Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
SLAS Discov ; 29(6): 100181, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39173830

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2, SARS2) is responsible for the COVID-19 pandemic and infections that continue to affect the lives of millions of people worldwide, especially those who are older and/or immunocompromised. The SARS2 main protease enzyme, Mpro (also called 3C-like protease, 3CLpro), is a bona fide drug target as evidenced by potent inhibition with nirmatrelvir and ensitrelvir, the active components of the drugs Paxlovid and Xocova, respectively. However, the existence of nirmatrelvir and ensitrelvir-resistant isolates underscores the need to develop next-generation drugs with different resistance profiles and/or distinct mechanisms of action. Here, we report the results of a high-throughput screen of 649,568 compounds using a cellular gain-of-signal assay. In this assay, Mpro inhibits expression of a luciferase reporter, and 8,777 small molecules were considered hits by causing a gain in luciferase activity 3x SD above the sample field activity (6.8% gain-of-signal relative to 100 µM GC376). Single concentration and dose-response gain-of-signal experiments confirmed 3,522/8,762 compounds as candidate inhibitors. In parallel, all initial high-throughput screening hits were tested in a peptide cleavage assay with purified Mpro and only 39/8,762 showed inhibition. Importantly, 19/39 compounds (49%) re-tested positive in both SARS2 assays, including two previously reported Mpro inhibitors, demonstrating the efficacy of the overall screening strategy. This approach led to the rediscovery of known Mpro inhibitors such as calpain inhibitor II, as well as to the discovery of novel compounds that provide chemical information for future drug development efforts.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Ensayos Analíticos de Alto Rendimiento , SARS-CoV-2 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , SARS-CoV-2/efectos de los fármacos , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/genética , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Inhibidores de Proteasas/farmacología , Descubrimiento de Drogas/métodos , COVID-19/virología , Bibliotecas de Moléculas Pequeñas/farmacología
2.
SLAS Technol ; 29(4): 100163, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39047813

RESUMEN

Over the last 5 years, IR-MALDESI-MS (Infrared Matrix-Assisted Laser Desorption Electrospray Ionization Mass Spectrometry) has been demonstrated for use in a range of high-throughput biochemical and cellular assays with remarkable sample acquisition rates up to 22 Hz for a single 384-well assay plate. With such high single plate acquisition rates, the rate limiting step becomes how fast subsequent plates can be presented to the MS for analysis. To make this transfer as fast as possible while maintaining safe operation in a laboratory environment, we developed a collaborative robotic plate transfer system (CRPTS) that combines a 6-axis robot with dual plate grippers, a 7th axis conveyor stage, and a 420-plate capacity sample loading window. As a demonstration of the throughput and flexibility of CRPTS, we performed a biochemical assay that monitored the oxidation of tris(2-carboxyethyl)phosphine (TCEP) to screen for nuisance compounds. Using continuous and step motion scan profiles, we analyzed 158,799 compounds contained in 448 assay plates over the course of 12.5 h (Z-Factor=0.87) and 17.5 h (Z-factor=0.99), respectively. Extrapolating these results enables the screening of a million compounds within 6-7 working days.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Robótica , Robótica/instrumentación , Robótica/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/instrumentación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
3.
Appl Microbiol Biotechnol ; 108(1): 392, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910173

RESUMEN

In the last decades, biocatalysis has offered new perspectives for the synthesis of (chiral) amines, which are essential building blocks for pharmaceuticals, fine and bulk chemicals. In this regard, amidases have been employed due to their broad substrate scope and their independence from expensive cofactors. To expand the repertoire of amidases, tools for their rapid identification and characterization are greatly demanded. In this work an ultra-high throughput growth selection assay based on the production of the folate precursor p-aminobenzoic acid (PABA) is introduced to identify amidase activity. PABA-derived amides structurally mimic the broad class of commonly used chromogenic substrates derived from p-nitroaniline. This suggests that the assay should be broadly applicable for the identification of amidases. Unlike conventional growth selection assays that rely on substrates as nitrogen or carbon source, our approach requires PABA in sub-nanomolar concentrations, making it exceptionally sensitive and ideal for engineering campaigns that aim at enhancing amidase activities from minimally active starting points, for example. The presented assay offers flexibility in the adjustment of sensitivity to suit project-specific needs using different expression systems and fine-tuning with the antimetabolite sulfathiazole. Application of this PABA-based assay facilitates the screening of millions of enzyme variants on a single agar plate within two days, without the need for laborious sample preparation or expensive instruments, with transformation efficiency being the only limiting factor. KEY POINTS: • Ultra-high throughput assay (tens of millions on one agar plate) for amidase screening • High sensitivity by coupling selection to folate instead of carbon or nitrogen source • Highly adjustable in terms of sensitivity and expression of the engineering target.


Asunto(s)
Ácido 4-Aminobenzoico , Amidohidrolasas , Ensayos Analíticos de Alto Rendimiento , Amidohidrolasas/metabolismo , Amidohidrolasas/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Ácido 4-Aminobenzoico/metabolismo , Ácido 4-Aminobenzoico/química , Especificidad por Sustrato , Escherichia coli/genética , Escherichia coli/enzimología , Escherichia coli/metabolismo
4.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38612894

RESUMEN

With the ambition to identify novel chemical starting points that can be further optimized into small drug-like inhibitors of insulin-regulated aminopeptidase (IRAP) and serve as potential future cognitive enhancers in the clinic, we conducted an ultra-high-throughput screening campaign of a chemically diverse compound library of approximately 400,000 drug-like small molecules. Three biochemical and one biophysical assays were developed to enable large-scale screening and hit triaging. The screening funnel, designed to be compatible with high-density microplates, was established with two enzyme inhibition assays employing either fluorescent or absorbance readouts. As IRAP is a zinc-dependent enzyme, the remaining active compounds were further evaluated in the primary assay, albeit with the addition of zinc ions. Rescreening with zinc confirmed the inhibitory activity for most compounds, emphasizing a zinc-independent mechanism of action. Additionally, target engagement was confirmed using a complementary biophysical thermal shift assay where compounds causing positive/negative thermal shifts were considered genuine binders. Triaging based on biochemical activity, target engagement, and drug-likeness resulted in the selection of 50 qualified hits, of which the IC50 of 32 compounds was below 3.5 µM. Despite hydroxamic acid dominance, diverse chemotypes with biochemical activity and target engagement were discovered, including non-hydroxamic acid compounds. The most potent compound (QHL1) was resynthesized with a confirmed inhibitory IC50 of 320 nM. Amongst these compounds, 20 new compound structure classes were identified, providing many new starting points for the development of unique IRAP inhibitors. Detailed characterization and optimization of lead compounds, considering both hydroxamic acids and other diverse structures, are in progress for further exploration.


Asunto(s)
Aminopeptidasas , Insulina , Ensayos Analíticos de Alto Rendimiento , Insulina Regular Humana , Colorantes , Ácidos Hidroxámicos , Zinc
5.
Methods Mol Biol ; 2461: 211-224, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35727453

RESUMEN

Engineering of glycosyltransferases (GTs) with desired substrate specificity for the synthesis of complex oligosaccharides has been of great scientific and industrial interest. Here we describe an ultra-high-throughput fluorescence activated cell sorting (FACS) method for the directed evolution of GTs, at the single cell level. This assay relies on the exquisite substrate specificity of lactose permeases (LacY) that are located in the cell membrane, which distinguish selectively the fluorescent glycosylated products from the unreacted substrates. The method described here allows facile screening 106-107 mutants per hour. We demonstrate the application of this technique in the screening of libraries of α1,3-fucosyltransferase.


Asunto(s)
Bioensayo , Glicosiltransferasas , Evolución Molecular Dirigida/métodos , Citometría de Flujo/métodos , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Especificidad por Sustrato
6.
J Sep Sci ; 45(12): 2055-2063, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35108448

RESUMEN

Recent advances in the field of cancer biology have accelerated the discovery and development of novel biopharmaceuticals. At the forefront of these drug development efforts are high-throughput screening, compressed timelines, and limited sample quantities, all characteristic of the discovery space. To meet program targets, large numbers of protein variants must be produced, screened, and characterized, presenting a daunting analytical challenge. Additionally, the higher-order structure is paramount for protein function and must be monitored as a critical quality attribute. Matrix-assisted laser desorption/ionization mass spectrometry has been utilized as an ultra-fast, automatable, sample-sparing analytical tool for biomolecules. Our group has published applications integrating hydrogen-deuterium exchange mass spectrometry with matrix-assisted laser desorption/ionization mass spectrometry for the rapid conformational characterization of small proteins, the current work expands this application to monoclonal and bi-specific antibodies. This study demonstrates the ability of the methodology, matrix-assisted laser desorption/ionization hydrogen-deuterium exchange mass spectrometry, to detect conformational differences between bi-specific antibodies from different expression hosts. These conformational differences were validated by orthogonal techniques including circular dichroism, nuclear magnetic resonance, and size-exclusion chromatography hydrogen-deuterium exchange mass spectrometry. This work demonstrates the utility of applying the developed methodology as a rapid conformational screening tool to triage samples for further analytical characterization.


Asunto(s)
Medición de Intercambio de Deuterio , Hidrógeno , Deuterio/química , Deuterio/metabolismo , Medición de Intercambio de Deuterio/métodos , Hidrógeno/química , Rayos Láser , Proteínas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
7.
SLAS Discov ; 26(2): 168-191, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33482074

RESUMEN

For nearly two decades mass spectrometry has been used as a label-free, direct-detection method for both functional and affinity-based screening of a wide range of therapeutically relevant target classes. Here, we present an overview of several established and emerging mass spectrometry platforms and summarize the unique strengths and performance characteristics of each as they apply to high-throughput screening. Multiple examples from the recent literature are highlighted in order to illustrate the power of each individual technique, with special emphasis given to cases where the use of mass spectrometry was found to be differentiating when compared with other detection formats. Indeed, as many of these examples will demonstrate, the inherent strengths of mass spectrometry-sensitivity, specificity, wide dynamic range, and amenability to complex matrices-can be leveraged to enhance the discriminating power and physiological relevance of assays included in screening cascades. It is our hope that this review will serve as a useful guide to readers of all backgrounds and experience levels on the applicability and benefits of mass spectrometry in the search for hits, leads, and, ultimately, drugs.


Asunto(s)
Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Espectrometría de Masas , Descubrimiento de Drogas/tendencias , Ensayos Analíticos de Alto Rendimiento/tendencias , Humanos , Espectrometría de Masas/métodos
8.
Acta Pharm Sin B ; 11(12): 3983-3993, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35024320

RESUMEN

Unfolded protein response (UPR) is a stress response that is specific to the endoplasmic reticulum (ER). UPR is activated upon accumulation of unfolded (or misfolded) proteins in the ER's lumen to restore protein folding capacity by increasing the synthesis of chaperones. In addition, UPR also enhances degradation of unfolded proteins and reduces global protein synthesis to alleviate additional accumulation of unfolded proteins in the ER. Herein, we describe a cell-based ultra-high throughput screening (uHTS) campaign that identifies a small molecule that can modulate UPR and ER stress in cellular and in vivo disease models. Using asialoglycoprotein receptor 1 (ASGR) fused with Cypridina luciferase (CLuc) as reporter assay for folding capacity, we have screened a million small molecule library and identified APC655 as a potent activator of protein folding, that appears to act by promoting chaperone expression. Furthermore, APC655 improved pancreatic ß cell viability and insulin secretion under ER stress conditions induced by thapsigargin or cytokines. APC655 was also effective in preserving ß cell function and decreasing lipid accumulation in the liver of the leptin-deficient (ob/ob) mouse model. These results demonstrate a successful uHTS campaign that identified a modulator of UPR, which can provide a novel candidate for potential therapeutic development for a host of metabolic diseases.

9.
SLAS Discov ; 26(2): 192-204, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32734803

RESUMEN

The European Lead Factory (ELF) consortium provides European academics and small and medium enterprises access to ~0.5 million unique compounds, a state-of-the-art ultra-high-throughput screening (u-HTS) platform, and industrial early drug discovery (DD) expertise with the aim of delivering innovative DD starting points. From 2013 to 2018, 154 proposals for eight target classes in seven therapeutic areas were submitted to the ELF consortium, 88 of which were accepted by the selection committee. During this period, 76 primary assays based on seven different readout technologies were optimized and mainly miniaturized to 1536-well plates. In total, 72 u-HTS campaigns were carried out, and follow-up work including hit triage through orthogonal, deselection, selectivity, and biophysical assays were finalized. This ambitious project showed that besides the quality of the compound library and the primary assay, the success of centralized u-HTS of large compound libraries across many target classes, various assay types, and different readout technologies is also largely dependent on the capacity and flexibility of the automation on one hand and the hit-triaging phase on the other, particularly because of undesired compound-assay interference. Thus far, the delivered hit lists from the ELF consortium have resulted in spinoffs, patents, in vivo proof of concepts, preclinical development programs, peer-reviewed publications, PhD theses, and much more, demonstrating early success indications.


Asunto(s)
Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Investigación , Automatización , Biotecnología/métodos , Diseño de Fármacos , Descubrimiento de Drogas/normas , Europa (Continente) , Ensayos Analíticos de Alto Rendimiento/normas , Humanos , Revisión de la Investigación por Pares , Asociación entre el Sector Público-Privado , Bibliotecas de Moléculas Pequeñas
10.
SLAS Discov ; 25(1): 43-56, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31522598

RESUMEN

Fumarate hydratase (FH) is a metabolic enzyme that is part of the Krebs cycle and reversibly catalyzes the hydration of fumarate to malate. Mutations of the FH gene have been associated with fumarate hydratase deficiency (FHD), hereditary leiomyomatosis and renal cell cancer (HLRCC), and other diseases. Currently, there are no high-quality small-molecule probes for studying human FH. To address this, we developed a quantitative high-throughput screening (qHTS) FH assay and screened a total of 57,037 compounds from in-house libraries in dose-response. While no inhibitors of FH were confirmed, a series of phenyl-pyrrolo-pyrimidine-diones were identified as activators of human FH. These compounds were not substrates of FH, were inactive in a malate dehydrogenase counterscreen, and showed no detectable reduction-oxidation activity. The binding of two compounds from the series to human FH was confirmed by microscale thermophoresis. The low hit rate in this screening campaign confirmed that FH is a "tough target" to modulate, and the small-molecule activators of human FH reported here may serve as a starting point for further optimization and development into cellular probes of human FH and potential drug candidates.


Asunto(s)
Descubrimiento de Drogas/métodos , Activadores de Enzimas/farmacología , Fumarato Hidratasa/metabolismo , Ensayos Analíticos de Alto Rendimiento , Relación Dosis-Respuesta a Droga , Humanos , Cinética , Oxidación-Reducción/efectos de los fármacos , Relación Estructura-Actividad
11.
SLAS Discov ; 25(1): 9-20, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31498718

RESUMEN

Cell-based phenotypic screening is a commonly used approach to discover biological pathways, novel drug targets, chemical probes, and high-quality hit-to-lead molecules. Many hits identified from high-throughput screening campaigns are ruled out through a series of follow-up potency, selectivity/specificity, and cytotoxicity assays. Prioritization of molecules with little or no cytotoxicity for downstream evaluation can influence the future direction of projects, so cytotoxicity profiling of screening libraries at an early stage is essential for increasing the likelihood of candidate success. In this study, we assessed the cell-based cytotoxicity of nearly 10,000 compounds in the National Institutes of Health, National Center for Advancing Translational Sciences annotated libraries and more than 100,000 compounds in a diversity library against four normal cell lines (HEK 293, NIH 3T3, CRL-7250, and HaCat) and one cancer cell line (KB 3-1, a HeLa subline). This large-scale library profiling was analyzed for overall screening outcomes, hit rates, pan-activity, and selectivity. For the annotated library, we also examined the primary targets and mechanistic pathways regularly associated with cell death. To our knowledge, this is the first study to use high-throughput screening to profile a large screening collection (>100,000 compounds) for cytotoxicity in both normal and cancer cell lines. The results generated here constitute a valuable resource for the scientific community and provide insight into the extent of cytotoxic compounds in screening libraries, allowing for the identification and avoidance of compounds with cytotoxicity during high-throughput screening campaigns.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Ensayos Analíticos de Alto Rendimiento , Bibliotecas de Moléculas Pequeñas , Antineoplásicos/química , Técnicas de Cultivo de Célula , Línea Celular , Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Expresión Génica , Genes Reporteros , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos
12.
SLAS Discov ; 23(10): 1060-1069, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29995452

RESUMEN

Glucagon is a vital peptide hormone involved in the regulation of blood sugar under fasting conditions. Although the processes underlying glucagon production and secretion are well understood, far less is known about its degradation, which could conceivably be manipulated pharmacologically for therapeutic benefit. We describe here the development of novel assays for glucagon degradation, based on fluoresceinated and biotinylated glucagon (FBG) labeled at the N- and C-termini, respectively. Proteolysis at any peptide bond within FBG separates the fluorescent label from the biotin tag, which can be quantified in multiple ways. In one method requiring no specialized equipment, intact FBG is separated from the cleaved fluoresceinated fragments using NeutrAvidin agarose beads, and hydrolysis is quantified by fluorescence. In an alternative, high-throughput-compatible method, the degree of hydrolysis is quantified using fluorescence polarization after addition of unmodified avidin. Using a known glucagon protease, we confirm that FBG is cleaved at similar sites as unmodified glucagon and use both methods to quantify the kinetic parameters of FBG degradation. We show further that the fluorescence polarization-based assay performs exceptionally well ( Z'-factor values >0.80) in a high-throughput, mix-and-measure format.


Asunto(s)
Bioensayo , Glucagón/metabolismo , Ensayos Analíticos de Alto Rendimiento , Secuencia de Aminoácidos , Bioensayo/métodos , Pruebas de Enzimas , Glucagón/química , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Cinética , Espectrometría de Masas , Proteolisis
13.
SLAS Discov ; 22(8): 995-1006, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28426940

RESUMEN

High-throughput screening (HTS) is a widespread method in early drug discovery for identifying promising chemical matter that modulates a target or phenotype of interest. Because HTS campaigns involve screening millions of compounds, it is often desirable to initiate screening with a subset of the full collection. Subsequently, virtual screening methods prioritize likely active compounds in the remaining collection in an iterative process. With this approach, orthogonal virtual screening methods are often applied, necessitating the prioritization of hits from different approaches. Here, we introduce a novel method of fusing these prioritizations and benchmark it prospectively on 17 screening campaigns using virtual screening methods in three descriptor spaces. We found that the fusion approach retrieves 15% to 65% more active chemical series than any single machine-learning method and that appropriately weighting contributions of similarity and machine-learning scoring techniques can increase enrichment by 1% to 19%. We also use fusion scoring to evaluate the tradeoff between screening more chemical matter initially in lieu of replicate samples to prevent false-positives and find that the former option leads to the retrieval of more active chemical series. These results represent guidelines that can increase the rate of identification of promising active compounds in future iterative screens.


Asunto(s)
Evaluación Preclínica de Medicamentos , Heurística , Interfaz Usuario-Computador , Aprendizaje Automático
14.
SLAS Discov ; 22(6): 676-685, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28314118

RESUMEN

A major hallmark of Alzheimer's disease (AD) is the formation of neurotoxic aggregates composed of the amyloid-ß peptide (Aß). Aß has been recognized to interact with numerous proteins, resulting in pathological changes to the metabolism of patients with AD. One such mitochondrial metabolic enzyme is amyloid-binding alcohol dehydrogenase (ABAD), where altered enzyme function caused by the Aß-ABAD interaction is known to cause mitochondrial distress and cytotoxic effects, providing a feasible therapeutic target for AD drug development. Here we have established a high-throughput screening platform for the identification of modulators to the ABAD enzyme. A pilot screen with a total of 6759 compounds from the NIH Clinical Collections (NCC) and SelleckChem libraries and a selection of compounds from the BioAscent diversity collection have allowed validation and robustness to be optimized. The pilot screen revealed 16 potential inhibitors in the low µM range against ABAD with favorable physicochemical properties for blood-brain barrier penetration.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/antagonistas & inhibidores , Descubrimiento de Drogas , Pruebas de Enzimas , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Enfermedad de Alzheimer/tratamiento farmacológico , Fenómenos Químicos , Descubrimiento de Drogas/métodos , Pruebas de Enzimas/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Humanos , Técnicas In Vitro , Cinética , Ligandos , Unión Proteica , Reproducibilidad de los Resultados
15.
SLAS Discov ; 22(2): 196-202, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27729504

RESUMEN

High-throughput screening (HTS) has become an indispensable tool for the pharmaceutical industry and for biomedical research. A high degree of automation allows for experiments in the range of a few hundred up to several hundred thousand to be performed in close succession. The basis for such screens are molecular libraries, that is, microtiter plates with solubilized reagents such as siRNAs, shRNAs, miRNA inhibitors or mimics, and sgRNAs, or small compounds, that is, drugs. These reagents are typically condensed to provide enough material for covering several screens. Library plates thus need to be serially diluted before they can be used as assay plates. This process, however, leads to an explosion in the number of plates and samples to be tracked. Here, we present SAVANAH, the first tool to effectively manage molecular screening libraries across dilution series. It conveniently links (connects) sample information from the library to experimental results from the assay plates. All results can be exported to the R statistical environment or piped into HiTSeekR ( http://hitseekr.compbio.sdu.dk ) for comprehensive follow-up analyses. In summary, SAVANAH supports the HTS community in managing and analyzing HTS experiments with an emphasis on serially diluted molecular libraries.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , MicroARNs/antagonistas & inhibidores , ARN Interferente Pequeño/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Biología Computacional/métodos , Humanos , MicroARNs/química , Control de Calidad , Interferencia de ARN , ARN Interferente Pequeño/química , Bibliotecas de Moléculas Pequeñas/química , Programas Informáticos
16.
Bioorg Med Chem Lett ; 26(23): 5724-5728, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27815121

RESUMEN

The transformation of an aryloxybutanoic acid ultra high-throughput screening (uHTS) hit into a potent and selective series of G-protein coupled receptor 120 (GPR120) agonists is reported. uHTS hit 1 demonstrated an excellent rodent pharmacokinetic profile and selectivity over the related fatty acid receptor GPR40, but only modest GPR120 potency. Optimization of the "left-hand" aryl group led to compound 6, which demonstrated a GPR120 mechanism-based pharmacodynamic effect in a mouse oral glucose tolerance test (oGTT). Further optimization gave rise to the benzofuran propanoic acid series (exemplified by compound 37), which demonstrated acute mechanism-based pharmacodynamic effects. The combination of in vivo efficacy and attractive rodent pharmacodynamic profiles suggests compounds generated from this series may afford attractive candidates for the treatment of Type 2 diabetes.


Asunto(s)
Benzofuranos/química , Benzofuranos/farmacología , Propionatos/química , Propionatos/farmacología , Receptores Acoplados a Proteínas G/agonistas , Animales , Benzofuranos/sangre , Glucemia/análisis , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Humanos , Hipoglucemiantes/sangre , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Ratones , Propionatos/sangre , Receptores Acoplados a Proteínas G/metabolismo
17.
Methods Mol Biol ; 1439: 263-71, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27317001

RESUMEN

Bioluminescence resonance energy transfer (BRET) is a prominent biophysical technology for monitoring molecular interactions, and has been widely used to study protein-protein interactions (PPI) in live cells. This technology requires proteins of interest to be associated with an energy donor (i.e., luciferase) and an acceptor (e.g., fluorescent protein) molecule. Upon interaction of the proteins of interest, the donor and acceptor will be brought into close proximity and energy transfer of chemical reaction-induced luminescence to its corresponding acceptor will result in an increased emission at an acceptor-defined wavelength, generating the BRET signal. We leverage the advantages of the superior optical properties of the NanoLuc(®) luciferase (NLuc) as a BRET donor coupled with Venus, a yellow fluorescent protein, as acceptor. We term this NLuc-based BRET platform "BRET(n)". BRET(n) has been demonstrated to have significantly improved assay performance, compared to previous BRET technologies, in terms of sensitivity and scalability. This chapter describes a step-by-step practical protocol for developing a BRET(n) assay in a multi-well plate format to detect PPIs in live mammalian cells.


Asunto(s)
Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas de Cultivo de Célula/métodos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Plásmidos/genética , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección/métodos , Proteínas Señalizadoras YAP
18.
J Biomol Screen ; 21(8): 832-41, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27313114

RESUMEN

The correction or removal of signal errors in high-throughput screening (HTS) data is critical to the identification of high-quality lead candidates. Although a number of strategies have been previously developed to correct systematic errors and to remove screening artifacts, they are not universally effective and still require fair amount of human intervention. We introduce a fully automated quality control (QC) pipeline that can correct generic interplate systematic errors and remove intraplate random artifacts. The new pipeline was first applied to ~100 large-scale historical HTS assays; in silico analysis showed auto-QC led to a noticeably stronger structure-activity relationship. The method was further tested in several independent HTS runs, where QC results were sampled for experimental validation. Significantly increased hit confirmation rates were obtained after the QC steps, confirming that the proposed method was effective in enriching true-positive hits. An implementation of the algorithm is available to the screening community.


Asunto(s)
Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento/normas , Relación Estructura-Actividad , Algoritmos , Artefactos , Simulación por Computador , Humanos , Control de Calidad
19.
J Biomol Screen ; 20(5): 597-605, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25656237

RESUMEN

Respiratory syncytial virus (RSV) infects 99% of children by age 2 years and is a leading cause of serious lower respiratory tract infection (LRTI) and infant hospitalization in the United Kingdom. Identification of efficacious RSV therapeutics has been hindered by the lack of a robust and appropriate primary assay for high-throughput screening (HTS). Here we report an HTS cascade that identified inhibitors of RSV replication using a robust RSV replicon luminescence-reporter assay for the primary campaign. The performance of the assay was consistent and reliable at scale, with Z' of 0.55 ± 0.08 across 150 assay plates and signal-to-background ratios >40. The HTS assay was used to screen the AstraZeneca compound library of 1 million compounds at a single concentration of 10 µM. Hits specifically targeting the RSV replicon were determined using a series of hit generation assays. Compounds nonspecifically causing cell toxicity were removed, and hits were confirmed in live viral inhibition assays exhibiting greater physiological relevance than the primary assay. In summary, we developed a robust screening cascade that identified hit molecules that specifically targeted RSV replication.


Asunto(s)
Antivirales/farmacología , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento , Virus Sincitiales Respiratorios/efectos de los fármacos , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Expresión Génica , Genes Reporteros , Humanos , Pruebas de Sensibilidad Microbiana , Virus Sincitiales Respiratorios/fisiología , Replicación Viral/efectos de los fármacos
20.
J Biomol Screen ; 19(8): 1201-11, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24870016

RESUMEN

Antiapoptotic Bcl-2 family proteins are validated cancer targets composed of six related proteins. From a drug discovery perspective, these are challenging targets that exert their cellular functions through protein-protein interactions (PPIs). Although several isoform-selective inhibitors have been developed using structure-based design or high-throughput screening (HTS) of synthetic chemical libraries, no large-scale screen of natural product collections has been reported. A competitive displacement fluorescence polarization (FP) screen of nearly 150,000 natural product extracts was conducted against all six antiapoptotic Bcl-2 family proteins using fluorochrome-conjugated peptide ligands that mimic functionally relevant PPIs. The screens were conducted in 1536-well format and displayed satisfactory overall HTS statistics, with Z'-factor values ranging from 0.72 to 0.83 and a hit confirmation rate between 16% and 64%. Confirmed active extracts were orthogonally tested in a luminescent assay for caspase-3/7 activation in tumor cells. Active extracts were resupplied, and effort toward the isolation of pure active components was initiated through iterative bioassay-guided fractionation. Several previously described altertoxins were isolated from a microbial source, and the pure compounds demonstrate activity in both Bcl-2 FP and caspase cellular assays. The studies demonstrate the feasibility of ultra-high-throughput screening using natural product sources and highlight some of the challenges associated with this approach.


Asunto(s)
Productos Biológicos/química , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Células CACO-2 , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Ensayos de Selección de Medicamentos Antitumorales/métodos , Polarización de Fluorescencia/métodos , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Miniaturización , Terapia Molecular Dirigida/métodos , Micotoxinas/aislamiento & purificación , Micotoxinas/farmacología , Extracción en Fase Sólida , Proteína bcl-X/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA