusion, we found that hUDSCs can be directly differentiated into IPCs, which secrete insulin in response to glucose.


Asunto(s)
Diferenciación Celular/genética , Células Secretoras de Insulina/citología , Insulina/biosíntesis , Orina/citología , Adipocitos/metabolismo , Adipocitos/patología , Péptido C/genética , Diabetes Mellitus/genética , Diabetes Mellitus/patología , Diabetes Mellitus/terapia , Glucosa/metabolismo , Humanos , Insulina/genética , Células Secretoras de Insulina/trasplante , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Páncreas/crecimiento & desarrollo , Páncreas/patología
16.
Biochem Biophys Res Commun ; 516(4): 1167-1174, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31284954

RESUMEN

Promotion of wound healing is one of the most important fields in clinical medical research. This study aimed to evaluate the potential use of a new surface-structured bacterial cellulose(S-BC) biomaterial with human urine-derived stem cells (hUSCs) for wound healing. In vitro, EA.hy926 were inoculated on structured/non-structured bacterial cellulose, and the growth of EA.hy926 on bacterial cellulose in medium with/without conditioned medium of the hUSCs were observed to explore the effect of bacterial cellulose's surface structure and hUSCs-CM on vascular endothelial cell growth. In vivo, we covered wound surface with various BC materials and/or injected the hUSCs into the wound site on group BC, group S-BC, group hUSCs, group BC + hUSCs, group S-BC + hUSCs to evaluate the effect of S-BC and hUSCs on wound healing in rat full-thickness skin defect model. In vitro study, surface structure of S-BC could promote the growth and survival of EA.hy926, and the hUSCs-CM could further promote the proliferation of EA.hy926 on S-BC. In vivo study, wound healing rate of the group BC, group S-BC, group hUSCs was significantly accelerated, accompanied by faster re-epithelialization, collagen production and neovascularization than control group. It is note worthy that the effect of S-BC on wound healing was better than BC, the effect of S-BC + hUSCs on wound healing was better than BC + hUSCs. Moreover, the effect of S-BC combined with hUSCs on wound is better than treated with S-BC or hUSCs alone. All the findings suggest that the combination of S-BC and hUSCs could facilitate skin wound healing by promoting angiogenesis. This combination of the role of stem cells and biomaterial surface structures may provide a new way to address clinical wound healing problems.


Asunto(s)
Materiales Biocompatibles/uso terapéutico , Celulosa/uso terapéutico , Neovascularización Fisiológica , Trasplante de Células Madre , Cicatrización de Heridas , Animales , Materiales Biocompatibles/química , Línea Celular , Células Cultivadas , Celulosa/química , Células Endoteliales/citología , Humanos , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/uso terapéutico , Ratas , Trasplante de Células Madre/métodos , Células Madre/citología , Propiedades de Superficie , Andamios del Tejido/química
17.
Zhonghua Nan Ke Xue ; 24(6): 483-490, 2018 Jun.
Artículo en Chino | MEDLINE | ID: mdl-30173451

RESUMEN

OBJECTIVE: To investigate the protective effect of human urine-derived stem cells (USCs) on erectile function and cavernous structure in rats with cavernous nerve injury (CNI). METHODS: Sixty adult male SD rats with normal sexual function were randomly divided into four groups of equal number: sham operation, bilateral CNI (BCNI) model control, phosphate buffered saline (PBS), and USC. The BCNI model was established in the latter three groups of rats by clamping the bilateral cavernous nerves. After modeling, the rats in the PBS and USC groups were treated by intracavernous injection of PBS at 200 µl and USCs at 1×106/200 µl PBS respectively for 28 days. Then, the maximum intracavernous pressure (mICP) and the ratio of mICP to mean arterial pressure (mICP/MAP) of the rats were calculated by electrical stimulation of the major pelvic ganglions, the proportion of nNOS- or NF200-positive nerve fibers in the total area of penile dorsal nerves determined by immunohistochemical staining, the levels of endothelial cell marker eNOS, smooth muscle marker α-SMA and collagen I detected by Western blot, and the smooth muscle to collagen ratio and the cell apoptosis rate in the corpus cavernosum measured by Masson staining and TUNEL, respectively. RESULTS: After 28 days of treatment, the rats in the USC group, as compared with those in the PBS and BCNI model control groups, showed significant increases in the mICP (ï¼»81 ± 9.9ï¼½ vs ï¼»31 ± 8.3ï¼½ and ï¼»33 ± 4.2ï¼½ mmHg, P <0.05), mICP/MAP ratio (0.72 ± 0.05 vs 0.36 ± 0.03 and 0.35 ± 0.04, P <0.05), the proportions of nNOS-positive nerve fibers (ï¼»11.31 ± 4.22ï¼½% vs ï¼»6.86 ± 3.08ï¼½% and ï¼»7.29 ± 4.84ï¼½% , P <0.05) and NF200-positive nerve fibers in the total area of penile dorsal nerves (ï¼»27.31 ± 3.12ï¼½% vs ï¼»17.38 ± 2.87ï¼½% and ï¼»19.49 ± 4.92ï¼½%, P <0.05), the eNOS/GAPDH ratio (0.52 ± 0.08 vs 0.31 ± 0.06 and 0.33 ± 0.07, P <0.05), and the α-SMA/GAPDH ratio (1.01 ± 0.09 vs 0.36 ± 0.05 and 0.38 ± 0.04, P <0.05), but a remarkable decrease in the collagen I/GAPDH ratio (0.28 ± 0.06 vs 0.68 ± 0.04 and 0.70 ± 0.10, P <0.05). The ratio of smooth muscle to collagen in the corpus cavernosum was significantly higher in the USC than in the PBS and BCNI model control groups (17.91 ± 2.86 vs 7.70 ± 3.12 and 8.21 ± 3.83, P <0.05) while the rate of cell apoptosis markedly lower in the former than in the latter two (3.31 ± 0.83 vs 9.82 ± 0.76, P <0.01; 3.31 ± 0.83 vs 9.75 ± 0.91, P <0.05). CONCLUSIONS: Intracavernous injection of USCs can protect the erectile function of the rat with cavernous nerve injury by protecting the nerves, improving the endothelial function, alleviating fibrosis and inhibiting cell apoptosis in the cavernous tissue.


Asunto(s)
Disfunción Eréctil/prevención & control , Erección Peniana/fisiología , Pene/inervación , Trasplante de Células Madre/métodos , Actinas/análisis , Animales , Presión Arterial , Colágeno/análisis , Modelos Animales de Enfermedad , Masculino , Óxido Nítrico Sintasa de Tipo I/análisis , Óxido Nítrico Sintasa de Tipo III/análisis , Nervio Pudendo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Solución Salina/administración & dosificación , Células Madre , Orina/citología
18.
Cell Physiol Biochem ; 47(3): 1181-1192, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30041250

RESUMEN

BACKGROUND/AIMS: Our previous studies have shown that human urine-derived stem cells (USCs) have great potential as a cell source for cytotherapy and tissue engineering and that extracellular vesicles (EVs) secreted by USCs (USCs-EVs) can prevent diabetes-induced kidney injury in an animal model. The present study was designed to evaluate the effects of USCs-EVs on ischemia repair. METHODS: USCs-EVs were isolated and purified by a battery of centrifugation and filtration steps. The USCs-EVs were then characterized by transmission electron microscopy, western blot and tunable resistive pulse sensing techniques. After intramuscularly transplanting USCs-EVs into an ischemic mouse hind-limb, we observed the therapeutic effects of USCs-EVs on perfusion by laser doppler perfusion imaging, angiogenesis and muscle regeneration by histology and immunohistochemistry techniques over 21 days. We subsequently tested whether USCs-EVs can induce the proliferation of a human microvascular endothelial cell line HMEC-1 and a mouse myoblast cell line C2C12 by cell counting kit 8 assay in vitro. Meanwhile, the potential growth factors in the USCs-EVs and supernatants of the USCs cultures were detected by enzyme-linked immunosorbent assay. RESULTS: The USCs-EVs were spherical vesicles with a diameter of 30-150 nm and expressed exosomal markers, such as CD9, CD63 and Tsg101. Ischemic limb perfusion and function were markedly increased in the hind-limb ischemia (HLI) model after USCs-EVs administration. Moreover, angiogenesis and muscle regeneration levels were significantly higher in the USCs-EVs treatment group than in the PBS group. The in vitro experiments showed that USCs-EVs facilitated HMEC-1 and C2C12 cell proliferation in a dose-dependent manner. CONCLUSIONS: These results revealed for the first time that USCs-EVs efficiently attenuate severe hind-limb ischemic injury and represent a novel therapy for HLI.


Asunto(s)
Vesículas Extracelulares/trasplante , Miembro Posterior/irrigación sanguínea , Isquemia/prevención & control , Células Madre/metabolismo , Orina/citología , Adulto , Animales , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Isquemia/metabolismo , Isquemia/patología , Masculino , Ratones , Células Madre/citología
19.
National Journal of Andrology ; (12): 483-490, 2018.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-689704

RESUMEN

<p><b>Objective</b>To investigate the protective effect of human urine-derived stem cells (USCs) on erectile function and cavernous structure in rats with cavernous nerve injury (CNI).</p><p><b>METHODS</b>Sixty adult male SD rats with normal sexual function were randomly divided into four groups of equal number: sham operation, bilateral CNI (BCNI) model control, phosphate buffered saline (PBS), and USC. The BCNI model was established in the latter three groups of rats by clamping the bilateral cavernous nerves. After modeling, the rats in the PBS and USC groups were treated by intracavernous injection of PBS at 200 μl and USCs at 1×106/200 μl PBS respectively for 28 days. Then, the maximum intracavernous pressure (mICP) and the ratio of mICP to mean arterial pressure (mICP/MAP) of the rats were calculated by electrical stimulation of the major pelvic ganglions, the proportion of nNOS- or NF200-positive nerve fibers in the total area of penile dorsal nerves determined by immunohistochemical staining, the levels of endothelial cell marker eNOS, smooth muscle marker α-SMA and collagen I detected by Western blot, and the smooth muscle to collagen ratio and the cell apoptosis rate in the corpus cavernosum measured by Masson staining and TUNEL, respectively.</p><p><b>RESULTS</b>After 28 days of treatment, the rats in the USC group, as compared with those in the PBS and BCNI model control groups, showed significant increases in the mICP ([81 ± 9.9] vs [31 ± 8.3] and [33 ± 4.2] mmHg, P <0.05), mICP/MAP ratio (0.72 ± 0.05 vs 0.36 ± 0.03 and 0.35 ± 0.04, P <0.05), the proportions of nNOS-positive nerve fibers ([11.31 ± 4.22]% vs [6.86 ± 3.08]% and [7.29 ± 4.84]% , P <0.05) and NF200-positive nerve fibers in the total area of penile dorsal nerves ([27.31 ± 3.12]% vs [17.38 ± 2.87]% and [19.49 ± 4.92]%, P <0.05), the eNOS/GAPDH ratio (0.52 ± 0.08 vs 0.31 ± 0.06 and 0.33 ± 0.07, P <0.05), and the α-SMA/GAPDH ratio (1.01 ± 0.09 vs 0.36 ± 0.05 and 0.38 ± 0.04, P <0.05), but a remarkable decrease in the collagen I/GAPDH ratio (0.28 ± 0.06 vs 0.68 ± 0.04 and 0.70 ± 0.10, P <0.05). The ratio of smooth muscle to collagen in the corpus cavernosum was significantly higher in the USC than in the PBS and BCNI model control groups (17.91 ± 2.86 vs 7.70 ± 3.12 and 8.21 ± 3.83, P <0.05) while the rate of cell apoptosis markedly lower in the former than in the latter two (3.31 ± 0.83 vs 9.82 ± 0.76, P <0.01; 3.31 ± 0.83 vs 9.75 ± 0.91, P <0.05).</p><p><b>CONCLUSIONS</b>Intracavernous injection of USCs can protect the erectile function of the rat with cavernous nerve injury by protecting the nerves, improving the endothelial function, alleviating fibrosis and inhibiting cell apoptosis in the cavernous tissue.</p>


Asunto(s)
Animales , Masculino , Ratas , Actinas , Presión Arterial , Colágeno , Modelos Animales de Enfermedad , Disfunción Eréctil , Óxido Nítrico Sintasa de Tipo I , Óxido Nítrico Sintasa de Tipo III , Erección Peniana , Fisiología , Pene , Nervio Pudendo , Distribución Aleatoria , Ratas Sprague-Dawley , Solución Salina , Trasplante de Células Madre , Métodos , Células Madre , Orina , Biología Celular
20.
Mol Cell Endocrinol ; 427: 21-32, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26952874

RESUMEN

Urine-derived stem cells (USCs) are isolated from voided urine and display high proliferative activity and multiple differentiation potentials. The applicability of USCs in the treatment of bladder dysfunction and in cell-based urological tissue engineering has been demonstrated. Whether they could serve as a potential stem cell source for the treatment of diabetes mellitus (DM) and its complications has not been investigated. Here, we report the repairing and protective effects of USCs on pancreatic islets, the myocardium, the renal glomerulus and the bladder detrusor in diabetic rat models. Type 2 diabetic rat models were induced by means of a high fat diet and intraperitoneal injection with streptozotocin. USCs isolated from voided urine were administered via tail veins. The functional changes of pancreatic islets, left ventricle, glomerulus and bladder micturition were assessed by means of insulin tolerance tests, echocardiography, urine biochemical indexes and cystometry. The histologic changes were evaluated by hematoxylin and eosin staining, Masson's trichrome staining and TUNEL staining. Treatment with USCs significantly alleviated the histological destruction and functional decline. Although the USC treatment did not decrease fasting blood glucose to a significantly different level, the fibrosis and apoptosis of the myocardium, glomerulus and detrusor were significantly inhibited. This study indicates that administration of USCs may be useful for the treatment of the complications of DM.


Asunto(s)
Complicaciones de la Diabetes/terapia , Diabetes Mellitus Tipo 2/terapia , Células Madre Multipotentes/trasplante , Orina/citología , Adulto , Animales , Apoptosis , Complicaciones de la Diabetes/patología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/patología , Fibrosis/prevención & control , Humanos , Islotes Pancreáticos/patología , Glomérulos Renales/patología , Masculino , Miocardio/patología , Ratas , Ratas Sprague-Dawley , Trasplante Heterólogo , Vejiga Urinaria/patología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA