Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 63(5): 683-698, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35246690

RESUMEN

Phosphoenolpyruvate carboxylase (PEPC) is a tightly regulated enzyme that plays a crucial anaplerotic role in central plant metabolism. Bacterial-type PEPC (BTPC) of developing castor oil seeds (COS) is highly expressed as a catalytic and regulatory subunit of a novel Class-2 PEPC heteromeric complex. Ricinus communis Ca2+-dependent protein kinase-1 (RcCDPK1) catalyzes in vivo inhibitory phosphorylation of COS BTPC at Ser451. Autokinase activity of recombinant RcCDPK1 was detected and 42 autophosphorylated Ser, Thr or Tyr residues were mapped via liquid chromatography-tandem mass spectrometry. Prior autophosphorylation markedly attenuated the ability of RcCDPK1 to transphosphorylate its BTPC substrate at Ser451. However, fully dephosphorylated RcCDPK1 rapidly autophosphorylated during the initial stages of a BTPC transphosphorylation assay. This suggests that Ca2+-dependent binding of dephospho-RcCDPK1 to BTPC may trigger a structural change that leads to rapid autophosphorylation and subsequent substrate transphosphorylation. Tyr30 was identified as an autophosphorylation site via LC-MS/MS and immunoblotting with a phosphosite-specific antibody. Tyr30 occurs at the junction of RcCDPK1's N-terminal variable (NTVD) and catalytic domains and is widely conserved in plant and protist CDPKs. Interestingly, a reduced rate and extent of BTPC transphosphorylation occurred with a RcCDPK1Y30F mutant. Prior research demonstrated that RcCDPK1's NTVD is essential for its Ca2+-dependent autophosphorylation or BTPC transphosphorylation activities but plays no role in target recognition. We propose that Tyr30 autophosphorylation facilitates a Ca2+-dependent interaction between the NTVD and Ca2+-activation domain that primes RcCDPK1 for transphosphorylating BTPC at Ser451. Our results provide insights into links between the post-translational control of COS anaplerosis, Ca2+-dependent signaling and the biological significance of RcCDPK1 autophosphorylation.


Asunto(s)
Fosfoenolpiruvato Carboxilasa , Ricinus communis , Bacterias/metabolismo , Calcio/metabolismo , Ricinus communis/metabolismo , Aceite de Ricino/metabolismo , Cromatografía Liquida , Fosfoenolpiruvato Carboxilasa/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Ricinus/metabolismo , Semillas/metabolismo , Espectrometría de Masas en Tándem
2.
BMC Res Notes ; 11(1): 297, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29764512

RESUMEN

OBJECTIVE: Dual specificity tyrosine phosphorylation-regulated kinases (DYRK) contain a characteristic sequence motif (DYRK homology box, DH box) that is located N-terminal of the catalytic domain and supports the autophosphorylation of a conserved tyrosine during maturation of the catalytic domain. Two missense mutations in the DH box of human DYRK1B were recently identified as causative of a rare familiar form of metabolic syndrome. We have recently shown that these amino acid exchanges impair maturation of the kinase domain. Here we report the characterization of DYRK1A point mutants (D138P, K150C) that correspond to the pathogenic DYRK1B variants (H90P, R102C). RESULTS: When expressed in HeLa cells, DYRK1A-D138P and K150C showed no significant difference from wild type DYRK1A regarding the activating tyrosine autophosphorylation or catalytic activity towards exogenous substrates. However, both DYRK1A variants were underphosphorylated on tyrosine when expressed in a bacterial cell free in vitro translation system. These results suggest that D138 and K150 participate in the maturation of the catalytic domain of DYRK1A albeit the mutation of these residues is compensated under physiological conditions.


Asunto(s)
Mutación/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Animales , Células HeLa , Humanos , Fosforilación , Quinasas DyrK
3.
FEBS J ; 280(18): 4495-511, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23809146

RESUMEN

The function of many protein kinases is controlled by the phosphorylation of a critical tyrosine residue in the activation loop. Dual specificity tyrosine-phosphorylation-regulated kinases (DYRKs) autophosphorylate on this tyrosine residue but phosphorylate substrates on aliphatic amino acids. This study addresses the mechanism of dual specificity kinase activity in DYRK1A and related kinases. Tyrosine autophosphorylation of DYRK1A occurred rapidly during in vitro translation and did not depend on the non-catalytic domains or other proteins. Expression in bacteria as well as in mammalian cells revealed that tyrosine kinase activity of DYRK1A is not restricted to the co-translational autophosphorylation in the activation loop. Moreover, mature DYRK1A was still capable of tyrosine autophosphorylation. Point mutants of DYRK1A and DYRK2 lacking the activation loop tyrosine showed enhanced tyrosine kinase activity. A series of structurally diverse DYRK1A inhibitors was used to pharmacologically distinguish different conformational states of the catalytic domain that are hypothesized to account for the dual specificity kinase activity. All tested compounds inhibited substrate phosphorylation with higher potency than autophosphorylation but none of the tested inhibitors differentially inhibited threonine and tyrosine kinase activity. Finally, the related cyclin-dependent kinase-like kinases (CLKs), which lack the activation loop tyrosine, autophosphorylated on tyrosine both in vitro and in living cells. We propose a model of DYRK autoactivation in which tyrosine autophosphorylation in the activation loop stabilizes a conformation of the catalytic domain with enhanced serine/threonine kinase activity without disabling tyrosine phosphorylation. The mechanism of dual specificity kinase activity probably applies to related serine/threonine kinases that depend on tyrosine autophosphorylation for maturation.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Serina/química , Treonina/química , Tirosina/química , Animales , Biocatálisis , Escherichia coli/genética , Escherichia coli/metabolismo , Células HeLa , Humanos , Cinética , Modelos Moleculares , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/genética , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/genética , Serina/metabolismo , Especificidad por Sustrato , Termodinámica , Treonina/genética , Treonina/metabolismo , Transfección , Tirosina/genética , Tirosina/metabolismo , Quinasas DyrK
4.
Plant Signal Behav ; 8(12): e27671, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24394563

RESUMEN

Several plant CDPKs were recently shown to be dual specificity kinases rather than Ser/Thr kinases as traditionally classified by sequence analysis. In the present study we confirm the autophosphorylation of recombinant soybean His 6-GmCDPKß at the Tyr-24 site using sequence- and modification- specific antibodies. Homology modeling of soybean CDPKß based on recent structures determined for several apicomplexan CDPKs suggested that phosphotyrosine-24 may be inaccessible to phosphatases. However, we report that dephosphorylation of CDPKß by the protein tyrosine phosphatase 1B, PTP1B, was not restricted in the presence of calcium. Thus, despite conformational changes likely associated with calcium binding to the CDPKs, phosphotyrosine sites remain fully accessible to dephosphorylation suggesting the possibility of conformational breathing and flexing.


Asunto(s)
Calcio/farmacología , Glycine max/enzimología , Fosfotirosina/metabolismo , Proteínas Quinasas/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación/efectos de los fármacos , Proteínas Quinasas/química , Estructura Terciaria de Proteína , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Homología Estructural de Proteína , Toxoplasma/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA