Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(23): 11129-11136, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38038194

RESUMEN

The photon upconverting properties of lanthanide-doped nanoparticles drive their applications in imaging, optoelectronics, and additive manufacturing. To maximize their brightness, these upconverting nanoparticles (UCNPs) are often synthesized as core/shell heterostructures. However, the large numbers of compositional and structural parameters in multishell heterostructures make optimizing optical properties challenging. Here, we demonstrate the use of Bayesian optimization (BO) to learn the structure and design rules for multishell UCNPs with bright ultraviolet and violet emission. We leverage an automated workflow that iteratively recommends candidate UCNP structures and then simulates their emission spectra using kinetic Monte Carlo. Yb3+/Er3+- and Yb3+/Er3+/Tm3+-codoped UCNP nanostructures optimized with this BO workflow achieve 10- and 110-fold brighter emission within 22 and 40 iterations, respectively. This workflow can be expanded to structures with higher compositional and structural complexity, accelerating the discovery of novel UCNPs while domain-specific knowledge is being developed.

2.
Pharmaceutics ; 15(3)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36986801

RESUMEN

Photodynamic therapy (PDT) is a promising strategy for cancer treatment. However, a poor tissue penetration of activation light and low target specificity seriously hindered the clinical application of PDT. Here, we designed and constructed a size-controllable nanosystem (UPH) with inside-out responsive for deep PDT with enhanced biosafety. To obtain nanoparticles with the best quantum yield, a series of core-shell nanoparticles (UCNP@nPCN) with different thicknesses were synthesized by a layer-by-layer self-assembly method to incorporate a porphyritic porous coordination network (PCN) onto the surface of upconverting nanoparticles (UCNPs), followed by coating with hyaluronic acid (HA) on the surface of nanoparticles with optimized thickness to form the UPH nanoparticles. With the aid of HA, the UPH nanoparticles were capable of preferentially enriching in tumor sites and specific endocytosis by CD44 receptors as well as responsive degradation by hyaluronidase in cancer cells after intravenous administration. Subsequently, after being activated by strong penetrating 980 nm near-infrared light (NIR), the UPH nanoparticles efficiently converted oxygen into strongly oxidizing reactive oxygen species based on the fluorescence resonance energy transfer (FRET) effect, thereby significantly inhibiting tumor growth. Experimental results in vitro and in vivo indicated that such dual-responsive nanoparticles successfully realize the photodynamic therapy of deep-seated cancer with negligible side effects, which showed great potential for potential clinical translational research.

3.
Mol Imaging Biol ; 25(1): 168-179, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35312938

RESUMEN

PURPOSE: Intraoperative detection and removal of microscopic residual disease (MRD) remain critical to the outcome of cancer surgeries. Today's minimally invasive surgical procedures require miniaturization and surgical integration of highly sensitive imagers to seamlessly integrate into the modern clinical workflow. However, current intraoperative imagers remain cumbersome and still heavily dependent on large lenses and rigid filters, precluding further miniaturization and integration into surgical tools. PROCEDURES: We have successfully engineered a chip-scale intraoperative micro-imager array-without optical filters or lenses-integrated with lanthanide-based alloyed upconverting nanoparticles (aUCNPs) to achieve tissue imaging using a single micro-chip. This imaging platform is able to leverage the unique optical properties of aUCNPs (long luminescent lifetime, high-efficiency upconversion, no photobleaching) by utilizing a time-resolved imaging method to acquire images using a 36-by-80-pixel, 2.3 mm [Formula: see text] 4.8 mm silicon-based electronic imager micro-chip, that is, less than 100-µm thin. Each pixel incorporates a novel architecture enabling automated background measurement and cancellation. We have validated the performance, spatial resolution, and the background cancellation scheme of the imaging platform, using resolution test targets and mouse prostate tumor sample intratumorally injected with aUCNPs. To demonstrate the ability to image MRD, or tumor margins, we evaluated the imaging platform in visualizing a single-cell thin section of the injected prostate tumor sample. RESULTS: Tested on USAF resolution targets, the imager is able to achieve a resolution of 71 µm. We have also demonstrated successful background cancellation, achieving a signal-to-background ratio of 8 when performing ex vivo imaging on aUCNP-injected prostate tumor sample, improved from originally 0.4. The performance of the imaging platform on single-cell layer sections was also evaluated and the sensor achieved a signal-to-background ratio of 4.3 in resolving cell clusters with sizes as low as 200 cells. CONCLUSION: The imaging system proposed here is a scalable chip-scale ultra-thin alternative for bulky conventional intraoperative imagers. Its novel pixel architecture and background correction scheme enable visualization of microscopic-scale residual disease while remaining completely free of lenses and filters, achieving an ultra-miniaturized form factor-critical for intraoperative settings.


Asunto(s)
Nanopartículas , Neoplasias de la Próstata , Masculino , Animales , Ratones , Humanos , Diagnóstico por Imagen , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía
4.
J Immunol Methods ; 510: 113364, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36179896

RESUMEN

A homogeneous particle-based immunoassay using upconverting nanoparticles (UCNPs) has been developed for multiplexing potency analysis of two different therapeutic monoclonal antibodies (mAbs) in a fixed-combination formulation.The UCNP, considered as the best donor lumiphore for luminescence resonance energy transfer (LRET), offers long lasting excitation state and increased signal-to-noise (S/N) ratio due to low autofluorescence effect and light scattering from near infrared (NIR) excitation. In this study, the dose-response curves for each therapeutic mAb were generated using two distinct UCNPs. This proof-of-concept LRET-based immunoassay demonstrated a novel approach for increasing testing throughput and analyzing the potency of mixed therapeutic mAbs in co-formulated products.


Asunto(s)
Luminiscencia , Nanopartículas , Anticuerpos Monoclonales , Transferencia Resonante de Energía de Fluorescencia , Inmunoensayo
5.
Beilstein J Org Chem ; 15: 2671-2677, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31807202

RESUMEN

Upconverting nanoparticles are a rising class of non-linear luminescent probes burgeoning since the beginning of the 2000's, especially for their attractiveness in theranostics. However, the precise quantification of the light delivered remains a hot problem in order to estimate their impact on the biological medium. Sophisticated photophysical measurements under near infrared excitation have been developed only by few teams. Here, we present the first attempt towards a simple and cheap photochemical approach consisting of an actinometric characterization of the green emission of NaYF4:Yb,Er nanoparticles. Using the recently calibrated actinometer 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)-3,3,4,4,5,5-hexafluoro-1-cyclopentene operating in the green region of the visible spectra, we propose a simple photochemical experiment to get an accurate estimation of the efficiency of these green-emitting "nanolamps". The agreement of the collected data with the previous published results validates this approach.

6.
Theranostics ; 9(26): 8239-8252, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31754393

RESUMEN

Rationale: Intraoperative visualization in small surgical cavities and hard-to-access areas are essential requirements for modern, minimally invasive surgeries and demand significant miniaturization. However, current optical imagers require multiple hard-to-miniaturize components including lenses, filters and optical fibers. These components restrict both the form-factor and maneuverability of these imagers, and imagers largely remain stand-alone devices with centimeter-scale dimensions. Methods: We have engineered INSITE (Immunotargeted Nanoparticle Single-Chip Imaging Technology), which integrates the unique optical properties of lanthanide-based alloyed upconverting nanoparticles (aUCNPs) with the time-resolved imaging of a 25-micron thin CMOS-based (complementary metal oxide semiconductor) imager. We have synthesized core/shell aUCNPs of different compositions and imaged their visible emission with INSITE under either NIR-I and NIR-II photoexcitation. We characterized aUCNP imaging with INSITE across both varying aUCNP composition and 980 nm and 1550 nm excitation wavelengths. To demonstrate clinical experimental validity, we also conducted an intratumoral injection into LNCaP prostate tumors in a male nude mouse that was subsequently excised and imaged with INSITE. Results: Under the low illumination fluences compatible with live animal imaging, we measure aUCNP radiative lifetimes of 600 µs - 1.3 ms, which provides strong signal for time-resolved INSITE imaging. Core/shell NaEr0.6Yb0.4F4 aUCNPs show the highest INSITE signal when illuminated at either 980 nm or 1550 nm, with signal from NIR-I excitation about an order of magnitude brighter than from NIR-II excitation. The 55 µm spatial resolution achievable with this approach is demonstrated through imaging of aUCNPs in PDMS (polydimethylsiloxane) micro-wells, showing resolution of micrometer-scale targets with single-pixel precision. INSITE imaging of intratumoral NaEr0.8Yb0.2F4 aUCNPs shows a signal-to-background ratio of 9, limited only by photodiode dark current and electronic noise. Conclusion: This work demonstrates INSITE imaging of aUCNPs in tumors, achieving an imaging platform that is thinned to just a 25 µm-thin, planar form-factor, with both NIR-I and NIR-II excitation. Based on a highly paralleled array structure INSITE is scalable, enabling direct coupling with a wide array of surgical and robotic tools for seamless integration with tissue actuation, resection or ablation.


Asunto(s)
Microscopía Fluorescente , Miniaturización , Animales , Elementos de la Serie de los Lantanoides/química , Masculino , Ratones , Microscopía Fluorescente/métodos , Microscopía Fluorescente/tendencias , Miniaturización/instrumentación , Miniaturización/métodos , Nanopartículas/química
7.
Nano Lett ; 15(8): 5068-74, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26120948

RESUMEN

We report on stable, long-term immobilization and localization of a single colloidal Er(3+)/Yb(3+) codoped upconverting fluorescent nanoparticle (UCNP) by optical trapping with a single infrared laser beam. Contrary to expectations, the single UCNP emission differs from that generated by an assembly of UCNPs. The experimental data reveal that the differences can be explained in terms of modulations caused by radiation-trapping, a phenomenon not considered before but that this work reveals to be of great relevance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA