Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomimetics (Basel) ; 9(8)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39194461

RESUMEN

The research work presents a novel voxel-type soft amphibious robot based on an assembly of origami flexiballs. The geometric and elastic constitutive models of the origami flexiball are theoretically established to elucidate its intricate deformation mechanism. Especially, the zero-energy storage phenomenon and the quasi-zero-stiffness characteristic are revealed to prove that the origami flexiball is suitable for serving as soft robotic components. As a proof of concept, fourteen origami flexiballs are interconnected to form a quadruped robot capable of walking or crawling in both underwater and terrestrial environments, including flat surfaces and sandy terrain. Its adaptability across multiple environments is enhanced by the origami polyhedra-inspired hollow structure, which naturally adjusts to underwater conditions such as hydrostatic pressure and currents, improving stability and performance. Other advantages of the voxel-type soft amphibious quadruped robot include its ease of manufacture using 3D printing with accessible soft elastic materials, ensuring rapid and cost-effective fabrication. We anticipate its potentially versatile applications, including underwater pipeline inspections, offshore maintenance, seabed exploration, ecological monitoring, and marine sample collection. By leveraging metamaterial features embodied in the origami polyhedra, the presented voxel-type soft robot exemplifies an innovative approach to achieving complex functionalities in soft robotics.

2.
Adv Sci (Weinh) ; : e2406956, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136060

RESUMEN

Modular reconfigurable robots exhibit prominent advantages in the reconnaissance and exploration tasks within unstructured environments for their characteristics of high adaptability and high robustness. However, due to the limitations in locomotion mechanism and integration requirements, the modular design of miniature robots in the aquatic environment encounters significant challenges. Here, a modular strategy based on the synthetic jet principle is proposed, and a modular reconfigurable robot system is developed. Specialized bottom and side jet actuators are designed with vibration motors as excitation sources, and a motion module is developed incorporating the jet actuators to realize three-dimensional agile motion. Its linear, rotational, and ascending motion speeds reach 70.7 mm s-1, 3.3 rad s-1, and 28.7 mm s-1, respectively. The module integrates the power supply, communication, and control system with a small size of 48 mm × 38 mm × 38 mm, which ensures a wireless controllable motion. Then, various configurations of the multi-module robot system are established with corresponding motion schemes, and the experiments with replaceable intermediate modules are further conducted to verify the transportation and image-capturing functions. This work demonstrates the effectiveness of synthetic jet propulsion for aquatic modular reconfigurable robot systems, and it exhibits profound potential in future underwater applications.

3.
Sci Rep ; 14(1): 12309, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811640

RESUMEN

Based on the principle of light refraction and binocular ranging, the underwater imaging model is obtained. It provides a theoretical basis for underwater camera calibration. In order to meet the requirement of underwater vehicle to identify and distance underwater target, a new underwater vehicle distance measurement system based on semantic segmentation and binocular vision is proposed. The system uses Deeplabv3 + to identify the underwater target captured by the binocular camera and generate the target map, which is then used for binocular ranging. Compared with the binocular ranging using the original drawing, the measurement accuracy of the proposed method has not changed, the measurement speed is increased by 30%, and the error rate is controlled within 5%, which meets the needs of underwater robot operations.

4.
Biomimetics (Basel) ; 9(3)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38534811

RESUMEN

Safe, underwater exploration in the ocean is a challenging task due to the complex environment, which often contains areas with dense coral reefs, uneven terrain, or many obstacles. To address this issue, an intelligent underwater exploration framework of a biomimetic robot is proposed in this paper, including an obstacle avoidance model, motion planner, and yaw controller. Firstly, with the aid of the onboard distance sensors in robotic fish, the obstacle detection model is established. On this basis, two types of obstacles, i.e., rectangular and circular, are considered, followed by the obstacle collision model's construction. Secondly, a deep reinforcement learning method is adopted to plan the plane motion, and the performances of different training setups are investigated. Thirdly, a backstepping method is applied to derive the yaw control law, in which a sigmoid function-based transition method is employed to smooth the planning output. Finally, a series of simulations are carried out to verify the effectiveness of the proposed method. The obtained results indicate that the biomimetic robot can not only achieve intelligent motion planning but also accomplish yaw control with obstacle avoidance, offering a valuable solution for underwater operation in the ocean.

5.
Biomimetics (Basel) ; 9(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38534856

RESUMEN

Biological fish exhibit a remarkably broad-spectrum visual perception capability. Inspired by the eye arrangement of biological fish, we design a fish-like binocular vision system, thereby endowing underwater bionic robots with an exceptionally broad visual perception capacity. Firstly, based on the design principles of binocular visual field overlap and tangency to streamlined shapes, a fish-like vision system is developed for underwater robots, enabling wide-field underwater perception without a waterproof cover. Secondly, addressing the significant distortion and parallax of the vision system, a visual field stitching algorithm is proposed to merge the binocular fields of view and obtain a complete perception image. Thirdly, an orientation alignment method is proposed that draws scales for yaw and pitch angles in the stitched images to provide a reference for the orientation of objects of interest within the field of view. Finally, underwater experiments evaluate the perception capabilities of the fish-like vision system, confirming the effectiveness of the visual field stitching algorithm and the orientation alignment method. The results show that the constructed vision system, when used underwater, achieves a horizontal field of view of 306.56°. The conducted work advances the visual perception capabilities of underwater robots and presents a novel approach to and insight for fish-inspired visual systems.

6.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38257637

RESUMEN

Shape memory alloys (SMAs) have become the most common choice for the development of mini- and micro-type soft bio-inspired robots due to their high power-to-weight ratio, ability to be installed and operated in limited space, silent and vibration-free operation, biocompatibility, and corrosion resistance properties. Moreover, SMA spring-type actuators are used for developing different continuum robots, exhibiting high degrees of freedom and flexibility. Spring- or any elastic-material-based antagonistic or biasing force is mostly preferred among all other biasing techniques to generate periodic oscillation of SMA actuator-based robotic body parts. In this model-based study, SMA-based spring-type actuators were used to develop a carangiform-type robotic fishtail. Fin size optimization for the maximization of forward thrust was performed for the developed system by varying different parameters, such as caudal fin size, current through actuators, pulse-width modulation signal (PWM), and operating depth. A caudal fin with a mixed fin pattern between the Lunate and Fork "Lunafork" and a fin area of approximately 5000 mm2 was found to be the most effective for the developed system. The maximum forward thrust developed by this fin was recorded as 40 gmf at an operation depth of 12.5 cm in a body of still water.

7.
Sensors (Basel) ; 24(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276365

RESUMEN

Fishing nets are dangerous obstacles for an underwater robot whose aim is to reach a goal in unknown underwater environments. This paper proposes how to make the robot reach its goal, while avoiding fishing nets that are detected using the robot's camera sensors. For the detection of underwater nets based on camera measurements of the robot, we can use deep neural networks. Passive camera sensors do not provide the distance information between the robot and a net. Camera sensors only provide the bearing angle of a net, with respect to the robot's camera pose. There may be trailing wires that extend from a net, and the wires can entangle the robot before the robot detects the net. Moreover, light, viewpoint, and sea floor condition can decrease the net detection probability in practice. Therefore, whenever a net is detected by the robot's camera, we make the robot avoid the detected net by moving away from the net abruptly. For moving away from the net, the robot uses the bounding box for the detected net in the camera image. After the robot moves backward for a certain distance, the robot makes a large circular turn to approach the goal, while avoiding the net. A large circular turn is used, since moving close to a net is too dangerous for the robot. As far as we know, our paper is unique in addressing reactive control laws for approaching the goal, while avoiding fishing nets detected using camera sensors. The effectiveness of the proposed net avoidance controls is verified using simulations.

8.
Soft Robot ; 11(1): 21-31, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37471221

RESUMEN

Soft and continuum robots present the opportunity for extremely large ranges of motion, which can enable dexterous, adaptive, and multimodal locomotion behaviors. However, as the number of degrees of freedom (DOF) of a robot increases, the number of actuators should also increase to achieve the full actuation potential. This presents a dilemma in mobile soft robot design: physical space and power requirements restrict the number and type of actuators available and may ultimately limit the movement capabilities of soft robots with high-DOF appendages. Restrictions on actuation of continuum appendages ultimately may limit the various movement capabilities of soft robots. In this work, we demonstrate multimodal behaviors in an underwater robot called "Hexapus." A hierarchical actuation design for multiappendage soft robots is presented in which a single high-power motor actuates all appendages for locomotion, while smaller low-power motors augment the shape of each appendage. The flexible appendages are designed to be capable of hyperextension for thrust, and flexion for grasping with a peak pullout force of 32 N. For propulsion, we incorporate an elastic membrane connected across the base of each tentacle, which is stretched slowly by the high-power motor and released rapidly through a slip-gear mechanism. Through this actuation arrangement, Hexapus is capable of underwater locomotion with low cost of transport (COT = 1.44 at 16.5 mm/s) while swimming and a variety of multimodal locomotion behaviors, including swimming, turning, grasping, and crawling, which we demonstrate in experiment.

9.
Sensors (Basel) ; 23(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38005624

RESUMEN

To overcome the difficulty in tracking the trajectory of an inspection robot inside a transformer, this paper proposes a distributed model predictive control method. First, the kinematics and dynamics models of a robot in transformer oil are established based on the Lagrange equation. Then, by using the nonlinear model predictive control method and following the distributed control theory, the motion of a robot in transformer oil is decoupled into five independent subsystems. Based on this, a distributed model predictive control (DMPC) method is then developed. Finally, the simulation results indicate that a robot motion control system based on DMPC achieves high tracking accuracy and robustness with reduced computing complexity, and it provides an effective solution for the motion control of robots in narrow environments.

10.
Heliyon ; 9(11): e22228, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034682

RESUMEN

When diagnosing the composite fault of the actuator, the characteristics of the motion force of the underwater vehicle are not analyzed, and there are diagnostic errors, resulting in the low accuracy of the diagnosis technology. In order to solve this problem and improve the operation safety of underwater vehicle actuators, this paper proposes a compound fault diagnosis technology for underwater vehicle actuators under positioning error constraints. Analyze the motion force of the underwater robot actuator, control the motion of the underwater robot actuator according to the analysis results, and extract real-time data parameters according to the control results. Under the constraint of positioning error, the composite fault features of the underwater robot actuator are divided, and the diagnosis model is built according to the deep fusion of the features to complete the fault diagnosis. The experimental results show that the technology can diagnose the composite fault data of the actuator, and the positioning error of the horizontal axis and the horizontal axis can be significantly improved, which can improve the diagnosis effect of the composite fault of the actuator and to the improvement of underwater robot running safety of actuators provide certain reference.

11.
Biomimetics (Basel) ; 8(4)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37622950

RESUMEN

Sea cucumber manual monitoring and fishing present various issues, including high expense and high risk. Meanwhile, compared to underwater bionic robots, employing autonomous underwater robots for sea cucumber monitoring and capture also has drawbacks, including low propulsion efficiency and significant noise. Therefore, this paper is concerned with the design of a robotic manta ray for sea cucumber recognition, localization, and approach. First, the developed robotic manta ray prototype and the system framework applied to real-time target search are elaborated. Second, by improved YOLOv5 object detection and binocular stereo-matching algorithms, precise recognition and localization of sea cucumbers are achieved. Thirdly, the motion controller is proposed for autonomous 3D monitoring tasks such as depth control, direction control, and target approach motion. Finally, the capabilities of the robot are validated through a series of measurements. Experimental results demonstrate that the improved YOLOv5 object detection algorithm achieves detection accuracies (mAP@0.5) of 88.4% and 94.5% on the URPC public dataset and self-collected dataset, respectively, effectively recognizing and localizing sea cucumbers. Control experiments were conducted, validating the effectiveness of the robotic manta ray's motion toward sea cucumbers. These results highlight the robot's capabilities in visual perception, target localization, and approach and lay the foundation to explore a novel solution for intelligent monitoring and harvesting in the aquaculture industry.

12.
Front Bioeng Biotechnol ; 11: 1196922, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37614630

RESUMEN

The research on biomimetic robots, especially soft robots with flexible materials as the main structure, is constantly being explored. It integrates multi-disciplinary content, such as bionics, material science, mechatronics engineering, and control theory, and belongs to the cross-disciplinary field related to mechanical bionics and biological manufacturing. With the continuous development of various related disciplines, this area has become a hot research field. Particularly with the development of practical technologies such as 3D printing technology, shape memory alloy, piezoelectric materials, and hydrogels at the present stage, the functions and forms of soft robots are constantly being further developed, and a variety of new soft robots keep emerging. Soft robots, combined with their own materials or structural characteristics of large deformation, have almost unlimited degrees of freedom (DoF) compared with rigid robots, which also provide a more reliable structural basis for soft robots to adapt to the natural environment. Therefore, soft robots will have extremely strong adaptability in some special conditions. As a type of robot made of flexible materials, the changeable pose structure of soft robots is especially suitable for the large application environment of the ocean. Soft robots working underwater can better mimic the movement characteristics of marine life in the hope of achieving more complex underwater tasks. The main focus of this paper is to classify different types of underwater organisms according to their common motion modes, focusing on the achievements of some bionic mechanisms in different functional fields that have imitated various motion modes underwater in recent years (e.g., the underwater sucking glove, the underwater Gripper, and the self-powered soft robot). The development of various task types (e.g., grasping, adhesive, driving or swimming, and sensing functions) and mechanism realization forms of the underwater soft robot are described based on this article.

13.
Sensors (Basel) ; 23(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37420604

RESUMEN

A dynamically reconfigurable underwater robot, which can vary its configuration during a mission, would be useful for confined environment exploration and docking because of its versatility. A mission can be performed by choosing among different configurations, and the energy cost may increase, owing to the reconfigurability of the robot. Energy saving is the critical issue in long-range missions with underwater robots. Moreover, control allocation must be considered for a redundant system and input constraints. We propose an approach for an energy-efficient configuration and control allocation for a dynamically reconfigurable underwater robot that is built for karst exploration. The proposed method is based on sequential quadratic programming, which minimizes an energy-like criterion with respect to robotic constraints, i.e., mechanical limitations, actuator saturations, and a dead zone. The optimization problem is solved in each sampling instant. Two popular tasks for underwater robots, i.e., path-following and station-keeping (observation) problems, are simulated, and the simulation results show the efficiency of the method. Moreover, an experiment is carried out to highlight the results.


Asunto(s)
Robótica , Fenómenos Físicos , Simulación por Computador
14.
Biomimetics (Basel) ; 8(2)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37366856

RESUMEN

This paper presented a flexible and easily fabricated untethered underwater robot inspired by Aurelia, which is named "Au-robot". The Au-robot is actuated by six radial fins made of shape memory alloy (SMA) artificial muscle modules, which can realize pulse jet propulsion motion. The thrust model of the Au-robot's underwater motion is developed and analyzed. To achieve a multimodal and smooth swimming transition for the Au-robot, a control method integrating a central pattern generator (CPG) and an adaptive regulation (AR) heating strategy is provided. The experimental results demonstrate that the Au-robot, with good bionic properties in structure and movement mode, can achieve a smooth transition from low-frequency swimming to high-frequency swimming with an average maximum instantaneous velocity of 12.61 cm/s. It shows that a robot designed and fabricated with artificial muscle can imitate biological structures and movement traits more realistically and has better motor performance.

15.
Biomimetics (Basel) ; 8(2)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37092420

RESUMEN

Bionic robots possess inherent advantages for underwater operations, and research on motion control and intelligent decision making has expanded their application scope. In recent years, the application of reinforcement learning algorithms in the field of bionic underwater robots has gained considerable attention, and continues to grow. In this paper, we present a comprehensive survey of the accomplishments of reinforcement learning algorithms in the field of bionic underwater robots. Firstly, we classify existing reinforcement learning methods and introduce control tasks and decision making tasks based on the composition of bionic underwater robots. We further discuss the advantages and challenges of reinforcement learning for bionic robots in underwater environments. Secondly, we review the establishment of existing reinforcement learning algorithms for bionic underwater robots from different task perspectives. Thirdly, we explore the existing training and deployment solutions of reinforcement learning algorithms for bionic underwater robots, focusing on the challenges posed by complex underwater environments and underactuated bionic robots. Finally, the limitations and future development directions of reinforcement learning in the field of bionic underwater robots are discussed. This survey provides a foundation for exploring reinforcement learning control and decision making methods for bionic underwater robots, and provides insights for future research.

16.
Front Robot AI ; 10: 1102854, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845333

RESUMEN

Recently, soft robotics has gained considerable attention as it promises numerous applications thanks to unique features originating from the physical compliance of the robots. Biomimetic underwater robots are a promising application in soft robotics and are expected to achieve efficient swimming comparable to the real aquatic life in nature. However, the energy efficiency of soft robots of this type has not gained much attention and has been fully investigated previously. This paper presents a comparative study to verify the effect of soft-body dynamics on energy efficiency in underwater locomotion by comparing the swimming of soft and rigid snake robots. These robots have the same motor capacity, mass, and body dimensions while maintaining the same actuation degrees of freedom. Different gait patterns are explored using a controller based on grid search and the deep reinforcement learning controller to cover the large solution space for the actuation space. The quantitative analysis of the energy consumption of these gaits indicates that the soft snake robot consumed less energy to reach the same velocity as the rigid snake robot. When the robots swim at the same average velocity of 0.024 m/s, the required power for the soft-body robot is reduced by 80.4% compared to the rigid counterpart. The present study is expected to contribute to promoting a new research direction to emphasize the energy efficiency advantage of soft-body dynamics in robot design.

17.
Sensors (Basel) ; 22(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35808155

RESUMEN

With the development of artificial intelligence technology, visual simultaneous localization and mapping (SLAM) has become a cheap and efficient localization method for underwater robots. However, there are many problems in underwater visual SLAM, such as more serious underwater imaging distortion, more underwater noise, and unclear details. In this paper, we study these two problems and chooses the ORB-SLAM2 algorithm as the method to obtain the motion trajectory of the underwater robot. The causes of radial distortion and tangential distortion of underwater cameras are analyzed, a distortion correction model is constructed, and five distortion correction coefficients are obtained through pool experiments. Comparing the performances of contrast-limited adaptive histogram equalization (CLAHE), median filtering (MF), and dark channel prior (DCP) image enhancement methods in underwater SLAM, it is found that the DCP method has the best image effect evaluation, the largest number of oriented fast and rotated brief (ORB) feature matching, and the highest localization trajectory accuracy. The results show that the ORB-SLAM2 algorithm can effectively locate the underwater robot, and the correct distortion correction coefficient and DCP improve the stability and accuracy of the ORB-SLAM2 algorithm.


Asunto(s)
Inteligencia Artificial , Robótica , Algoritmos , Aumento de la Imagen/métodos , Movimiento (Física) , Robótica/métodos
18.
Sensors (Basel) ; 22(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35591072

RESUMEN

This paper presents the design and experiment of an autonomous underwater robot which can change the geometric configuration of its actuators, according to mission requirements or environmental constraints. The robot consists of two subsystems: forward part with three thrusters and backward part with four thrusters. The position and orientation of these thrusters can be dynamically changed during missions. Being different from most of other reconfigurable underwater robots which were designed as linked-modules, our robot has a unified design. It is suitable for specific mission in confined environments (e.g., karst exploration) in which the robot has to modify its shape to go through a narrow section or align the most part of its thrusters in the direction of a strong current, for examples. The design procedure, from hardware to software, of the robot is presented and experimental results are shown to demonstrate the versatility of the robot. Furthermore, the discussion and comparison between our robot and other underwater robots with adaptable actuation geometry are presented to highlight advantages of our design. Finally, the idea of using our robot for classic docking problem, which has some common features with karst exploration requirements in using dynamically reconfigurable robots, is discussed.

20.
Front Robot AI ; 8: 688697, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34513936

RESUMEN

Benthic operation plays a vital role in underwater applications, where crawling robots have advantages compared with turbine-based underwater vehicles, in locomotion accuracy, actuation efficiency, current resistance, and in carrying more payloads. On the other hand, soft robots are quickly trending in underwater robotic design, with their naturally sealed body structure and intrinsic compliance both desirable for the highly unstructured and corrosive underwater environment. However, the limitations resulting directly from the inherent compliance, in structural rigidity, actuation precision, and limited force exertion capability, have also restricted soft robots in underwater applications. To date soft robots are adopted mainly as grippers and manipulators for atraumatic sampling, rather than as locomotion platforms. In this work, we present a soft-robotic approach to designing underwater crawling robots, with three main innovations: 1) using rigid structural components to strategically reinforce the otherwise omni-directionally flexible soft actuators, drastically increasing their loading capability and actuation precision; 2) proposing a rigid-soft hybrid multi-joint leg design, with quasi-linear motion range and force exertion, while maintaining excellent passive impact compliance by exploiting the inherent flexibility of soft actuators; 3) developing a novel valve-free hydraulic actuation system with peristaltic pumps, achieving a compact, lightweight, and untethered underwater crawling robot prototype with a 5:1 payload-to-weight ratio and multi-gait capability. The prototype was tested for design verification and showcasing the advantages of the proposed hybrid mechanism and actuation approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA